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RENDICONTI DELCIRCOLO MATEMATICO DI PALERMO 
Scrie II, Suppl. 63 (2000) pp. 63-73 

SPINOR EQUATIONS IN WEYL GEOMETRY 

VOLKER BUCHHOLZ 

ABSTRACT. In this paper, the Dirac, twistor and Killing equations on Weyl mani
folds with CSpin structures are investigated. A conformal Schrodinger-Lichnerowicz 
formula is presented and used to show integrability conditions for these equations. 
By introducing the Killing equation for spinors of arbitrary weight, the result of 
Andrei Moroianu in [8] is generalized in the following sense. The only non-closed 
Weyl manifolds of dimension greater than 3 that admit solutions of the real Killing 
equation are 4-dimensional and non-compact. Any Weyl manifold admitting a real 
Killing spinor and being of dimension greater than 3 has to be Einstein-Weyl. 

INTRODUCTION 

In the first section, we state some basic definitions of density bundles, Weyl struc
tures, curvature terms and Einstein-Weyl structures. 

The second section is dedicated to Dirac- and twistor operators on Weyl manifolds. 
In [1], [5], [6] and [7] the properties and integrability conditions of the twistor and 
Killing equation were intensively studied in the context of Riemannian geometry. Here 
we want to generalize some of these results to arbitrary Weyl structures and spinor 
fields of arbitrary weight. The first result in this area is due to Andrei Moroianu 
[8] and deals with the integrability conditions for the existence of non-trivial parallel 
spinors of weight 0. He found that the given Weyl structure has to be flat (closed) 
on manifolds, which are not 4-dimensional and non-compact. Furthermore, he gave 
several counter examples by showing, that in dimension 4 the existence of a parallel 
spinor field is equivalent to the existence of a hypercomplex structure. This means 
in particular (see [10]), that the Weyl structure is Einstein-Weyl. We generalize this 
result to any dimension n > 2 as well as for Killing spinor fields ip of arbitrary weight 
satisfying 

where /? denotes a complex density of weight —1. 
The only-nonclosed Weyl manifolds that admit solutions of the real Killing equation 

are 4-dimensional and non-compact. Any Weyl manifold admitting a real Killing spinor 
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and being of dimension greater than 3 has to be Einstein-Weyl. To this end it is crucial 
to proof a generalized Schrodinger-Lichnerowicz formula: 

^2 * A <? , l n , (n-2 + 2w\ „ , 
V2\f> = As^ + -Rift + f J F • i>, 

where it denotes the scalar curvature and F the Faraday curvature of the Weyl struc
ture. 

This formula is also used in order to investigate integrability conditions of the twistor 
equation, which is denned by 

0 = TwФ := Vsф + -vVф. 
n 

We then compute 

VSPV = 
n - 2 -."'*-' + W=T)R» + (" " j) {"'F + W=T)"»F) Iþ 

on its kernel, where Rid is the Ricci curvature of the o(n)-component W of the Weyl 
structure W. This equation corresponds to the equation 

**"-V^{V£T)X-***)•* 
in [1]. We use this result to prove, that the two well known first integrals C(ip) and 
Q(ip) are parallel densities if the weight of ip is | or dO • ip = 0. Furthermore, we use 
it in order show that the zeros of a twistor spinor field form a discrete set. 

1 would like to thank Thomas Friedrich for numerous discussions and hints on this 
subject. 

1. WEYL GEOMETRY ON CONFORMAL SPIN MANIFOLDS 

Let Mn be a smooth, oriented manifold and (R, Mn,7r, GL(n,R) its frame bundle. 
Let CO(n)+ = SO(n) x R+. For a conformal class c let P denote the corresponding 
CO(n)+-reduction. We define a two-fold covering Ac: Spin(n) x R+ =: CSpin(n) —> 
CO(n)+ = {Ae CO(n)\det(A) > 0} by 

Ac(a,t9):=i?A(a), 

A : Spin(n) —> SO(n) is the covering of the SO(n). The spinor representation KW 

ffl of CSpin(n) on A„ := C2 with weight w is defined as follows: /^(a,!?) = dwK(a), 
where K is the 5pin(n)-representation on An. Like a Spin structure a CSpin structure 
on (Mn,c) is a pair (PcSPin,Ac), where 
(Pcspin, Kcspim Mn,CSpin(n)) is a CSpin(n)-principal fibre bundle on Mn and 
Ac: Pcspin —> Pco+ -s a two-fold covering that commutes with Ac and the action of 
the structure group. The existence of CSpin structures is equivalent to the existence 
of Spin structures, since Spin(n) is maximally compact in CSpin(n). We have the 
following vector bundles: 1. Cw := Pcspin y\deto\c\% ^ *s c a^ed density bundle with 
weight w. 

2 (pvs)u, :== pCSpin x(pr,,oAc)w (<g)f(Rn)*<g)5Rn), is the (r,s)-Tensor bundle with 
weight w. (pr>s o \c)w denotes the the standard representation of CSpin(n) on the 
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(r,s)-tensors with weight w, (pr>s o Xc)w(a,'d) = \9w(pr>s o Xc)(a). T shall denote the 
ordinary tagent bundle and T* its dual. 

3. Sw := PcsPin XK* An is the spinor bundle with weight w. S := Sl denotes the 
ordinary spin bundle, 
Let |t;O |̂~« =: lg G C1 denote the density corresponding to a metric g G c. Then we 
are given the following eonformally invariant operators 

1. c := l]g : Tw ® TWi —* Cw+W\ \X\2 := c(K, K) G £2u; for K G Tw. 
2.(.)c:=l2

g(.)g:T
w->(T*)w, 

3. tr := l~Hrg : ( T r ' T —> (Tr~2's)w, r > 2. 
4. the conformal, hermitian product (.,.) := l2

g(.,)g : HS10 ® S™1) —•> T(Cw+Wl) 
and 

5. the conformal ClifTord product p := lgpg : r(Tw ® S™1) —> T(5u;+u;i), 
where (., .)g and Lt9 denote the hermitian product and the Clifford product given on 
(Mn,g G c). We can use (,)c in order to define the p on arbitrary (r, s)-tensor fields. 
The operator pab : Tr>s ® Sw —• Sw is the conformal Clifford product of a spinor field 
of weight w with the bth and then with the ath component of a tensor field. Example: 

t£217 ®K®cj®t/> = u ;®K -7 - ' 0 , 

where 7 ® X G (T1'1)™, u G T2'0 and V € A™1. Whenever there are no indices, the 
Clifford product ranges over all components of the corresponding tensor, i.e. pA®ip = 
-4-^ := E,Ir.,if -4(eil} . . . , 0 ^ • • -eir -t/>. The operator */: A™ —> T1'0® A™ is defined 
as follows: 

X\vip = pX®ip = X -ifr. 

Then /JZ/ = —n holds. Some well known identities have then the following appearance: 

pl2u®ip = -p2lu®ip-2trl2LJilj (1) 

trvuij) = w-xp (2) 

Re(vip,vip) = (^,^)c:= |^|2c (3) 

Moreover, we define some operators on Tr,s: 
1. Let (ab) denote the transposition of the components a and 6, 
2. Sum := Id + (12), ,4ft = Id - (12), Zyk := Id + (23)(12) + (12)(23), Zykl2U := 

Id+ (12)(23)(34) + (34)(23)(12) + (13)(24). 
A torsion-free connection W : TP —r co(n) on a conformal manifold (Mn, c) is called 
Weyl structure. V shall denote the induced covariant derivatives on associated vector 
bundles. The operators c, tr and (.)c are parallel with respect to any Weyl structure. 
On Cl the curvature of a Weyl structure is given by AltVT*®clVcl =: F G $l2(M). 
This globally defined 2-form is called Faraday curvature. Choosing a gauge g on Mn 

provides a 1-form 9 G Q!(Mn) in the following way: Vlg = 9 ® lg. For any gauge, 
we obtain F = d9. Since the Lie algebra of the conformal group splits into two 
components, there is also a splitting of a Weyl structure into a metric part W and a 
scalar part 9' ® Id. 

W = W + 9'® Id, W : TP —> o(n), ff G $ll(P) 

A Weyl structure W is exact (closed) if and only if 9 is exact (closed) with respect to 
any gauge. 
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For a given Weyl manifold (Mn, c, W) the curvature tensor n e r(T4,0)"2 is denned 
by 

n(X, Y, Z, U) := c(VxVYU - Vy VXZ - V[xy\Z, U), 

for any vector fields X, Y,Z,Ue T(T). The Ricci curvature is given by: 

Ric := trun and RicJ := trun' = Ric + F, 
where the primed objects belong to the connection W. Ric is not symmetric. In fact, 
we obtain: ^AltRic = —~F. Finally, we define the scalar curvature 

R := tr(Ric) = trtrun e T(C~2), 

which is not a function, but a density of weight -2. 

Lemma 1.1 (Symmetry properties). Let n' be the curvature tensor ofW. Then 

n! = (13)(24)ft' + [(13) + (23) - (14) - (24)] F ® c. (4) 

Proof. We have Zykm = —ZykF ® c, which is just a version of the first Bianchi 
identity for n. This yields: 

Zykn'Zykuu = -ZykF ® cZykuu . 

We choose vector fields X, Y,Z,T. Then: 

Zykn'Zykuu(X, F, Z, T) = n'(X, Y, Z, T) + n!(Y, Z, X, T) + n'(Z, X, Y, T) 
+n'(Y,Z,T,X) + n'(Z,T,Y,X) + n'(T,Y,Z,X) + n'(Z,T,X,Y) 
+ft'(T, X, Z, Y) + n'(x, Z, T, Y) + n'(T, X, Y, Z) + n'(x, Y, T, Z) 
+n'(Y, T, x, z) = 2 (n'(z, x, Y, T) + n'(T, Y, Z, X)) 

= 2(12)(23)(ft' - (lZ)(2A)n!)(X, Y, Z, T). 
Similarly, we get for F®c: ZykF%cZykuu = 2ZykuuF%c. Putting all this together 
implies: 

n! = (13)(24)7Z'-(12)(23)Zyfc1234K®c = (13)(24)ft'+[(13) + (23)-(14)-(24)]F®c, 

since 

(12)(23)zTyA:1234F ® c = (12)(23)[/d + (12)(23)(34) + (34)(23)(12) + (13)(24)]F ® c 
= [-(13) - (13)(23)(12) + (14) + (23)(24)(34)]F 0 c 
= [-(13)-(23) + (14) + (24)]F®c. D 

For n > 3 a Weyl structure W on (Mn, c, IV) is said to be Einstein-Weyl if and only if 
^. R n,-, ~. i R n — 2 „ . . 
Ric=-c--F or Rid = - • c — F. 5) 

n 2 n 2 v 7 

The symmetric part of Ric reduces to its trace if and only if W is Einstein-Weyl. 
(Mn,c, W) is called an Einstein-Weyl manifold. 

Let Ws be the lift of W into the CSpin structure and denote its induced covariant 
derivative on Sw by Vs. 

Theorem 1.2. [4] Fix a gauge g e c and a spinor ip G T(SW). Then the difference 
between the spinor derivatives ofW and W9, the Levi-Civita connection is as follows: 

vs
xxi>-vs

xH = -\x-o-ii> + (w-)^em. 
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We define the spinorial curvature by 11s>w := AltVT*®s o V s = < f i 5 . where fi5 is 
the curvature form of Ws. 

Lemma 1.3. 

yS.w _ •*• ,.34<-r>/ 
ws.» = ^n' + wF (6) 

-̂34-̂ / = -2tfRic' - 2\x2F - vfiF (7) 

fiR! = 2R + 2(n-2)ptF (8) 

Proof. (1) According to the splitting W = W + ff ® Id we get for the corresponding 
curvature form: 0, = fl' + F. 

ns = Kwns = <(Aj)-1n = K^ixi)-1^ + wF = j^n' + wF'. 

(2) First we use the symmetry properties of F ® c and (1) to calculate: 

V2 4[(13) + (23) - (14) - (24)]F ® c 

= [-/z324 - M134 + M124(14) - \xm - 2iiHr24] F ® c 

= [2(i234 + 2ixHr23 - n214(\4) - 2JrV(14) - /z124 + 2M
2tr23] F ® c 

= [2M
234 + AfxHr23 + /x214 + 2^tr14 - 2/i1tr23 - M

124] F ® c 

= [2/x234 + 4n2tr23 - /i124 + 4»Hr23 - fi124] F ® c 

= [2p234 + SfiHr23 - 2/i124] F®c= (-2n + 8)(i2F -2F-v 

and 

-H234ZykF ®c = -n234 [Id + (23)(12) + (12)(23)] F ® c 

= - [n23i - M
234(23) + n124] F®c=- [2/x234 + 2/x2tr23 + ^124] F ® c 

= (2n - 2)n2F - F • v. 

This implies, by using F • v = VfiF + 4fi2F and equation (4): 

M234R = -n234 [[(12)(23) + (23)(12)] 7 '̂ - ZykF ® c\ 

= /u
234(23)7^' - fi12in' - (i23iZykF ® c 

= M
234(23)ft' - p124(13)(24^' - nm[(l3) + (23) - (14) - (24)]F ® c 

-H234ZykF ® c 
= M

234(23)K' + n324n' + 2n2tr24n' + (-2n + 8)/i2F 
-2F -v + (2n- 2)n2F -F-v 

= -2\i234n' - 6n2Ric' + 6/i2F - 3F • v 
= -2n234n' - 6n2Ric' - 6n2F - 3vfiF. 

(3) From (7), we obtain 

MR' = nn23in' - 2nRic' -fiF + n»F = -n(Alt(Ric') + Sym(Ric')) + (n- 2)fiF 
= (n-2)nF + 2R + (n-2)nF = 2(n-2)iiF + 2R. • 
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2 . SPINOR EQUATIONS IN WEYL GEOMETRY 

2.1 The Dirac operator. 

Definition 2.1 (Dirac operator). The Dirac operator Vw : T(SW) —• T(Sw~l) is 
defined by: 

Vw := liV5. 

If there is no ambiguity to be expected, we will omit the index W. 

Definition 2.2. The spinor Laplacian is given by A5'™ : T(SW) —> F(SW~2) 

- A s ' w : = - t r V r ® 5 o V s . 

Theorem 2.3 (Schrodinger-Lichnerowicz formula). Let ip e T(SW). Then 

V^ = Asi)+
1

1Ri>+(n~2
4

+2w)F^. (9) 

Proof. This can be obtained directly. The final reduction of the curvature terms is 
due to the equations (6) and (8). 

V2i> = »VsvVs4> = vVT'®sVsxl> = ^(AltVT'®sVs + SymVT'®sVs)4> 

= n\Ksip - trVT*®sVsV> = ASV» + \nK'i> + \wF • i> 
2 8 2 

A < ; , 1 ^ , í n - 2 t i i \ n , 
= Asip +-Rijj + (-^- + -)F-ip. D 

2.2 The twistor operator. 

Definition 2.4 (twistor operator). We define the twistor operator Tw : r(S™) —>> 
r(T* ® Sw) of a CSpin manifold (Mn, c, W) by Tw := V5 '" + ~W. 

Let (Mn,c, PV) be a CSpin manifold and ip € F(SW) a twistor spinor field, i.e. an 
element of the kernel of T. Then Vsip = —^vVip is true and therefore 

A5t!J = -trVT*®sVsip = -trVT*®svVi) = -trvVsV^ = -£>V (10) 
n n n 

is satisfied. From the Schrodinger-Lichnerowicz formula we obtain: 

4 ( n - l ) 4 ( n - l ) 

This leads to 

Theorem 2.5. Let ip € T(SW) be a twistor spinor. Then: 

T?——VsVip = --fi2Rid®il> + -r, zrRvip 
n 2 4 ( n - l ) 

+ (w-^j(џ2F + лl_" лSvџF)®ф. (12) _2_ 
4 ( n ~ l ) " 
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Proof. We use (7) and (6) in the first and second step. Then finally, after some direct 
calculations, we use (11). 

-\li2Rid^ - \ii2F^ - \viiF$ = -u2U1l' 

= ii2Tlsi) - wtfFi) = fi2AltVT*®sVstP - W/J?FIJJ 

= --n2AltVT*®svV^ - wfi2FiP = -ii2AltvVsV^ - wii2FiP 
n n 

= -jj,2vVsVip fxlvVsVip - wv2Fip 
n n 

= --VsV2rp - -VsVib + V5D?/> - wu2Fib 
n n 

" -,...,. ( " - 2 - 2 W ) . . . . ^ , n - 2 s 2 n -Rvi) - ±— -r-^vtiFý + VbVip - wfrFí/). 
4n(n - 1) ^ 4(n - 1) 

Theorem 2.6. If the term (w - £j (li2F + ^^vfiF) ip reduces to a single Clifford 

product or even vanishes, e.g. if w = - or F • 0 = 0 is satisfied, the sections 

Cty) := Re(^V*P) eT(C2w~l) 

and 
Q(t/>) := |t/f |r>t/f - trRe(V^>, v$)2 e T(C4w~2) 

are W-parallel. 
Proof. In (12) there are only single Clifford products left. Then (3) yields 

VC(V>) = Re(Vs4>,Vil>) + Rety, V s l ty) = Re(--vVip,Vrl>) = 0 
n 

and 

VQ(tf) = 2Re(Vsip,ip)Re(V^yV$) + 2Re(xp^)Re(VsVipJVip) 
2 

-2tr2*Re(VsVxl), vip)Re(Vip, vip) + -trnRe(Vil), vvVip)Re(Vip, vip) 
n 

= 0. • 
2.2.1 The zeros of a twistor spinor field. In this section we show that the zeros of 
a twistor spinor field are a discrete set in Mn. Let Mn be connected. We define 
Ew := Sw © Sw~l and regard the covariant derivative VEU>, which is characterized by 

where KW(X) = V^V : T{SW) —* T{SW-X). 

Theorem 2.7. For all twistor spinor fields <f> e T(SW) 

^U)=° 
holds. Conversely, any VEW-parallel section i , \ £ T(EW) yields: 

7^0 = 0 and tp = V<j). 
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Since parallel sections on vector bundles over connected manifolds are uniquely 
determined by their value in a single point, we obtain: 

Corollary 2.8. The dimension of the space of all twistor spinor fields of connected 
CSpin manifold is less than or equal to 2^+l. Furthermore, a twistor spinor field ip 
on a connected CSpin manifold for that ij)(m) = 0 and V$(m) = 0 in a point m € Mn 

is trivial. 

Theorem 2.9. The set N^ := {ip e T(SW) : ip(m) = 0 and Tw4> = 0} of a twistor 
spinor field 0 ?- ip E T(SW) is discrete in Mn. 

Proof. (12) yields VsVip(m) - 0 and for gee: 

0 = 2Jfe(ViM)(ro) = V|^|2(m) = V^|^|2(m), 

since Vlw = S79lw + w6® lw. \ip\2 is a density, i.e a section of C2w. Therefore, we get 
for vector fields X, Y on Mn: 

V*V r | i / f (m) = V^Vy |^|2(m) + 2wd(X)VY\^\2(m) = V^V |# | 2 (m) . 

If we choose X and Y to be W-parallel in m, we finally obtain by applying (3) 

VxVY|^|2(m) = 2 V x ( W ^ ) ( m ) = -~VX{Y • Zty.tfOM 
n 

- \{Y-V^X-ViP){m) = -2c{X,Y)\ViP\2{m). 
n* n£ 

The combination of the latter two equations yields that Hessm(\ijj\2) is not degenerated 
if Vip(m) is not trivial. Therefore, m is an isolated point of N(rl>). Otherwise, it follows 
from the last corollary that ifr must be trivial. D 

2.3 The Killing equation. In this section, Mn shall be connected. 

Definition 2.10 (Killing spinor fields). A spinor field ip G T(SW) is called a Killing 
spinor field if it satisfies the following differential equation: 

where P is the Killing density of ip. 

A non-trivial Killing spinor field vanishes nowhere on a connected manifold, since 
it is parallel with respect to the covariant derivative V5 — f3v. It is obvious, that any 
Killing spinor field satisfies the twistor equation and can be taken as an eigenspinor of 
the Dirac operator with the eigen density -n/3. We now investigate the integrability 
conditions for the existence of non-trivial Killing spinor fields. 

Theorem 2.11, Let ip e T(SW) be a Killing spinor field. 
1. 0 pureley imaginary, w ^ s ~ ; (F • ip,i/)) = 0. 
2. P real: R = 4n(n-l)P2. 

(a) w T<- 0; W is exact and Einstein-Weyl 
(b) w=0: 

(i) p -̂  0, n > 4; W is exact and Einstein- Weyl 
(ii) P = 0, n > 2, (4^n or M compact): W is closed and Einstein Weyl 

(iii) P = 0, n = 4, M non-compact: W is Einstein-Weyl and F is harmonic. 
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Remark. For the latter case (n = 4 and Mn non-compact) Moroianu gave in [8] an 
example of a CSpin manifold together with a non-closed Weyl structure that carries 
non-trivial parallel spinor fields. 

Proof. 

1. /? is purely imaginary: We have 

Ri> + 2 C^p- + w)F-il) = 4(n- l)n/?fy - 4(n - 1)V/3 • tf, (13) 

which itself follows from (11): 

71 U.L , ( n ~ 2 + 2W)U IP ./. _ T>2. , . __ ^ . . n S t / a . / A - ^V7/^ / , 2*2,. -ity + •L-— TT-^-Í1 • ^ = V*ý = -n/iVs(/3^) = -nV/? • ip + n 2 ^ . 
4 ( n - l ) 4 ( n - l ) 

The imaginary part of the product of (13) with r/> is as follows: 

(w+-^j(F^^) = Oi 

i.e., we have shown the assertion. 
2. /? is real: By multiplying (13) with ^ we see that R = 4n(n - l)/?2 holds. 

11; £ 0: We obtain V x ( ^ ) = (V$V,V0 + W>, V$V0 = /?(* • Vstf) ~ /?(* ' 
i)^) = 0, by assumption. Hence, W is exact. This means, that there is a 
metric g of the conformal class c, for that W is the Levi-Civita connection and 
W admits a Killingspinor. Therefore, (Mn,g) is Einstein, hence (Mn

}c, W) is 
Einstein-Weyl. 

w = 0: By using the definition of Killing spinor fields we obtain: TlPil) = 
Alt(Vf3)viP + 2p2(v21 + c)i/>, where X, Y\v21^ = Y-X-$. This yields: 

H21lsip = -nV/3 ®ip-V(3-vip-~ 2(32(n - l)vip. 

Together with (7) we obtain: 

[i2Ric'tp = 2nV/3 ® V + 2V/3 • i/^ + 4/?2(n - l)i/^ - j/Fip - -i/F • ip. 
2 (14) 

By (13) and the assumption R = 4n(n — l)/?2 holds and thus we obtain again 
from (13): 

F.$=-*&^V0.1,. (15) 
n — 2 

Inserting (15) into (14) yields: 

tfRic'i) = 2nVf3 ®tp + 2V/3 • uip + -v^ - fi2Fip + ^ ~ W / 3 • V>. 
n n - 2 ( 1 6 ) 

The operator V/3 * v consists of double Clifford products and scalar parts. We 
now rearrange (16) accordingly. 

H2Ric'ijj = 2 (n - 1 - ^ — ^ V/3®V+ ( l - ^—4) fil2Altl2Vp®ci> + -vi;-{i2Fi>. 
\ n-2) \ n - 2 / n 
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If we multiply this equation by t/?, we see that V/3 must vanish for n ^ 3 since 
all the other terms are purely imaginary. Therfore, W is exact and as before, W 
is Einstein-Weyl. 

3. The equations (6) and (7) together with the assumption yield 

li2Rid$ = -~fj,2Fip - -vF • ip. 

Then (13), R = 0 and the assumption impose F • ijj to vanish. Since tjj vanishes 
nowhere however, Rid = — F. Therefore, the symmetric part of Rid reduces to 
its trace (which is 0), i.e., W is Einstein-Weyl. Hence, Theorem 3.6 in [9] is 
applicable, which yields all remaining assertions. 

2.4 Two dimensional examples. 

1. Killing spinor fields of weight \. 
We can find imaginary Killing spinor .fields ty of weight | on (R2, [g], xxdx2). Because 
of Theorem 1.2 they have to be a solution of 

X(^) = ^X.0.^ + P9X.i; = X.(^xld2 + P9y^1 

where X e R2 and T(C <g> Cl) 3 /? = 0glg hold true. (di,...,dn) are said to be the 
standard basis in R2. If one uses the following representation of the Clifford algebra 

one obtains 
x'ifc é£i*=°-

We find a non-trivial kernel of the matrix for all X if and only if pg = db|xi. An 

element of this kernel must be of the form ipo — ( -.-" ) w-th a € C. We obtain, just 

as stated in Theorem 2.11: 

» « - ( ! " : ) ( ; ) ' ( ; ) - ( * : ) ( , : ) = « • 

2. Parallel spinor fields of weight 0. 
On (R2, [g],xidx2) we have to solve: 

X(xP) = \x . 0. ip + l-9{X)i> = 1XXX& - ft - tf 

for ip e r(5°), where X = £2
= 1 X&. 

We use the following representation of the Clifford algebra 

*-(.;) M0-.1 

Therfore 
' * 0 

д l ' д 2 '• 0 -i 
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and so we are given 

x(^+) = l-xlx1i>
+, x(r) = ~xlXlr, 

where t/>+ and ip~ correspond to the splitting A2 = Aj © Aj . It is, however, not 
difficult to determine the solution of this system. 

ip+(x) := exp (^-xfj $+ , i)~(x) := exp ( - ^ i j ^o" , 

where tpQ € C 
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