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NATURAL.OPERATORS ON FRAME BUNDLES 

MICHAL KRUPKA 

ABSTRACT. A basis of zero-order differential operators of the rth order semi-holono-
mic frame bundles with values in any sth order natural bundle is found. A basis of 
rth order differential operators of the first order frame bundle with values in any sth 
order natural bundle is found. An example for r = 1,2, s = 1 showing relations to 
the Lie bracket is given. 

1. INTRODUCTION 

There is the following problem in the theory of natural bundles and operators: Find 
to given natural bundle F\ of order r\ a natural bundle F 2 of order r2 and a differential 
operator D : F\ —> F2 of order s, such that any other sth order differential operator 
D : F\ -» F, where the order of F is r2, can be factored through JD, i.e., such that 
there is a zero-order operator DQ : F 2 —> F for which the diagram 

F j — — ғ 2 

(1) A> 

commutes. The differential operator D is sometimes called basis of 5th order operators 
of Fx with values in bundles of order r2. 

In this paper, we solve this problem in two particular cases. First, for Fx equal to 
the semi-holonomic frame bundle semiF r i, s = 0, and r2 < ri. Second, using the 
canonical semi-holonomic prolongation of first-order frames into higher order semi-
holonomic frames, for Fx equal to the first order frame bundle F 1 , s arbitrary, r2 < 5. 
We use the method of orbit reduction (Theorem 1), which is based on factorization of 
the type fiber of the prolongation JSFX with respect to the canonical Lie group action. 

1991 Mathematics Subject Classification. 58A20, 53A55. 
Key words and phrases. Semi-holonomic jet, natural differential operator, frame bundle. 
Research partially supported by Grants CEZ.J 10/98:192400002 and VS 96003 "Global Analysis" 

of the Czech Ministry of Education, Youth and Sports and Grant No. 201/98/0853 of the Czech 
Grant Agency. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 



1 2 2 M. KRUPKA 

At the end of the paper, we give concrete results for the case of first and second 
order and show their relations to the Lie bracket. 

The subject has been studied by D. Q. Chau and D. Krupka [2], other related papers 
are [8], [4], [9]. For information on the Natural bundles and operators theory the reader 
is referred to [3], [6]. The orbit reduction method was used first in [5]. The theory of 
semi-holonomic jets is introduced in [1] and reviewed in [7]. 

2. CONVENTIONS 

For a multi-index U = (ui, . . . , ut) we shall write 

VI v> %-Ju ~~ XjUl...jUt ' 

Occasionally, the multi-index U can have the form: 

U = (tii, . . . , U*-!, (uk, Ujfe+i), uk+2,... , ut). 

In this case we write 

' 3 ' XjU = Xhl'juk_1bukjuk+l]juk+2...jut ' 

where the brackets denote antisymmetrization: 

m ^ u i "Juk-itiukiuk+i}Juk+2-iut 

V ' —-_ y \ # # # # Y . . . . . 
^i . 1 . . . j t i f c _ 1 j i i f e iu f e + 1 i t . f e + 2 . . . j t i t

 A-3ul...juk_lJuk+l3ukJuk^2...Jut ' 

If A is a decomposition of the set {1,2,... ,r} then the symbol |A| denotes the 
number of sets in A. The sets Ai, A2 , . . . , AJA| from A are ordered by smallest ele­
ments. Thus for tx < t2, the smallest element of At*, is less than the smallest element 
of Af2. Further, the symbol |Af| denotes the number of elements in Af. The elements 
of At are denoted by A n , A t 2 , . . . , At|At| where An < At2 < . . . < \\At\-

We shall also work with decompositions of the set {1 , . . . , s—1, (s, s+1), s+2, . . . , r}. 
In this case we use the same conventions as in the previous case with s — 1 < (s, s+1) < 
s + 2. 

The sets At will be used as multi-indices (Aa, Ae25... , A ^ i ) . 

3. JETS 

For manifolds X\, X2, dimKi = n^ dimX2 = n2, and points X\ € Xi, x2 E X2 we 
fix the following notations: 

(5) rXUX2(xux2) = {rxj | / : Xx -> X2,f(Xl) = x2) , 

(6) j;(*i,*2) = U •S„«(*i.*-). 
xex2 

(7) JT(XUX2) = U MXiM, 
x€Xx 

(8) TniX2 - r0(R
n\X2). 

These spaces admit canonical smooth resp. fiber bundle structure. Subsets of these 
spaces consisting only of jets of maximal rank will be marked by the prefix "reg". 
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Thus, the r-frame bundle FrX2 is equal to regT£2K2, and the rth differential group 
Un is equal to regJo0(i?n,i?n). For s < r, we have the canonical projections 

(9) *lM : Jr(XuX2)->Js(XuX2), 

(10) rrr
Xl>Xl : Jr(XuX2) -> Xx x X2. 

The kernel of the projection nr£R„ : Ln-t Ln is denoted by Kn'
s. 

For a point x G X we set 

(11) i ; = reg .£,(*, X) , 

and get a Lie group Lr
x. For s < r, we denote the kernel of the projection TTT

XX : Ux -¥ 
Lj, by Kr/. 

We shall use analogous notations for spaces of semi-holonomic jets with the prefix 
"semi" added. 

On all of these spaces, we shall use induced coordinates as usual. For example, for 
charts (U, </?) on the manifold X\ and (V, ip) on X2 the induced coordinate system on the 
semi-holonomic jet space semi Jr(Ki, X2) is denoted by (v?7, ipk

} ^ 1 ? ^ l j 2 , • • • , ̂ juv-.j-) 
U>3u->-Jr = 1, . . . , ni, fc = 1, . . . , n2). 

For another manifold X3 and a chart (IV, x), the coordinate expression of the compo­
sition of composable semi-holonomic jets ax € semiJr(U, V), and a2 6 semiJr(V, W) 
is 

Xj i . . . j . ( a 2 o a i ) 
(12) = E r i ^ ^ 
where 5 G {1, . . . , r} and A runs through all decompositions of {1,2,... ,s}. 

4. BASES OF DIFFERENTIAL OPERATORS 

From the natural differential operators theory point of view, we shall work mostly 
in the category Vn of n-dimensional second countable Hausdorff manifolds and their 
embeddings, where n will be a fixed integer. 

The following theorem shows that the problem of finding bases of differential opera­
tors formulated in Introduction, can be in some cases solved by computing orbit space 
of some Lie group action. See [5], [3], 

Theorem 1. Let F1} F2 be natural bundles of orders ri, r2) Pi, P2 their type fibers. Let 
D : F\ —> F2 be an sth order differential operator, g : T£Pi -» P2 its fiber representa­
tion. Suppose that g is a surjective submersion and quotient projection with respect to 
the action of K^*8'1"1 on T^P\. Then for any other differential operator D : F\ -> F 
with order of F equal to r2) there is a unique zero-order operator D$ : F2 -» F such 
that the diagram (1) commutes. 

5. NOTE ON FACTORIZATION OF TENSOR SPACES 

For an integer r > 1 and vector space V, consider an affine space H, with the asso­
ciated vector space ffi V*. Let us fix a basis in V and choose compatible coordinates 
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in H. For s = 1 , . . . , r — 1 we have the mappings 
r 

(13) ^M+l : # ~> ® f > 
Ujl-jr ""* UJl...J»-l[7*j«+l]j-+2...Jr ' 

Denote by pr the quotient projection pr : H -> H/ 0 r V* ( 0 means the symmetric 
tensor product) and set A = (A\^2,... , A r_1 | r) . We have A : H -> ( ® r V*) r~\ We 
have the following simple lemma: 

Lemma 2. T/iere is a unique injection 

(14) L-.H/OrV*^(®rV*)r-1 , 

such that the diagram^ 

(15) A 

H -JSL— H/QrV 

i 

((gtv-r1 

commutes. 

6. FACTORIZATION OF SEMI-HOLONOMIC JETS 

Let Xi, and X2 be two manifolds with dimXi = ni, dimX2 = n2. It is a well-known 
fact [7], that the bundle semi Jr(Xi,X2) —> semi Jr_1(Xi, X2) is an affine bundle with 
associated vector bundle (nr

Xl)X2) (TX2 0 (g)r T*XX). 

The quotient space semiJr(XuX2)/(w
r
Xi]X2Y(TX2 ® Q'T+Xx) is also an affine 

bundle over semiJ r~1(X1 ,X2) , with associated vector bundle 

(*$-)*,)• (TX2 ® (O rT*x1/o rr-x1)). 
Let 

( 1 6 ) rr
XuX2:semiJr

XuX2(XuX2) 

-* semiJr(XuX2)/(n
r
Xu

1
X2y(TX2®OT'X1) 

be the quotient projection. 
Fix two points xx £ X l 5 x2 E X2 and consider the space regsemi Jxi>X2(Xi, X2). For 

elements gi € Kr>r~~l, g2 € K£*~l, and p G regsemi Jr
XuX2(XuX2) we set 

(17) gi-p = pog i " 1 , 

(18) 92'V = g2°P, 

(19) {9u92)'P = 92°V°9\l, 

and get left actions of the groups K^r"x,K^r~l, and i^f"1 x KT£~l on the manifold 
regsemi Jr

x X2(Xi, X2). For these actions, we have the following result: 

Theorem 3. The equivalence of the action (19), and the equivalence of the projection 
Tr

Xlx2> coincide on regsemi Jxi X 2(Xi,X2) . If n\ > n2, then the same holds for the 
action (17), if n\ < n2, then the same holds for the action (18). 
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Proof. The group Kg~l can be identified with TXlXx ® © T ^ K i and the manifold 
Jl-uX2(Xi,X2) with TX2X2 ® T*XXX. Using (12) we easily obtain that elements gx £ 

Kr/X~l act on s e m i J ^ ^ K x , ^ ) a s translations gx • p = p - n*1 *2(p) • gi, where 

*XuX2(P) ' 0- = tr™e(*x\,x2(p) ® ffi)-
Similarly, the action of IQp1 on semi Jr. >:E2(Ki, K2) can be viewed as the translation 

92'P = P + 92' "X 1 ,X 2 (P) 5
 w h e r e 9i • ̂ r

Xllx2(p) i s t h e i m a S e o f (g2, ~xli,.x2(-°)) w i t h t h e 

canonical mapping 

(20) (TX2X2®QT;2X2) x (T,.xa®r;IXi) 

- + ( W 8 0 ? ^ i ) 
(r tensor products and r traces). 

This shows that the tensors p o o " 1 — p. g2op~ py and #2 ° P ° ^f1 ~ P a r e a l w a ys 
symmetric (i.e., elements of TK2 ® O r-F*K i ) , which means that the orbits of the 
actions (17,18,19) are subsets of the equivalence classes of TX ^ . 

From the other hand, for any p,p € regsemiJ r
i>X2(Xi,K2) such that TX X2(p) = 

Tr
XlX2(p), the tensor p — p is symmetric. If nx>n2, then there is a right inverse b G 

Jl2,xx (
x^ Xi) of the jet ~r

XuX2(p) = ^ , x 2 ( p ) - Now, the equation p = p-~r
XuX2(p)-gi 

has a solution #i -= 6 • (p — p). If r^ < n2, then the jet itr
x x2(P) = - ^Xi X 2 (P) h a s a 

left inverse b € ^ ^ ( ^ j Xx), and the equation p = p + g2 - ̂ ^^(p) bas a solution 
92 — (p — p) • &. This proves the converse. • 

7 . FACTORIZATION OF SEMI-HOLONOMIC FRAMES 

We shall apply the previous results to the natural bundle semiF r . We have for any 
n-dimensional manifold X (i.e., object of the category Vn) the semi-holonomic frame 
bundle wx : s emiF r K —> X. The bundle semiF r K -> semiF r _ 1 K has a structure 
of affine bundle with associated vector space (7rr

x
l)*(TX ® 0 r Rn*). We have the 

projection rr
x : s emiF r K -4 semi FrX/(TXT

X
1)*(TX ® © r /?"*). 

The system r r -= ( r^ ) is a natural transformation of the functors semiF r and 
semi Fr/(-KT~1)*(T ® Q r IT); the latter functor is of the order r - 1. In the following 
theorem we use the canonical identification of r r and some zero-order differential 
operator. 

Theorem 4. Any zero-order differential operator of semi F r with values in a bundle 
of order r - 1 can be factored through TT . 

Proof. The type fiber of semiF r is equal to semiF0
ritn (action of L r is given by 

jet composition). According to Theorem 3, the projection TRH, restricted to this type 
fiber, is the quotient projection of the action of KT/~l C Lr. Thus, the result follows 
from Theorem 1. • 

Let us now consider the mapping A from Par. 5. We have -45,s+i : semiF rA r -» 
(~T

x
l)*(TX ® Or Rn*). From (12) there easily follow local transformation properties 

of the mapping AS)S+X. Namely, for x € K, p € semi FrX, and g e Ux it holds 

(21) x',..,,(As,s+l(goP)) = Yl XL.,1A|(*)&. (P) • • • • • X']:;A| (?) -
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where A runs through all decompositions of the set {1 , . . . , 5 - 1 , {s, s+l},s+2,... ,r}. 
Hence we obtain equations of the left action of Lr~l on the image A^+i (semi FrX): 

For t < r - 1, 

Xji...j«to-4f) = E X L . . ^ I ( ^ ) X J A I ( 9 ) - . . - - X J ^ ,
A I ( 9 ) 

(22) . A . , ' 
x^.jAg• q) = Ex?1...t|A|(g)xiAjq)-...-xjAM^. 

(A runs through all decompositions of the set {1 , . . . , t} and A through all decompo­
sitions of the set {1 , . . . , s - 1, {s, s -F 1}, s + 2, . . . , r}). 

From these equations, one can deduce that this action can be extended from the 
group Lr_1 to semi L^-1. Equations of the new action will be the same, just forgetting 
the condition of symmetry of x}1...jt(g) (̂  = 1. • • • >r ~ 1) m subscripts. From these con­
siderations it follows that elements from the image q G ylS)S+i(semiFr.K) can be mul­
tiplied from the left by any regular semi-holonomic (r — l)-jet a € regsemiJ^^^X,..?), 
where dimK = n, with a • q 6 As>s+i(semi Fl~X). This multiplication is associative. 

Let us consider for p G semiF^K the point 7Tx(p~l) * -4s,s+i(p). Evidently, this 
point belongs to the fiber of (-Kr£n

l)*(Rn 0 (g)r Rn*) -> sem\Fl~lRn over the point 
Jr-1id#n. This fiber is canonically isomorphic to Rn ® &)r Rn*, so we shall write 
simply T T ^ - V 1 ) • 4,,,+1(p) € Rn ® ® r Rn\ 

Finally, we have 7rr
x(p) e TXX ® Rn* and we set 

(23) fr£(p) = trace(7#(p) ® ( * £ - V 1 ) ' -4.,H-I(P))) • 

We set f̂  : semiFrK -> Imf^, fr
x(p) = (?r£(p),... ,?x

r~~l(p)). The image of the 
mapping fx is an afrlne sub-bundle of the bundle TX ® (® r itn*)r. 

Lemma 5. There is a bisection t : I m r ^ - > semiFr~1ArxImfr
Y such that the diagram 

semi FrK 

x iTx) (24) 

lmTr
x - semiFr-1K x Imf^ 

commutes. 

Proof. This follows from Lemma 2 and invertibility of the assignment A5S+i(p) -> 

We have natural transformations r r = (r^), 7rr,t = (7r^), whose codomains are first 
and £th order bundles, respectively. 

Theorem 6. Let 0 < t < r. Any zero-order differential operator o/semi Fr with values 
in a tth-order bundle can be factored through (7Tr,t, ff+1 o 7rr't+1,... , fr_1 o 7rr,r-1, fr)< 

Proof. For t = r — 1 the result follows from Theorem 4 and Lemma 5. The general 
result is easily obtained by induction. 0 
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8. NATURAL OPERATORS ON FRAME BUNDLES 

Let s : X —> FlX be a section of a first-order frame bundle. The well-known 
semi-holonomic prolongations of this section can be defined using semi-holonomic jet 
composition: 

(25) s^ = s, 

(26) s^(x) = (Jr
xs)o(s^(x)). 

In the second equation, if s^r_1;(x) belongs to semiFrX, then 

s{r)(x)esemiJr(Rn,F1X). 

Using translations in I?n, we can identify this element with an element of semiFr+1K. 
Thus, s^ is a section of the bundle semiFr+1K —> X. We get an injection ir : 
JrFlX —> semiFr_rlK. For any p £ Im(tr) we can consider p as an element of the 
manifold semi Jr(Rn,FlX), and get (^(P) = P° ** ^(p"1). 

Since the image tr(JrFlX) is a subspace of semiFr+1K, we can compute rth-order 
operators of FlX by means of zero-order operators of semiFr+1X (in Theorem 1, 
quotient projection of an invariant subspace is equal to the restriction of projection of 
whole space to this subspace). Thus, we can use Theorem 6: 

Theorem 7. Let 0 <t <r. Any rth-order differential operator of F1 with values in a 
tth-order bundle can be factored through the operator s —> (7Tr,t, T£+1 o7rr,t+1,... , Tr_1 o 
7tr'r~~l,Tr) o C o Jrs, defined for any section s : X —> F1^". 

9. EXAMPLES 

Let p be an element of semiF2K. Then, in local coordinates, 

(27) x)(^(p)) = X)(P), 

(28) Xi
hn(f^(p)) = xU&O' 

with 

(29) (^x\ff) : semiF2K -> (TX ® Rn*) x (TX ® Rn* A Rn*) 

being surjective. The inclusion il : JlFlX -> semiF2K is given by 

(30) $(Ll(q)) = Xj(9). 

(31) Xhh(<-l(q)) = X)jq)xl
h(q), 

and is also surjective. Thus, for the composition f% ° il we get 

(32) Xhh(ff o tl(g)) = x ^ x j - f o ) - ^,,(7)4,(9) • 
Consider a section s : X -> F1-^" and denote by Sj its jth vector field. From the above 
equations we obtain 

(33) (rt\ff)oSojh = (s,{sh,sh}), 

where we have the system of all Lie brackets of vector fields Sj> on the right-hand side. 
Thus, we have a result: For r = 1, the operator from Theorem 7 assigns to each frame 
field s : X -> F1^ the vector fields Sj, [SJX,SJ2]. 
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Let us turn to the case r = 2. For p € semi F3X we have 

xj(4x(p)) = xj(p), 
Xj l j2(^x0 ' rx2(p)) = X\jlh](p), 

(u] X)ihh(ff(p)) = x\(p)(x'u(p-l)Xylh]h(p) 
1 j

 2 +xL1U2(p-1)xu
b

1
U2](p)x^(p))> 

Xj,juS(fx2(p)) = x!(p)(xL(p"1)x"1i,-M-,](p) 

+xiilU2(p-1)xJ
u

1'(p)x|J3l(p))-

The mapping (7r3
x,f

2
x o T T 3 ^ 2 , ^ ) is not surjective. To determine the image, we shall 

prove the following lemma: 

Lemma 8. In Lemma 2 with r = 3. the image of the mapping A consists of all tensors 
(v,w), satisfying 

Vjki + vkjl = 0, 

(35) wjkl + wjlk = 0, 
Vjkl + Vklj + Vijk = Wjfd -h Wklj + tiIljjfc. 

Proof. Direct computation gives that for any u £ H, v = ^4i)2(tz), w = A2^(u)y the 
equations (35) hold. From the other hand, given (v,w) such that the equations are 
true, we can set ujkl = l(5vjkt + 3vkij + vljk ~ 4cklj - 2cljk). D 

Now we can see that the image of the mapping (TTX , f2
x, fd

x) is an affine bundle with 
associated vector bundle TX ® (Rn* x (Rn* A R71*) x W), where IV is the subspace of 
( ® 3 IT*)2, given by the equations (35). 

Consider the inclusion t2 : J2FlX ~-> semiF3K . We have 

x)(S(q)) = X)(q), 

(36) x)lh(S(q)) -= X)ui(q)x'h(q), 

xi
n]2h(^2(q)) = x\a(v)xhh(q) + x)uhiM)xl

h(q)x%(q)-

This inclusion is not surjective; its image is determined by XJI,I1I J(9) == Xji.ijijOz)-
Direct computation gives that Imi2 is exactly the subset of semiF 3 X, consisting of 
elements p such that 

(37) r 3 / (p ) = 0. 

After some calculations, we get for the composition f3
xot2 and a section s : X —> FlX, 

(38) T3^1 OL2O J2s = [ [ ^ , sn], 5j3] , 

and the third equation of (35) together with (37) gives the Jacobi identity. We can 
formulate our result: For r = 2. t = 1, the operator from Theorem 7 assigns to each 
frame field s : X -» F1^" the vector fields Sj, [SJU Sj2], [[sjlt Sj2], sJ3]. 
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