WSGP 19

Jiří M. Tomáš
 On quasijet bundles

In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 19th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2000. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 63. pp. 187--196.

Persistent URL: http://dml.cz/dmlcz/701662

Terms of use:

© Circolo Matematico di Palermo, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON QUASIJET BUNDLES

JIŘí TOMÁŠ

Abstract

We discuss the Weil approach to the bundles of quasijets and describe the inclusion of the bundle of non-holonomic r-jets into the bundle of quasijets of order r. Applying this approach we rededuce a result by Dekrét characterizing non-holonomic r-jets among quasijets of order r.

1. Preliminaries

We start from the concept of non holonomic r-jet, introduced by Ehresmann, [2] and investigated in works of Pradines, Kolář, Dekrét, Kureš, Virsik and others, [8], [3], [1], [7].

We follow the results of Dekrét from [1], namely the definition of quasijets with their basic properties and essentially use the result of Kolár and Mikulski from [4], giving the description of bundle functors defined on the category $\mathcal{M} f_{m} \times \mathcal{M} f$ from the point of view of the theory of Weil bundles. We use the standard notation from [5].

In the very beginning, we remind the basic concepts of non-holonomic r-jet and quasijet of order r. We also recall their basic properties and present the relation between them. We define the associated concept of (k, r)-quasivelocities and introduce the bundle functor of quasijets on $\mathcal{M} f_{m} \times \mathcal{M} f$.

Let M, N, P be manifolds. We recall that a non-holonomic r-jet is defined by induction as follows.
Definition 1. For $r=1$, the set of non-holonomic 1-jets $\widetilde{J}^{1}(M, N)$ is the set of 1-jets $J^{1}(M, N)$ with their standard composition.

By induction, let $\alpha: \widetilde{J}^{r-1}(M, N) \rightarrow M$ denote the source projection and β : $\tilde{J}^{r-1}(M, N) \rightarrow N$ the target projection of $(r-1)$-th order non-holonomic jets. Then

[^0]X is said to be a non-holonomic r-jet with the source $x \in M$ and the target $y \in N$, if there is a local section $\sigma: M \rightarrow \widetilde{J}^{r-1}(M, N)$ such that $X=j_{x}^{1} \sigma$ and $\beta(\sigma(x))=y$.

Let $Y=j_{y}^{1} \rho$ for a local section $\rho: N \rightarrow \widetilde{J}^{r-1}(N, P), y=\beta(\sigma(x))$. The composition $Y \circ X$ of non-holonomic r-jets is defined by

$$
Y \circ X=j_{x}^{1}\left(\rho(\beta(\sigma(u))) \circ_{r-1} \sigma(u)\right)
$$

where \circ_{r-1} denotes the composition of non-holonomic $(r-1)$-jets and u is an element of M from a neighbourhood of x.

Now we are going to remind the concept of quasijet. For a manifold M, consider the r-times iterated tangent bundle $T^{r} M$. It is well-known that there are r structures of vector bundle on $T^{r} M$, namely $T^{r-i} p_{M}^{i}: T^{r} M \rightarrow T^{r-1} M$, where $p_{M}^{i}: T^{i} M \rightarrow$ $T^{i-1} M$ denote the tangent bundle projection. The definition of quasijet of order r reads as follows
Definition 2. Let $x \in M$ and $y \in N$. A map $\varphi:\left(T^{r} M\right)_{x} \rightarrow\left(T^{r} N\right)_{y}$ is said to be a quasijet of order r with the source x and the target y, if it is a vector bundle morphism with respect to all vector bundle structures $\left(T^{r-k} p_{M}^{k}\right)_{x}$ and $\left(T^{r-k} p_{N}^{k}\right)_{y}$, $k=1, \ldots, r$. The set of all such quasijets is denoted by $Q J_{x}^{r}(M, N)_{y}$.

We need the coordinate description of quasijets. Let $x^{i}=x_{0}^{i}$ denote the coordinates on a manifold M and $x_{1}^{i}=d x_{0}^{i}$ the additional coordinates on $T M$. Define the coordinates on $T^{r} M$ by induction as follows. Let $x_{\varepsilon_{1} \ldots \varepsilon_{r-1}}^{i}$ denote the coordinates on $T^{r-1}, \varepsilon_{i} \in\{0,1\} \forall i \in\{1, \ldots, r-1\}$. Then $x_{\varepsilon_{1}, \ldots, \varepsilon_{r-1} 0}^{i}$ denote the base coordinates on $T^{r} M$ with respect to the tangent bundle projection $p_{M}^{r}: T^{r} M \rightarrow T^{r-1} M$, while $x_{\varepsilon_{1} \ldots \varepsilon_{r-1}}^{i}=d x_{\varepsilon_{1} \ldots \varepsilon_{r-1}}^{i}$ denote the fiber ones.

By Dekrét, [1], every quasijet $\varphi \in Q J_{x}^{r}(M, N)$ is expressed in coordinates by $a_{i_{1} \ldots i_{k}}^{p \gamma^{1} \ldots \gamma^{k}}$ defined by the following equation

$$
\begin{equation*}
y_{\varepsilon_{1} \ldots \varepsilon_{r}}^{p}=\sum_{\left(\gamma^{1} \ldots \gamma^{k}\right)} a_{i_{1} \ldots i_{k}}^{p \gamma^{1} \ldots \gamma^{k}} x_{\gamma^{1}}^{i_{1}} \ldots x_{\gamma^{k}}^{i_{k}} \tag{1}
\end{equation*}
$$

where the sum is taken over all multiindices $\gamma^{1}, \ldots, \gamma^{k}$ satisfying the following conditions
(i) $\gamma^{1}+\cdots+\gamma^{k}=\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$
(ii) $\operatorname{deg} \gamma^{1}<\operatorname{deg} \gamma^{2} \cdots<\operatorname{deg} \gamma^{k}$, where $\operatorname{deg} \gamma$ denotes the number of the first unit component in γ.
(Here γ^{i} denotes the i-th multiindex, while γ_{i} denotes the i-th component in the multiindex γ).

In what follows, we interpret non-holonomic r-jets as quasijets of order r and prove the compatibility of their compositions. Every non-holonomic r-jet $X \in \widetilde{J}_{x}^{r}(M, N)_{y}$ determines a quasijet $\mu X \in Q J_{x}^{r}(M, N)_{y}$ as follows

Let $r=1$ and $X=j_{x}^{1} f$. Then μX is defined as $T_{x} f$. By induction, we define $\mu X: T_{x}^{r} M \rightarrow T_{y}^{r} N$ for $X \in \widetilde{J}_{x}^{r}(M, N)_{y}$. Let $X=j_{x}^{1} \sigma$ for a local α-section $\sigma: M \rightarrow$ $\widetilde{J}^{r}(M, N)$. Then $\sigma(u) \in \widetilde{J}_{u}^{r-1}(M, N)$ and $\mu(\sigma(u)): T_{u}^{r-1} M \rightarrow T_{\beta(\sigma(u))}^{r-1} N$. We put $\mu X=T_{x} \mu(\sigma(u))$.

Proposition 3. For a non-holonomic r-jet $X \in \widetilde{J}_{x}^{r}(M, N)_{y}, \mu X$ is a quasujet. If $Y \in \widetilde{J}_{y}^{r}(N, P)$, then $\mu(Y \circ X)=\mu(Y) \circ \mu(X)$.

Proof. We prove the assertion by induction. Let $X=j_{x}^{1} \sigma$ for a local α-section $\sigma: M \rightarrow \widetilde{J}^{r-1}(M, N)$. By induction, $\mu(\sigma(u)): T_{u}^{r-1} M \rightarrow T_{\beta(\sigma(u))}^{r-1} N$ is a quasijet. Moreover, we have a map $\mu(\sigma): T^{r-1} M \rightarrow T^{r-1} N$ defined by $\mu(\sigma)(z)=$ $\mu(\sigma(p(z)))(z)$, where $p: T^{r-1} M \rightarrow M$ denotes the base projection. By the induction assumption, $\mu(\sigma): T^{r-1} M \rightarrow T^{r-1} N$ is a vector bundle morphism with respect to all vector bundle structures $T^{r-1-i} p_{M}^{i}$ and $T^{r-1-i} p_{N}^{i}$. Then it is easy to see that $T \mu(\sigma): p_{M}^{r} \rightarrow p_{N}^{r}$ is a vector bundle morphism as well as $T \mu(\sigma): T^{r-i} p_{M}^{i} \rightarrow T^{r-i} p_{N}^{i}$ for $i=1, \ldots, r-1$. Thus $\mu X=T_{x} \mu(\sigma): T_{x}^{r-i} p_{M}^{i} \rightarrow T_{y}^{r-i} p_{N}^{i}$ is a quasijet, which proves the first claim.

For the proof of the second assertion, consider local sections $\sigma: M \rightarrow \widetilde{J}^{r-1}(M, N)$ and $\rho: N \rightarrow \widetilde{J}^{r-1}(N, P)$ and define $\mu(\rho(\sigma)): T_{\beta(\sigma(u))}^{r-1} N \rightarrow T^{r-1} P$ by

$$
\mu(\rho(\sigma))(\mu(\sigma)(u))=\mu(\rho \circ \beta(\sigma(u)))(\mu(\sigma(u))) .
$$

We prove that $\mu(\rho) \circ \mu(\sigma)(u)=\mu(\rho(\sigma))(\mu(\sigma(u)))$. It holds

$$
\begin{aligned}
\mu(\rho) \circ \mu(\sigma)(u) & =\mu(\rho)(\mu(\sigma)(u))=\mu(\rho)(\mu(\sigma(p(u)))(u)) \\
& =\mu(\rho \circ p(\mu(\sigma(p(u)))(u)))(\mu(\sigma(p(u)))(u)) \\
& =\mu(\rho \circ \beta(\sigma(u)))(\mu(\sigma)(u)) \\
& =\mu(\rho(\sigma))(\mu(\sigma(u))) .
\end{aligned}
$$

By induction, we have $\mu(\rho(\sigma))(\mu(\sigma(u)))=\mu((\rho \circ \beta(\sigma(u))) \circ \sigma(u))$ which implies $\mu((\rho \circ$ $\beta(\sigma(u))) \circ \sigma(u))=\mu(\rho) \circ \mu(\sigma)(u)$. Let $X=j_{x}^{1} \sigma, Y=j_{\beta(\sigma(x))}^{1} \rho$. Applying T to both sides of the last equations yields $\mu(Y \circ X)=\mu(Y) \circ \mu(X)$. This proves our claim.

By Dekrét, [1], there is a bundle structure $Q J^{r}(M, N) \rightarrow M \times N$ on quasijets. Analogously to J^{r}, [5], we can consider $Q J^{r}$ as the bundle functor on the category $\mathcal{M} f_{m} \times \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}_{m}$, if we define $Q J^{r}(f, g)(X)=j_{\beta(X)}^{r} g \circ X \circ j_{f(\alpha(X))}^{r} f^{-1}$ for any local diffeomorphism $f: M \rightarrow \bar{M}$ and any smooth map $g: N \rightarrow \bar{N}$. The composition in the last expression denotes the composition of quasijets, where holonomic r-jets $j_{\beta(X)}^{r} g$ and $j_{f(\alpha(X))}^{r} f^{-1}$ are considered as quasijets.

Now we are going to define the bundle of (m, r)-quasivelocities. We put $Q T_{m}^{r} N=$ $Q J_{0}^{r}\left(\mathbb{R}^{m}, N\right)$ for a manifold N and $Q T_{m}^{r} f=Q J_{0}^{r}\left(\mathrm{id}_{\mathbb{R}^{m}}, f\right)$ for a smooth map f : $N \rightarrow P$. Thus we have the functor $Q T_{m}^{r}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$. It can be easily verified that, that $Q T_{m}^{r}$ is a product preserving functor and thus it is a Weil bundle T^{A} for $A=Q T_{m}^{r} \mathbb{R}$. The situation is analogous to that for non-holonomic r-jets and non-holonomic (m, r)-velocities. Denote by \mathbb{Q}_{m}^{r} the Weil algebra corresponding to the bundle of (m, r)-quasivelocities and $\widetilde{\mathbb{D}}_{m}^{r}$ the Weil algebra corresponding to the bundle of non-holonomic (m, r)- velocities.

2. Weil approach to quasijet bundles

We start this section from an important result of Kolár and Mikulski, [4], from which we gradually deduce the description of quasijet bundles from the point of view of the theory of Weil bundles. Applying this approach, we also describe the inclusion of non-holonomic jets into the bundle of quasivelocities.

Let F be a bundle functor defined on the product category $\mathcal{M} f_{m} \times \mathcal{M} f$. For a couple of manifolds $(M, N) \in \mathcal{M} f_{m} \times \mathcal{M} f$ we have two fibered manifold projections $a: F(M, N) \rightarrow M$ and $b: F(M, N) \rightarrow N$. For another couple of manifolds $(\bar{M}, \bar{N}) \in$ $\mathcal{M} f_{m} \times \mathcal{M} f$, a local diffeomorphism $g: M \rightarrow \bar{M}$ and a smooth map $f: N \rightarrow \bar{N}$, we have a morphism $F(g, f): F(M, N) \rightarrow F(\bar{M}, \bar{N})$. Kolár and Mikulski in [4] defined the associated bundle functor G^{F} on $\mathcal{M} f$ by $G^{F}(N)=F_{0}\left(\mathbb{R}^{m}, N\right), G^{F}(f)=$ $F_{0}\left(\mathrm{id}_{\mathbb{R}^{m}}, f\right)$. Moreover, they defined the action H^{F} of the jet group G_{m}^{r} on G^{F} by $H_{N}^{F}\left(j_{0}^{r} \varphi\right)=F_{0}\left(\varphi, \mathrm{id}_{N}\right)$ in the case F is a bundle functor of order r in the first factor. For every $j_{0}^{r} \varphi \in G_{m}^{r}, H^{F}\left(j_{0}^{r} \varphi\right)$ is a natural equivalence on G^{F} and thus $H^{F}: G_{m}^{r} \rightarrow \mathcal{N E}\left(G^{F}\right)$ is a group homomorphism of G_{m}^{r} into the group of all natural equivalences $\mathcal{N E}\left(G^{F}\right)$ on G^{F}.

Conversely, let G be a bundle functor defined on $\mathcal{M} f_{m}$ and $H: G_{m}^{r} \rightarrow \mathcal{N E}(G)$ be a group homomorphism. We remind the bundle functor (G, H) on $\mathcal{M} f_{m} \times \mathcal{M} f$ defined in [4]. We have $(G, H)(M, N)=P^{r} M\left[G N, H_{N}\right]$, the bundle associated to the frame bundle $P^{r} M$ with the standard fiber $G N$ and the action H_{N} of G_{m}^{r} on $G N$. For a local diffeomorphism $g: M \rightarrow \bar{M}$ and a smooth map $f: N \rightarrow \bar{N}$, we have $(G, H)(g, f)=P^{r} g[G f]$. We have bundle projections $a:(G, H)(M, N) \rightarrow M$ and $b:(G, H)(M, N) \rightarrow N$.

Then the result of Kolár and Mikulski reads as follows
Proposition 4. (i) For every bundle functor F defined on $\mathcal{M} f_{m} \times \mathcal{M} f$ of order r in the first factor it holds $F=\left(G^{F}, H^{F}\right)$.
(ii) For another bundle functor \bar{F} of this kind, natural transformations $t: F \rightarrow \bar{F}$ are in a bijection with natural transformations $\tau: G^{F} \rightarrow G^{\bar{F}}$ satisfying the equivariancy condition

$$
H_{N}^{\stackrel{\rightharpoonup}{F}}\left(j_{0}^{r} \varphi\right) \circ \tau_{N}=\tau_{N} \circ H_{N}^{F}\left(j_{0}^{r} \varphi\right)
$$

for any $j_{0}^{r} \varphi \in G_{m}^{r}$.
(iii) A bundle functor F on $\mathcal{M} f_{m} \times \mathcal{M} f$ of order r in the first factor preserves products in the second factor if and only if $G^{F}=T^{A}$ for some Weil algebra A and H induces a homomorphism $G_{m}^{r} \rightarrow \operatorname{Aut}(A)$ of Lie groups.

The well-known bundle functors satisfying the assumptions of Proposition 4 are the functors of holonomic jets J^{r}, non-holonomic jets \widetilde{J}^{r} and semiholonomic jets \bar{J}^{r}. It is easy to verify that the functor of quasijets $Q J^{r}$ satisfies the assumptions of (iii) from Proposition 4 too. Then $G^{Q J^{r}}=Q T_{m}^{r}=T^{\mathbb{Q}_{m}^{r}}$ for the Weil algebra \mathbb{Q}_{m}^{r}. The action of G_{m}^{r} on $Q T_{m}^{r}$ is defined by $H_{N}\left(j_{0}^{r} \varphi\right)(X)=X \circ\left(j_{0}^{r} \varphi\right)^{-1}$ for $X \in Q T_{m}^{r} N$ and $j_{0}^{r} \varphi \in G_{m}^{r}$. The situation is analogous to J^{r}, \widetilde{J}^{r} and \bar{J}^{r}.

We are going to determine the Weil algebra $\mathbb{Q}_{m}^{r}=Q T_{m}^{r} \mathbb{R}=Q J_{0}^{r}\left(\mathbb{R}^{m}, \mathbb{R}\right)$. We come out from the coordinate expression of quasijets given by (1), using x^{i} for the
canonical coordinates on \mathbb{R}^{m} and y on \mathbb{R}. In what follows, we use multiindices γ formed by zeros and units, the number of which not exceed r. Denote by E_{r} the multiindex composed from r units. A multiindex γ is said to be contained in δ if $\gamma_{j} \leq \delta_{j}$ for any $j=1, \ldots$, length (γ). Let us assign a polynomial $a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}} \tau_{\gamma^{1}}^{\left(i_{1}\right)} \ldots \tau_{\gamma^{k}}^{\left(i_{k}\right)}$ with variables $\tau_{\gamma^{1}}^{\left(i_{1}\right)}, \ldots, \tau_{\gamma^{k}}^{\left(i_{k}\right)}$ to a (m, r)-quasivelocity determined by coordinates $a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}$. Consider the Weil algebra \mathbb{D}_{k}^{r} of polynomials of k variables of degree at most r. Then it holds

Proposition 5. Let $\mathbb{D}_{m\left(2^{r-1)}\right.}^{r}$ be generated by $\tau_{\gamma}^{(i)}$ for $i \in\{1, \ldots, m\}, \gamma \subseteq E_{r}$. Then $\mathbb{Q}_{m}^{r}=\mathbb{D}_{m\left(2^{r}-1\right)}^{r} / I$ is the Weil algebra associated to the bundle of (m, r) quasivelocities, where the ideal I is of the form $<\tau_{\gamma}^{(i)} \tau_{\delta}^{(j)} ; \gamma+\delta \nsubseteq E_{r}>$. The multiplication is defined as follows. For $a=a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}} \tau_{\gamma^{1}}^{\left(i_{1}\right)} \ldots \tau_{\gamma^{k}}^{\left(i_{k}\right)}$ and $b=b_{j_{1} \ldots j_{1}}^{\delta^{1} \ldots \delta^{l}} \tau_{\delta^{1}}^{\left(j_{1}\right)} \ldots \tau_{\delta^{l}}^{\left(j_{l}\right)}$, the element $c=a b$ satisfies
where the sum on the right-hand side of (2) is taken over all subsets $\left\{i_{1}, \ldots, i_{l}\right\} \subseteq$ $\{1, \ldots, h\}$ including the empty one.
Proof. Let $a, b \in \mathbb{Q}_{m}^{r}=Q T_{m}^{r} \mathbb{R}$ be any (m, r)-quasivelocities. Denote by $\mu: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the multiplication of reals. Then $a b=T^{\mathbb{Q}_{m}^{r}} \mu(a, b)=Q T_{m}^{r} \mu(a, b)=j_{(\beta(a), \beta(b))}^{r} \mu(a, b)$. Since a, b can be considered as maps $T_{0}^{r} \mathbb{R}^{m} \rightarrow T^{r} \mathbb{R}$, fixing an element $x \in T_{0}^{r} \mathbb{R}^{m}$, we can evaluate $a(x)$ and $b(x)$. In coordinates, we can express x by x_{γ}^{i} for $i \in\{1, \ldots, m\}$ and $a(x)$ and $b(x)$ as follows

$$
\begin{align*}
& a(x)=\beta(a)+a_{i_{1} \ldots i_{k}}^{\gamma_{1}^{1} \ldots \gamma^{k}} x_{\gamma^{1}}^{i_{1}} \ldots x_{\gamma^{k}}^{i_{k}} \tag{3}\\
& b(x)=\beta(b)+b_{j_{1} \ldots j_{1}}^{\delta^{1} \ldots \delta^{l}} x_{\delta^{1}}^{j_{1}} \ldots x_{\delta^{1}}^{j_{1}}
\end{align*}
$$

The element $j_{(\beta(a), \beta(b))}^{r} \mu$ can be considered as a quasijet satisfying $\mu_{1}^{\varepsilon}=\beta(b), \mu_{2}^{\varepsilon}=$ $\beta(a), \mu_{12}^{\varepsilon \delta}=1, \mu_{11}^{\varepsilon \delta}=\mu_{22}^{\varepsilon \delta}=0$ for any multiindices $\varepsilon, \delta \subseteq E_{r}$ and $\mu_{i_{1} \ldots i_{l}}^{\varepsilon^{1}}=0$ for $l>2$. Thus $T^{\mathbb{Q}_{m}^{r}} \mu(a, b)(x)=\beta(b) a(x)+\beta(a) b(x)+a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}} b_{j_{1} \ldots j_{l}}^{\delta^{1} \ldots \delta^{l}} x_{\gamma^{1}}^{i_{1}} \ldots x_{\gamma^{k}}^{i_{k}} x_{\delta^{1}}^{j_{1}} \ldots x_{\delta^{l}}^{j_{l}}$, where $\operatorname{deg} \gamma^{1}<\ldots \operatorname{deg} \gamma^{k}$ and $\operatorname{deg} \delta^{1}<\cdots<\operatorname{deg} \delta^{l}$. Comparing the coefficients by $x_{\varepsilon^{1}}^{\iota_{1}} \ldots x_{\varepsilon^{h}}^{\iota_{h}}$ we obtain

$$
\begin{equation*}
c_{\iota_{1} \ldots \iota_{h}}^{\varepsilon^{1} \ldots \varepsilon^{h}}=\beta(b) a_{\iota_{1} \ldots \iota_{h}}^{\varepsilon^{1} \ldots \varepsilon^{h}}+\beta(a) b_{\iota_{1} \ldots \iota_{h}}^{\varepsilon_{1}^{1} \ldots \varepsilon^{h}}+a_{\iota_{i_{1}} \ldots \iota_{i}}^{\varepsilon_{1}^{i_{1}} \ldots \varepsilon_{i_{1}}^{i_{i}}} b_{i_{i_{l}+1} \ldots i_{h}}^{\varepsilon^{i_{i+1}} \ldots \varepsilon_{h}^{i_{h}}} \tag{4}
\end{equation*}
$$

where the sum is taken over all proper subsets $\left\{i_{1}, \ldots, i_{l}\right\} \subset\{1, \ldots, h\}$. The coiincidence of (4) with (2) proves our claim.

Thus the functor $Q J^{r}$ can be expressed as $\left(T^{\mathbb{Q}_{m}^{r}}, C\right)$, where $C: G_{m}^{r} \rightarrow \operatorname{Aut} \mathbb{Q}_{m}^{r}$ is defined by $C\left(j_{0}^{r} \varphi\right)(a)=a \circ j_{0}^{r} \varphi^{-1}$ for any $j_{0}^{r} \varphi \in G_{m}^{r}$ and $a \in \mathbb{Q}_{m}^{r}$.

Let us remind, that the Weil algebra $\widetilde{\mathbb{D}}_{m}^{r}$ of non-holonomic (m, r)-velocities is identified with $\underbrace{\mathbb{D}_{m}^{1} \otimes \ldots \otimes \mathbb{D}_{m}^{1}},[3]$. Elements of \mathbb{D}_{m}^{r} are considered as polynomials $a_{i_{1} \ldots i_{r}} t_{1}^{\left(i_{1}\right)} \ldots t_{r}^{\left(i_{r}\right)}$ with variables $t_{1}^{\left(i_{1}\right)} \ldots t_{r}^{\left(i_{r}\right)}$ for $i_{l} \in\{0,1, \ldots, m\}$ and $t_{j}^{(0)}=1$ for $j \in\{1, \ldots, r\}$.

The following assertion describes the canonical inclusion $i: \widetilde{\mathbb{D}}_{m}^{r} \rightarrow \mathbb{Q}_{m}^{r}$, from which we can deduce the inclusion $\widetilde{J}^{r} \rightarrow Q J^{r}$ from Proposition 4. Moreover, it determines non-holonomic (m, r)-velocities among (m, r)-quasivelocities by the fact that $A_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}} \tau_{\gamma^{1}}^{\left(i_{1}\right)} \ldots \tau_{\gamma^{k}}^{\left(i_{k}\right)}$ represents a non-holonomic (m, r)-velocity if and only if $A_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}$ depend on $\gamma^{1}, \ldots, \gamma^{k}$ only up to $\operatorname{deg} \gamma^{1}, \ldots, \operatorname{deg} \gamma^{k}$.
Proposition 6. Let $i: \widetilde{\mathbb{D}}_{m}^{r} \rightarrow \mathbb{Q}_{m}^{r}$ be a map defined by $i\left(a_{i_{1} \ldots i_{r}} t_{1}^{\left(i_{1}\right)} \ldots t_{r}^{\left(i_{r}\right)}\right)=$ $A_{j_{1} \ldots j_{k}}^{\gamma^{1} \ldots \gamma^{k}} \tau_{\gamma^{1}}^{\left(j_{1}\right)} \ldots \tau_{\gamma^{k}}^{\left(j_{k}\right)}$ satisfying

$$
\begin{equation*}
A_{j_{1} \ldots j_{k}}^{\gamma^{1} \ldots \gamma^{k}}=a_{j_{1} \delta_{1}^{\operatorname{deg}} \gamma^{l} \ldots j_{l} \delta_{r}^{\operatorname{deg} \gamma^{l}}} \tag{5}
\end{equation*}
$$

Then i is an injective algebra homomorphism.
Proof. Let $a=a_{i_{1} \ldots i_{r}} t_{1}^{\left(i_{1}\right)} \ldots t_{r}^{\left(i_{r}\right)}$ and $b_{j_{1} \ldots j_{r}} t_{1}^{\left(j_{1}\right)} \ldots t_{r}^{\left(j_{r}\right)} \in \widetilde{\mathbb{D}}_{m}^{r}$. Then $c=a b$ satisfies $c=a_{i_{1} \ldots i_{r}} b_{j_{1} \ldots j_{r}} t_{1}^{\left(i_{1}+j_{1}\right)} \ldots t_{r}^{\left(i_{r}+j_{r}\right)}$, where $t_{l}^{\left(i_{l}\right)}=0$ whenever $i_{l}>1$.

Then $D=i(a) i(b)$ satisfies $D_{\iota_{1} \ldots i_{k}}^{\alpha^{1} \ldots \boldsymbol{\alpha}^{k}}=\sum_{\mathcal{D}} A_{i_{1} \ldots i_{h}}^{\beta^{1} \ldots \beta^{h}} B_{j_{1} \ldots j_{k-h}}^{\gamma^{1} \ldots \gamma^{k}}$, where $A=i(a)$, $B=i(b)$ and \mathcal{D} is the set of all decomposiotions of $\left\{\alpha^{1}, \ldots, \alpha^{k}\right\}$ onto $\left\{\beta^{1}, \ldots, \beta^{h}\right\}$ with complementary $\left\{\gamma^{1}, \ldots, \gamma^{k-h}\right\}$ and the bottom indices i_{1}, \ldots, i_{h} as well as j_{1}, \ldots, j_{k-h} correspond to the top multiindices. By the definition of i we have

Further, $C=i(a b)$ satisfies

$$
\begin{equation*}
C_{\iota_{1} \ldots \iota_{k}^{1} \ldots \alpha^{k}}^{\alpha^{1}}=c_{\iota \delta_{1}^{\operatorname{deg} \alpha^{l}} \ldots \iota \delta_{r}^{\operatorname{deg} \alpha^{l}}}=\sum_{\left(j_{1}, \ldots, j_{r}\right)} a_{\iota, \delta_{1}^{\operatorname{deg} \alpha^{l}}-j_{1} \ldots \iota_{l} \delta_{r}^{\operatorname{deg} \alpha^{l}}-j_{r}} b_{j_{1} \ldots j_{r}} \tag{7}
\end{equation*}
$$

where $0 \leq j_{1} \leq \iota_{l} \delta_{1}^{\operatorname{deg} \alpha^{t}}, \ldots, 0 \leq j_{r} \leq \iota_{l} \delta_{r}^{\operatorname{deg} \alpha^{t}}$.
The last equality follows from (2), the multiplication formula for (m, r)-quasivelocities. Obviously, (7) corresponds bijectively with decompositions $\left\{\alpha^{1}, \ldots \alpha^{k}\right\}$ and $\left\{\gamma^{1}, \ldots, \gamma^{k-h}\right\}$ in (6). This completes the proof.

Proposition 7. Let $\mu: \widetilde{J}^{r} \rightarrow Q J^{r}$ be the inclusion of non-holonomic r-jets into quasijets of order r from Proposition 3. Then the restriction $\widetilde{\mu}_{m}^{r}$ of μ to $\widetilde{T}_{m}^{r} \mathbb{R}=\widetilde{\mathbb{D}}_{m}^{r}$ coincides with $i: \widetilde{\mathbb{D}}_{m}^{r} \rightarrow \mathbb{Q}_{m}^{r}$ defined in Proposition 6.

Proof. In general let $b_{i_{1} \ldots i_{r}}$ denote the coordinates of non-holonomic r-jets from $\widetilde{J}^{r}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, created by induction according to the definition of non-holonomic jets.

Let $\sigma: \mathbb{R}^{m} \rightarrow \widetilde{J}^{r}\left(\mathbb{R}^{m}, \mathbb{R}\right)$ be a local section in the neighbourhood of $0 \in \mathbb{R}^{m}$. Then $\sigma(u)$ is expressed as $b_{i_{1} \ldots i_{r}}(u)$. Put $a_{i_{1} \ldots i_{r}}=b_{i_{1} \ldots i_{r}}(0)=\sigma(0)$. Further, assume $\mu(\sigma(u))$ has the coordinates $B_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}(u)$ and put $A_{i_{1} \ldots i_{k}}^{\gamma^{r} \ldots \gamma^{k}}=B_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}(0)$. As the assumption hypothesis we assume $B_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}(u)=b_{i_{1} \operatorname{deg}_{1}^{\operatorname{deg}} \gamma^{l} \ldots i_{l} \delta_{\gamma_{8}}^{\operatorname{deg}} \eta^{l}}(u)$ which implies the assertion for order r. To prove it for $r+1$, we have $j_{v}^{1} \sigma(u)$, in coordinates $\left(b_{i_{1} \ldots i_{r}}(v), b_{i_{1} \ldots i_{r} i_{r+1}}(v)\right)$, where $b_{i_{1} \ldots i_{r} i_{r+1}}(v)=\left.\frac{\partial b_{i_{1} \ldots i_{r}(u)}}{\partial u^{i} r+1}\right|_{v}$. Further, $\mu(\sigma(u))$ considered as the map $T_{u}^{r} \mathbb{R}^{m} \rightarrow T_{\beta(\sigma(u))}^{r} \mathbb{R}$ is expressed by $y=B_{i_{1} \ldots i_{k}}^{\gamma^{1}}(u) u_{\gamma^{1}}^{i_{1}} \ldots u_{\gamma^{k}}^{i_{k}}$. Then $T_{v}(\mu(\sigma(u)))$ satisfies $d y=\left.\frac{\partial B_{i_{1}}^{\gamma_{1}} \ldots \eta_{k}^{k}(u)}{\partial u_{k+1}^{i_{k}}}\right|_{v} v_{\gamma^{1}}^{i_{1}} \ldots v_{\gamma^{k}}^{i_{k}} v_{\gamma^{k+1}}^{i_{k+1}}+\sum_{l=1}^{k} B_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}(v)$. $v_{\gamma^{1}}^{i_{1}} \ldots v_{\gamma^{l}+e_{r+1}}^{i_{1}} \ldots v_{\gamma^{k}}^{i_{k}}$, where e_{r+1} denotes the multiindex with just one unit on the $(r+1)$-st position. Setting $v=0 \in \mathbb{R}^{m}$, comparing the components $x_{\alpha^{1}}^{j_{1}} \ldots x_{\alpha^{1}}^{j_{l}}$ for $\alpha^{h} \subseteq E_{r+1}$ and taking into account Proposition 5 and Proposition 6, we prove our claim.

Corollary 8. Let $\mu: \widetilde{J}^{r}(M, N) \rightarrow Q J_{m}^{r}(M, N)$ be the inclusion from Proposition 3. The μ is the natural inclusion corresponding to $i: \widetilde{\mathbb{D}}_{m}^{r} \rightarrow \mathbb{Q}_{m}^{r}$.
Proof. By Proposition 4 (i), every $X \in \tilde{J}^{r}(M, N)$ is identified with $\left\{j_{0}^{r} t_{\alpha(X)}, X \circ\right.$ $\left.j_{0}^{r} t_{\alpha(X)}\right\} \in P^{r} M\left[\tilde{T}_{m}^{r} N, H_{N}^{\tilde{J}^{r}}\right]$, where t_{u} is the translation, mapping 0 onto u. It follows from Proposition 4 (ii) and (iii) and Proposition 7 that $\left\{j_{0}^{r} t_{\alpha(X)}, i\left(X \circ j_{0}^{r} t_{\alpha(X)}\right)\right\} \approx$ $\left\{j_{0}^{r} t_{\alpha(X)}, \mu\left(X \circ j_{0}^{r} t_{\alpha(X)}\right)\right\}=\left\{j_{0}^{r} t_{\alpha(X)}, \mu(X) \circ \mu\left(t_{\alpha(X)}\right)\right\} \approx \mu(X)$.

Remark. We finish this section by a more geometrical description of the Weil algebra \mathbb{Q}_{m}^{2} and $Q J_{x}^{2}(M, N)_{y}$. In general, let $A_{1}=\mathbb{R} \times N_{1}$ and $A_{2}=\mathbb{R} \times N_{2}$ be Weil algebras with nilpotent ideals N_{1} and N_{2}. Their direct sum $A_{1} \oplus A_{2}$ is defined as $\mathbb{R} \times N_{1} \times N_{2}$, where we put $n_{1} n_{2}=0$ for $n_{1} \in N_{1}$ and $n_{2} \in N_{2}$. By a direct evaluation, using Proposition 5, we obtain $\mathbb{Q}_{m}^{2}=\widetilde{\mathbb{D}}_{m}^{2} \oplus \mathbb{D}_{m}^{1}=\left(\mathbb{D}_{m}^{1} \otimes \mathbb{D}_{m}^{1}\right) \oplus \mathbb{D}_{m}^{1}$. In this way we find $Q J_{x}^{2}(M, N)_{y}=\widetilde{J}_{x}^{2}(M, N)_{y} \oplus J_{x}^{1}(M, N)_{y}$.

3. Quasidets and non-holonomic jets

In this section, we are going to apply the approach from Section 2 to rededuce a result by Dekrét in [1], giving the criterion how to recognize non-holonomic r-jets among quasijets of order r.

Let us recall the concept of the kernel injection, [1]. For a vector bundle $q: E \rightarrow M$ we have two structures of vector bundle on $T E$, namely $p: T E \rightarrow E$ and $T q: T E \rightarrow$ $T M$. Denote by $H E \rightarrow M$ (the so called heart of a vector bundle $E \rightarrow M$, [8], [6]) the vector bundle $V p \cap V T q \rightarrow M$. The identification $V E \approx E \times{ }_{M} E$ is well-known. The kernel injection $V_{0}^{E}: E \approx H E \rightarrow T E$ is expressed by $V_{0}^{E}\left(x^{i}, y^{p}\right)=\left(x^{i}, 0,0, y^{p}\right)$, [6].

Let us consider a vector bundle $T^{k-i} p_{M}^{i}: T^{k} M \rightarrow T^{k-1} M$ from Section 1. Denote by $V_{0 k}^{i M}: T^{k-i} p_{M}^{i} \rightarrow T^{k-i+1} p_{M}^{i}$ the kernel injection on $T^{k} M$ with respect to the i-th vector bundle structure on $T^{k} M$. In Section 1, we defined the coordinates $x_{\varepsilon_{1} \ldots \varepsilon_{k}}^{p}$ on
$T^{k} M$. There is a Weil bundle structure on $T^{k} M$, namely $T^{\mathbb{D}^{k}} M$ corresponding to the Weil algebra $\mathbb{D}^{k}=\mathbb{D} \otimes \ldots \otimes \mathbb{D}$, where \mathbb{D} denotes the algebra of dual numbers. Thus every element of $T^{k} M$ with coordinates $x_{\varepsilon_{1} \ldots \varepsilon_{k}}^{p}$ can be represented by p polynomials of the form $x_{\varepsilon_{1} \ldots \varepsilon_{k}}^{p} \tau_{1}^{\varepsilon_{1}} \ldots \tau_{k}^{\varepsilon_{k}}$. It can be easily verified that
(9) $V_{0 k}^{i M}\left(x_{\varepsilon_{1} \ldots \varepsilon_{k}}^{p} \tau_{1}^{\varepsilon_{1}} \ldots \tau_{k}^{\varepsilon_{k}}\right)=\left(1-\varepsilon_{i}\right) x_{\varepsilon_{1} \ldots \varepsilon_{k}}^{p} \tau_{1}^{\varepsilon_{1}} \ldots \tau_{k}^{\varepsilon_{k}}+\varepsilon_{i}\left(1-\varepsilon_{i}\right) x_{\varepsilon_{1} \ldots \varepsilon_{k}}^{p} \tau_{1}^{\varepsilon_{1}} \ldots \tau_{k}^{\varepsilon_{k}} \tau_{k+1}$

The last formula is equivalent to $\tau_{j} \rightarrow\left(1-\delta_{j}^{i}\right) \tau_{j}+\delta_{j}^{i} \tau_{j} \tau_{k+1}$. By direct evaluation we obtain that $V_{0 k}^{i \mathbb{R}}: \mathbb{D}^{k} \rightarrow \mathbb{D}^{k+1}$ is a homomorphism of Weil algebras and consquentely, $V_{0 k}^{i M}: T^{k} M \rightarrow T^{k+1} M$ is a natural transformation. In the same way we obtain that $T^{l} V_{0 k}^{i M}: T^{k+l} M \rightarrow T^{k+1+l} M$ is a natural transformation too. Denote by $\kappa_{i}: Q J^{k} \rightarrow Q J^{k-1}$ the projection of quasijet bundles induced by the projection $T^{k-i} p^{i}: T^{k} \rightarrow T^{k-1},[1]$. Then the result by Dekrét reads

A quasijet $X \in Q J_{x}^{k}(M, N)_{y}$ represents a non-holonomic r-jet if and only if the following conditions are satisfied

$$
\begin{align*}
& \left(T^{k-2} V_{01}^{1 N}\right)^{-1} \circ X \circ\left(T^{k-2} V_{01}^{1 M}\right)=\kappa_{2} X \\
& \left(T^{k-3} V_{02}^{1 N}\right)^{-1} \circ X \circ\left(T^{k-3} V_{02}^{1 M}\right)=\left(T^{k-3} V_{02}^{2 N}\right)^{-1} \circ X \circ\left(T^{k-3} V_{02}^{2 M}\right)=\kappa_{3} X \\
& \vdots \tag{10}\\
& \left(V_{0 k-1}^{1 N}\right)^{-1} \circ X \circ\left(V_{0 k-1}^{1 M}\right)=\ldots \ldots=\left(V_{0 k-1}^{k-1 N}\right)^{-1} \circ X \circ\left(V_{0 k-1}^{k-1 M}\right)=\kappa_{k} X
\end{align*}
$$

To deduce the result by our approach, denote by $\left(V_{0 i}^{j M, N}\right)^{*}: Q J^{i+1}(M, N) \rightarrow$ $Q J^{i}(M, N) \hookrightarrow Q J^{i+1}(M, N)$ a map defined by $X \mapsto\left(V_{0 i}^{j N}\right)^{-1} \circ X \circ V_{0 i}^{j M}$ for $X \in$ $Q J^{i+1}(M, N)$. Analogously denote by $\left(T^{l} V_{0 i}^{j M, N}\right)^{*}: Q J^{i+l+1}(M, N) \rightarrow Q J^{i+l}(M, N)$ $\hookrightarrow Q J^{i+l+1}(M, N)$ a map defined by $X \mapsto\left(T^{l} V_{0 i}^{j N}\right)^{-1} \circ X \circ\left(T^{l} V_{0 i}^{j M}\right)$ for $X \in$ $Q J^{i+l+1}(M, N)$.
Proposition 9. Let M, N be manifolds. Then $\left(T^{k-i-1} V_{0 i}^{j M, N}\right)^{*}: Q J^{k}(M, N) \rightarrow$ $Q J^{k-1}(M, N)$ is a natural transformation for $i=1, \ldots, k-1$ and $j=1, \ldots, i$.
Proof. By Proposition 4, it is sufficient to prove that $\left(T^{k-i-1} V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}: \mathbb{Q}_{m}^{k} \rightarrow \mathbb{Q}_{m}^{k}$ is a homomorphism of Weil algebras equivariant in respect to the action of G_{m}^{k} on \mathbb{Q}_{m}^{k}. We prove this for $\left(V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}: \mathbb{Q}_{m}^{i+1} \rightarrow \mathbb{Q}_{m}^{i+1}$ which proves our claim for $i=k-1$. We show, that this proof can be easily extended to other cases of i.

Let $Y_{\varepsilon}=Y_{\varepsilon_{1} \ldots \varepsilon_{i} 0}$ be the coordinates on $T^{i} \mathbb{R}=\mathbb{D}^{i} \hookrightarrow \mathbb{D}^{i+1}=T^{i+1} \mathbb{R}$ and $y_{\delta}=$ $y_{\delta_{1} \ldots \delta_{i+1}}$ the coordinates on $T^{i+1} \mathbb{R}=\mathbb{D}^{i+1}$. Further, let $a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}$ be the coordinates on $Q T_{m}^{i+1} \mathbb{R}=\mathbb{Q}_{m}^{i+1}$ and x_{γ}^{j} be the coordinates on $T^{i} \mathbb{R}^{m} \stackrel{\left(\mathbb{D}^{i}\right)^{m} \hookrightarrow\left(\mathbb{D}^{i+1}\right)^{m}=}{ }$ $T^{i+1} \mathbb{R}^{m}$. Then the formula (9) implies

$$
\begin{equation*}
Y_{\varepsilon}=\left(1-\varepsilon_{i+1}\right)\left(\left(1-\varepsilon_{j}\right) y_{\varepsilon}+\varepsilon_{j} y_{\varepsilon+e_{i+1}}\right) \tag{11}
\end{equation*}
$$

and the map $\left(V_{0 i}^{j \mathbb{R}^{m} \mathbb{R}}\right)^{*}$ satisfies

$$
\begin{equation*}
Y_{\varepsilon}=\left(1-\varepsilon_{i+1}\right)\left(\left(1-\varepsilon_{j}\right) a_{i_{1} \ldots i_{k}}^{\gamma^{1}} x_{\gamma^{1}}^{i_{1}} \ldots x_{\gamma^{k}}^{i_{k}}+\varepsilon_{j} \gamma_{j}^{l} a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{1}+e_{i+1} \ldots \gamma^{k}} x_{\gamma^{1}}^{i_{1}} \ldots x_{\gamma^{k}}^{i_{k}}\right) \tag{12}
\end{equation*}
$$

for $\gamma^{1}+\cdots+\gamma^{k}=\varepsilon, \operatorname{deg} \gamma^{1}<\cdots<\operatorname{deg} \gamma^{k}$. Evaluating the coefficients by $x_{\gamma^{1}}^{i_{1}} \ldots x_{\gamma^{k}}^{i_{k}}$, we obtain the coordinates $A_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}$ on \mathbb{Q}_{m}^{i} expressed by $a_{i_{1} \ldots i_{k}}^{\delta^{1} \ldots \delta^{k}}$ as follows

$$
\begin{equation*}
A_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}=\left(1-\gamma_{i+1}^{1}\right) \ldots\left(1-\gamma_{i+1}^{k}\right)\left(\left(1-\sum_{l=1}^{k} \gamma_{j}^{l}\right) a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}}+\gamma_{j}^{l} a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{l}+e i+1 \ldots \gamma^{k}}\right) \tag{13}
\end{equation*}
$$

Let $a=a_{i_{1} \ldots i_{k}}^{\gamma^{1} \ldots \gamma^{k}} \tau_{\gamma^{1}}^{\left(i_{1}\right)} \ldots \tau_{\gamma^{k}}^{\left(i_{k}\right)} \in \mathbb{Q}_{m}^{i+1}, b=b_{j_{1} \ldots j_{1}}^{\delta^{1}} \tau_{\delta^{1}}^{\left(j_{1}\right)} \ldots \tau_{\delta^{l}}^{\left(j_{1}\right)} \in \mathbb{Q}_{m}^{i+1}$ and $A=$ $\left(V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}(a), B=\left(V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}(b)$. Further, let $C=A B$ and $D=\left(V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}(a b)$. Then we have $C_{i_{1} \ldots i_{k}}^{\alpha^{1} \ldots \alpha^{k}}=\sum_{\mathcal{D}} A_{j_{1} \ldots j_{h}}^{\beta^{1} \ldots \beta^{h}} B_{l_{1} \ldots l_{k-h}}^{\gamma^{1} \ldots \boldsymbol{\gamma}^{k}}$, where \mathcal{D} is the set of all decompositions of $\left\{\alpha^{1}, \ldots, \alpha^{k}\right\}$ into $\left\{\beta^{1}, \ldots, \beta^{h}\right\}$ with the complementary $\left\{\gamma^{1}, \ldots, \gamma^{k-h}\right\}$ and the corresponding bottom indices. By (13) we have

$$
\begin{align*}
& C_{i_{1} \ldots i_{k}}^{\alpha^{1} \ldots \alpha^{k}}=\sum_{\mathcal{D}}\left[\left(1-\beta_{i+1}^{1}\right) \ldots\left(1-\beta_{i+1}^{h}\right)\left(\left(1-\sum_{l=1}^{h} \beta_{j}^{l}\right) a_{j_{1} \ldots j_{h}}^{\beta^{1} \ldots \beta^{h}}+\beta_{j}^{l} a_{j_{1} \ldots j_{h}}^{\beta^{1} \ldots \beta^{l}+e_{i+1} \ldots \beta^{h}}\right)\right] \\
& (14) \quad\left[\left(1-\gamma_{i+1}^{1}\right) \ldots\left(1-\gamma_{i+1}^{k-h}\right)\left(\left(1-\sum_{\bar{l}=1}^{k-h} \gamma^{\bar{l}_{j}}\right) b_{l_{1} \ldots l_{k-h}^{\gamma^{1}}, \gamma^{k-h}}^{\gamma^{\prime}}+\gamma_{j}^{\bar{l}} b_{l_{1} \ldots l_{k-h}^{\gamma^{1}} \ldots \gamma^{I}+e_{i+1} \ldots \gamma^{k-h}}^{1}\right)\right] \tag{14}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& D_{i_{1} \ldots i_{k}}^{\alpha^{1} \ldots \alpha^{k}}=\left(1-\alpha_{i+1}^{1}\right) \ldots\left(1-\alpha_{i+1}^{k}\right)\left(\left(1-\sum_{l=1}^{k} \alpha_{j}^{l}\right) \sum_{\mathcal{D}} a_{j_{1} \ldots j_{h}}^{\beta^{1} \ldots \beta^{h}} b_{l_{1} \ldots l_{k-h}}^{\gamma^{1} \ldots \gamma^{k-h}}+\right. \tag{15}\\
& \beta_{j}^{l} \sum_{\mathcal{D}} a_{j_{1} \ldots j_{h}}^{\beta^{1} \ldots \beta^{l}+e_{i+1} \ldots \beta^{h}} b_{l_{1} \ldots l_{k-h}}^{\gamma^{1} \ldots \gamma^{k-h}}+\gamma_{j}^{l} \sum_{\mathcal{D}} a_{j_{1} \ldots j_{h}}^{\beta^{1} \ldots \beta^{h}} b_{l_{1} \ldots l_{k-h}}^{\gamma^{1} \ldots \gamma^{l}+e_{i+1} \ldots \gamma^{k-h}}
\end{align*}
$$

It is easy to see that $C_{i_{1} \ldots i_{k}}^{\alpha^{1} \ldots \alpha^{k}}=D_{i_{1} \ldots i_{k}}^{\alpha^{1}}{ }^{k}$ which follows that $\left(V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}: \mathbb{Q}_{m}^{i} \rightarrow \mathbb{Q}_{m}^{i}$ is a homomorphism. The fact that $\left(T^{k-i-1} V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}: \mathbb{Q}_{m}^{k} \rightarrow \mathbb{Q}_{m}^{k}$ is a homomorphism follows from (10), (12) and (13) remaining unchanged if we replace $\left(V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}^{\mathbb{R}}}\right)^{*}$ by $\left(T^{l} V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}$. The equivariancy of $\left(T^{k-i-1} V_{0 i}^{j \mathbb{R}^{m}, \mathbb{R}}\right)^{*}$ with respect to the action of G_{m}^{k} on \mathbb{Q}_{m}^{k} follows from the fact that $T^{k-i-1} V_{0 i}^{j \mathbb{R}^{m}}: \mathbb{D}^{k-1} \rightarrow \mathbb{D}^{k}$ is a natural transformation. This completes the proof.

We state the following assertion, the proof of which is omitted since it is almost the same as that of Proposition 9, only technically easier.
Proposition 10. The quasijet projection $\kappa_{l}: Q J^{k+1} \rightarrow Q J^{k}$ induced by the l-th vector bundle structure $T^{k+1-l} p^{l}: T^{k+1} \rightarrow T^{k}$ is a natural transformation.

We shall need the coordinate expressions of homomorphisms $\kappa_{i+1}: \mathbb{Q}_{m}^{k+1} \rightarrow$ $\mathbb{Q}_{m}^{k} \hookrightarrow \mathbb{Q}_{m}^{k+1}$. Let $a \in \mathbb{Q}_{m}^{k+1}$ and $\cdot A=\kappa_{i+1}(a)$. Further, let $a=a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{h}} \tau_{\gamma^{1}}^{\left(i_{1}\right)} \ldots \tau_{\gamma^{h}}^{\left(i_{h}\right)}$ and $A=A_{j_{1} \ldots j_{1}}^{\delta^{1} \ldots \delta^{l}} \tau_{\delta^{1}}^{\left(j_{1}\right)} \ldots \tau_{\delta^{l}}^{\left(j_{l}\right)}$. Then it holds

$$
\begin{equation*}
A_{i_{1} \ldots i_{h}}^{\gamma^{1} \cdots \gamma^{h}}=\left(1-\gamma_{i+1}^{1}\right) \ldots\left(1-\gamma_{i+1}^{h}\right) a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{h}} \tag{16}
\end{equation*}
$$

If we compare (16) with (13), we have

$$
\begin{equation*}
a_{i_{1} \ldots i_{h}}^{\gamma^{1}}=\left(1-\sum_{l=1}^{h} \gamma_{j}^{l}\right) a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{h}}+\gamma_{j}^{l} a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{l}+e_{i+1} \ldots \gamma^{h}} \tag{17}
\end{equation*}
$$

for all multiindices $\gamma^{1}, \ldots, \gamma^{h}$ of order $k+1$ satisfying $\gamma^{l} \subseteq E_{k+1}, i+1 \notin \gamma^{l}$ for $l=1, \ldots, h, \operatorname{deg} \gamma^{1}<\cdots<\operatorname{deg} \gamma^{h}$.

By Proposition 6, a (m, r)-quasivelocity represents a non-holonomic (m, r)-velocity if and only if all $a_{i_{1}}^{\gamma_{1}^{1} \ldots \boldsymbol{i}_{h}}$ depend on $\gamma^{1} \ldots \gamma^{h}$ only up to $\operatorname{deg} \gamma^{1}, \ldots, \operatorname{deg} \gamma^{h}$. We prove the result of Dekrét if we show the equivalence of the last condition with (17).

Fix $\gamma^{1}, \ldots, \gamma^{h}$ except of l and consider $\bar{\gamma}^{l}$ derived from γ^{l} by $\gamma_{i+1}^{l}=0$ and $\bar{\gamma}^{l}=1$. Further, denote by $e_{\operatorname{deg} \gamma^{\prime}}$ the multiindex containing the only unit at the $\left(\operatorname{deg} \gamma^{l}\right)$-th position. Clearly $\operatorname{deg} \gamma^{l}=\operatorname{deg} \bar{\gamma}^{l}$ and $a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{l}}=a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{\boldsymbol{I}} \ldots \gamma^{h}}$ is equivalent with (17), setting $j=\operatorname{deg} \gamma^{l}$. The condition $a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{l} \ldots \gamma^{h}}=a_{i_{1} \ldots i_{h}}^{\gamma^{1} \ldots \gamma^{\prime} \ldots \gamma^{h}}$ is equivalent with (17), which is obtained by setting $j=\operatorname{deg} \gamma^{l}$ and iterating the last step for all $i+1$ corresponding to units in the multiindex γ^{l}. This way we obtain the result by Dekrét.

I thank prof. I. Kolář for his much useful help, advice and suggestions.

References

[1] Dekrét A., On quasi-jets, Časopis pro pěstování matematiky 111 (1986), 345-352.
[2] Ehresmann C., Extension du calcul des jets aux jets non-holonomes, C.R.A.S. 239 (1954), 1763-64.
[3] Kolář I., Bundle functors of the jet type, to appear in Differential Geometry and Its Applications, Conf. Proc. Brno, August 10-14, 1998.
[4] Kolár I., Mikulski, W., On the fiber product preserving bundle functors, to appear in Differential Geometry and Its Applications.
[5] Kolár I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
[6] Kolár I., Tomás̃ J., Gauge-natural transformations of some cotangent bundles, Acta Univ. M. Belii 5 (1997), 3-9.
[7] Kureš M., On the simplicial structure of some Weil bundles, to appear in Rendiconti del Circolo Matematico di Palermo.
[8] Pradines J., Representation des jets non holonomes per des morphismes vectoriels doubles soudés, C.R.A.S. Paris 278 (1974), 1557-1560.
[9] White J. E., The Method of Iterated Tangents with Applications in Local Riemannian Geometry, Pitman, London, 1982.

[^1]
[^0]: 1991 Mathematics Subject Classification. 58A20, 53A55.
 Key words and phrases. r-jet, (m, r)-velocity, Weil bundle.
 The author was supported by the grant No. 201/99/0079 of the GA ČR.
 This paper is in final form and no version of it will be submitted for publication elsewhere.

[^1]: Department of Mathematics
 Faculty of Civil Engineering
 Technical University Brno
 Žıžkova 17
 60200 Brno, Czech Republic
 E-mail: mdtom@fce.vutbr.cz

