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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 71 (2003), pp. 67-72 

NONCLASSICAL DESCRIPTIONS OF ANALYTIC COHOMOLOGY 

. TOBY N. BAILEY, MICHAEL G. EASTWOOD, AND SIMON G. GINDIKIN 

There are two classical languages for analytic cohomology: Dolbeault and Cech. 
In some applications, however (for example, in describing the Penrose transform and 
certain representations), it is convenient to use some nontraditional languages. In [2] 
was developed a language that allows one to. render analytic cohomology in a purely 
holomorphic fashion. In this article we indicate a more general construction, which 
includes a version of Cech cohomology based on a smoothly parameterized Stein cover. 
The idea of this language is that, usually, there are only infinite Stein coverings of the 
complex manifold in question but, often, we can find natural Stein coverings parame
terized by an auxiliary smooth manifold. Under these circumstances, it is unnatural to 
work with classical Cech cohomology Instead, it is possible to construct the analytic 
cohomology from the de Rham complex on the parameter space but with holomorphic 
dependence in the corresponding Stein subset. This switch of language is rather like 
replacing sums by integrals to pass from discrete to continuous. 

This material was the subject of a lecture presented by one of us (MGE) at the 
22nd Czech Winter School on Geometry and Physics held in Srni in January 2002. 
This article contains only an outline and a couple of examples. Precise proofs will 
appear elsewhere. 

1. INTRODUCTION 

We wish to compute the analytic cohomology ifr(Z, O) of a complex manifold Z. 
Suppose we are given: 

F 
(1) V \r 
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where 

• F and H are smooth manifolds, 
• 77 is a fibration with contractible fibers, 
• r is a fibration with Stein manifolds as fibers, 
• 77 is holomorphic when restricted to the fibers of r, 

and a further technical condition due to Jurchescu [10] holds. In these circumstances, 
there is a complex of sheaves (E(B9) on F so that 

(2) HP(Z, O) S. HP(r(F, (E(B'))). 

Three special cases are included in this formulation: 

• Z = F = H: in this case (E(B9) reduces to the usual Dolbeault resolution; 
• H = {pt}: in this case F is a Stein manifold and we obtain the holomorphic 

language of [5]; 
• the fibers of r are embedded by 77 as open subsets of Z: in this case we obtain 

the smoothly parameterized Cech cohomology of [6]. 

In fact, there is no need that the fibers of r be embedded as open subsets of Z. Our 
formulation allows for them to be Stein submanifolds of Z and there are naturally 
occurring examples for which this in the case. Also, as in [2], it is easily possible to 
incorporate a holomorphic vector bundle E on Z into this language so that we compute 
Hp(Z,0(E)). 

2. EXAMPLES 

Our first example is taken from [2] but here we make explicit its relation to the 
Penrose transform as in [8]. It a purely holomorphic description. Thus, H = {pt} and 
F is a Stein manifold. The manifold Z is a homogeneous space of SU(2,1), namely 

Z = {[zuz2)z3] e CP2 s.t. |zi|2 + |z2|2 > \z3\
2}. 

It is the complement of a ball in the projective plane. We shall take 

F — {(z, C) £ CP2 s.t. z 7-- C and the line joining z and C lies entirely in Z}. 

It is easy to check that F is Stein and 77: F —> Z defined by (2, C) •-* z has contractible 
fibers. In this case, F C CP2 x CP2, an open subset of a product. Therefore, the 
complex (E(Bm) is more easily described: 

(E(BP) .9 (jj(z, C, rfC), a holomorphic p-form in C depending holomorphically on z 

with differential dn : (E(BP) -+ 03(£p+1) being exterior derivative in f. We shall 
describe an easy variation on (2) in which the analytic cohomology of Z is taken with 
coefficients in a holomorphic line bundle. Specifically, we shall describe Hl(Z, 0(—2)). 
To do this, write w = z A C, considered as a point of the dual projective plane CP£. 
To say that the line joining z and C lies entirely in Z is to say that w lies in the ball 

W = {[wuw2)w3] e CP£ s.t. M 2 + H 2 < |w3 |2}. 
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Perhaps the simplest Penrose transform is essentially due to Martineau [9]. It is the 
isomorphism 

H\Z,0{-2))^-+T{W,0{-l)). 

A proof is easily constructed along the lines of [3] or [8]. The correspondence between 
CP2 and CPj fits well with the fibration 77: F -> Z: 

For (f>(w) e V(VV, 0(—1)), write w = z A C and, following Gelfand, Graev, and 
Shapiro [4] in the case of real integral geometry, consider 

кф:=J2 d(a. 

It is a holomorphic 1-form in £, homogeneous of degree —2 in z. It is readily verified 
that drj(K(j>) = 0 so K(j> represents an element of HX(Z, 0(—2)) in accordance with (2). 
From this point of view, we have constructed the inverse Penrose transform 

r(WtO(-l))->Hl(Z,0(-2)). 

In [2] it is explained, following [8], how to obtain Dolbeault representatives from this 
construction. We shall return to this point at the end of this article. 

OUT second example is adapted from [7]. We shall set up a double fibration (1) so 
that (2) describes Hp(Cn \ Rn, O). It is as follows: 

F ={(x + z2/,0s.t. (£,</) > 0 } 

*/ \ r 

Cn \ Rn = Z E = Sn~l = {£ Є Mn s.t. |£| = 1} 

where z = x + iy G Cn and f G Rn. Again, F is an open subset of a product; this time 
F C Z x H. The complex (E(.B#) is easily described: 

(E(BP) 3 w(z, f, d£), a smooth p-form in f depending holomorphically on z 
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with differential dn : (E(BP) —> (E(BP+1) being exterior derivative in £, The conditions 
under which (2) is valid are easily verified. For each (GH, for example, we obtain an 
open subset 

Z£ = { z - H u e C n s . t . (£,?/) > 0 } c C n \ R n . 

As a tube over a half-space, it is Stein. Of course, only finitely many Z{s are needed 
to give a Cech cover of C n \R n . To use all of them, however, gives a more symmetrical 
realization. 

According to Sato's theory [11], the cohomology Hn-1(Cn \ Rn, O) may be viewed 
as the space of hyperfunctions on Rn. In this theory, one views hyperfunctions as a 
sum of boundary values of holomorphic functions defined on tubes over cones with 
edges along Rn. Formally, we are replacing this finite sum by an average over S71'1. 
Certainly, we should be able to embed Schwartz space <S(Rn) --> Hn-1(Cn\Rn, O) in a 
natural fashion. To see this, write the Fourier inversion formula in polar coordinates: 

(3) /(*) = / / ( f l e ' ^ d . ; = / ( í°° /(rOe^r^dr) díl, 
JRn JteSn~l \Jr=Q J 

where rfQ is the volume form on the unit sphere. If we replace x by z = x -f- iy in the 
integrand of this expression, we obtain 

uj(z,Z,dZ) =(f°° / ( r O c - ^ ^ ^ ^ r 1 1 - 1 ^ dfi, 

which is convergent and holomorphic in z provided (£, y) > 0. This represents our 
cohomology class in 

Hn-x(Cn \ Rn, O) =i ^ G ^ — ) ) 
imd-,: T(F, <E(H"-2)) -> T(F, C E ^ " 1 ) ) ' 

Formally, if we set y = 0 and average over Sn~1
1 then (3) recovers / . 

3. FORMULATION AND SKETCH OF PROOF 

The complex structures on the fibers of r should vary smoothly. One possible 
formulation is as a smooth differentially closed sub-bundle A^° C A^ containing the 
annihilator of the vertical vectors and inducing complex structures on each fiber. If 
we let A0,1 denote the quotient bundle A)r/A^0, then exterior derivative induces a 
differential operator dT : A°F —> A0,1 whose kernel is the smooth functions on F that 
are holomorphic along the fibers of r . Let us write CE for the sheaf of such functions. 

Now, recall that 7/ is supposed to be holomorphic on each fiber of r. Precisely, this 
means that rfi\}f C A^°. Define a vector bundle B1 on F by the exact sequence 

0 _> r)*kf - A1* - B 1 -> 0. 
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One may verify that Bl is naturally holomorphic along the fibers of r. The same is 
true for Bp := Ap(Bl). Let us write (E(BP) for the sheaf of smooth sections of Bp that 
are holomorphic along the fibers of r. Then, there is a complex of sheaves on F: 

(4) (E(J3?) - ^ (E(Bl) -^ (E(B2) -> • (E(BP) -±+ (E(Bp+l) -+ • . • 

This is the complex occurring in (2). For the proof, one shows that (4) resolves rflOz 
and then proceeds as in [3]. At some point in this proof one needs a cohomology 
vanishing result, namely that 

H9(F,(E(Bp)) = 0, V " > 1 . 

This result is due to Jurchescu [10]. He supposes that F is a 'Cartan manifold'. In 
our context, this means that the partially holomorphic functions separate points and 
are sufficiently many to provide local coordinates. Jurchescu's vanishing result may 
be viewed as solving the Levi problem for a family of Stein manifolds. An alternative 
proof of this vanishing result may be found in [1]. We are grateful to Gennadi Henkin 
for drawing our attention to these articles. 

Finally, we remark that Dolbeault representatives may always be obtained from (2). 
To so this, choose an arbitrary smooth section 7 : Z —> F of 77 in (1). Locally, we may 
represent u G T(F, (E(BP)) by a smooth p-form on F and pull it back to 7*0; on Z. 
The (0,p) component (7*u;)0'p is well-defined and gives a chain mapping 

r(F,CE( .9-))-^r(z,A 0 --), 

which induces an isomorphism on cohomology. This generalizes a construction in [8]. 
In our first example, any choice of 7 gives an explicit inverse to the Penrose transform. 
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