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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 71 (2003), pp. 143-150 

MORE ON DEFORMED OSCILLATOR ALGEBRAS 
AND EXTENDED UMBRAL CALCULUS 

A.K. KWASNIEWSKI, E. GR^DZKA 

ABSTRACT. V(9)-calculus is an almost unavoidable extension of finite operator cal
culus of Rota [1], Main results of Rotas' finite operator calculus might be quite 
easily given their ^-extensions. The specific ipn (q) = [n9!]~ case is known to be 
relevant for quantum groups investigation [2]-[5]. In general i/j(q)-calc\i\us is as a 
matter of fact Ward's "..calculus of sequences" [6] in Rotas' finite operator calculus 
form [7]. This we owe to Viskov and other distinguished authors (see for exam
ple [8]—[13]). Here we show that such tp(q)-\imbial calculus leads to infinitely many 
new ^-deformed "quantum-like" oscillator algebras representations. Among others 
one may formulate ^-extended finite operator calculus with help of the "quantum 
g-plane" ^-commuting variables A, B : AB - qBA = [A, B]q = 0 as done in [11], [12]. 
This presentation is mostly an editorial actualization and enrichment of [14] based 
on [15] (see also [1]) and is intended to be further extension of last years talks given 
at Srni. 

1. F E W BASIC NOTIONS OF ^(^)-EXTENDED UMBRAL CALCULUS 

^(g)-extended umbral calculus is arrived at [8], [9] by considering not only 
polynomial sequences of binomial type but also of {sn}n>i-binomial type where 
{sn}n>i-binomial coefficients are denned with help of the generalized factorial ns]. = 
sis2s3 • • • sn; S = {sn}n>i is an arbitrary sequence with the condition sn =̂  0, n E N. 
Then the extension relies on the notion of 9,/,-shift invariance of 9^,-delta operators. 
Here the linear operator d^ acting on the algebra of polynomials denotes the ip-
derivative i.e. d^xn = n-/,xn~1; n > 0 and n^ denotes the ^-deformed number (see 
also [6] and [13]) where in conformity with Viskov notation we put 

rty = Vn-i (q) fa1 (?) hence (0^! = 1) 
V = i>nl (q) -zn+(n- 1)^ (n - 2)^ (n - 3)^ • • • 2 ^ and 

n | = nv, (n - 1)̂ , • • • (n - fc +1)^. 

We choose to work with 9 — the family of functions sequences such that: 
9 = ty : R D [a,b];q G [a,b]rt(q) : Z -> F;th(g) = WnW ¥> W-n(q) = 0; 
n e N}. With the choice i/ln (q) = [R (qn)\\ l and R (x) = —^ w e ge t the well known 
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q-factorial nq\ = nq(n- l)g!; lg! = 0q\ = 1 while the ^-derivative d^ becomes now 
the Jackson's derivative (see [16]) 

dq.(dq<p)(x)= {1_q)x . 

A polynomial sequence {pn}o° is called to be of ^-binomial type if it satisfies the 
recurrence 

E> (d^)Pn (x) = pn (x +* y) = £ G V * (x)Pn-k(y); where ( ^ = g . 
k>0 

кдк 
Ey (9-/,) = exp^{yd^,} = J2 ~n~t denotes a generalized translation operator [6] and 

fc=0 *" 

9 ,̂-shift invariance is defined accordingly. The algebra J ^ is the algebra of all F-linear 
9^-shift invariant operators T acting on the algebra P of polynomials. We assume that 
char F = 0 for any field F chosen. In another words 

V a E F [T,£Q (fy)] = 0; charF = 0. 
One then introduces the notion of d^-delta operator according to Definition 1.1. 

Definition 1.1. Let Q(d^,) : P —> P; the linear operator Q (d^,) is a d^-delta operator 
iff 

(1) Q (d$) is d^-shift invariant; 
(2) Q (fy) (id) = const ^ 0. 

As in unextended case [7] — one may construct [1] the bijective correspondence 
between d^-delta operators with their d^-basic polynomial sequences. 

Definition 1.2. Let Q (d^): P —• P be the d^-delta operator. A polynomial sequence 
{Pn}n>o> degpn = n such that: 

(l)Po(x) = l; 
(2) pn (0) = 0; n > 0; 
(3) Q(d$)pn = n^Pn-i is called the d^-basic polynomial sequence of the d^-delta 

operator Q (dip). 

Now using the fact that VQ (d^) 3\ invertible S^ G E^ such that Q (d^) = d^Se^, 
one may prove (analogously to special cases [7], [12]) the crucial Theorem 1.1 (see 

[i], [io])-

Theorem 1.1. Let {pn (a;)}^L0 ^e d^-basic polynomial sequence of the d^-delta oper
ator Q(d$): 

Q(dj,) = d^,Sa^. Then for n > 0: 

(l)pn(x) = Q(d<,)>S£-1x»; 

(2)pn(x) = S£x»-^(S£)>x»-i; 

(3) Pn(x) = ^ x ^ j ; ^ " 1 ; 

(4)pn(x) = ^(Q(d^>)T1Pn-i(x). 

In order to prove this one uses the properties of the Pincherle ^-derivative. 

Definition 1.3. The Pincherle ip-derivative i.e. the linear map ': E^ —> Ey,; 

T = T x ̂  — x^T = [T, x ,/,] 
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where the linear map x^ : P —• P; is defined in the basis {zn}n>o a$ follows 

V ^ ) ^ n>o. 

One may also define Sheffer (^-polynomials which constitute the more general class 
of polynomial sequences than the class of 9^-basic polynomial sequences. 

Definition 1.4. A polynomial sequence {sn(x)}n^z0 is called the sequence of Sheffer 
drj,-polynomials of the d^-delta operator Q (d^) iff 

(1) so(x) = c^0; 
(2) Q (fy) sn (x) = rtySn-i (x). 

The following proposition relates Sheffer 9,/,-polynomials of the 9,/,-delta operator 
Q (dyj,) to the unique 9^-basic polynomial sequence of the 9,/,-delta operator Q(d^): 

Proposition 1.1. Let Q (d^) be a d^-delta operator with d^-basic polynomial sequence 
{gn(:r)}^L0. Then {sn(x)}n

<LQ is a sequence of Sheffer q-polynomials of the d^-delta 
operator Q (d^) iff there exists a d^-shift invariant operator Sd^ such that sn (x) = 
S^Qn(x). 

Examples: According to Proposition 1.1 with Q(dq) = dq and S = exp^{|a$g} 

we get g-Hermite polynomials while with choice Q (dq) = ---f-- and S = (1 - dq)~
a~ 

we obtain g-Laguerre polynomials Lnl (x) of order a. ^-extensions include of course 
g-Hermite, g-Laguerre polynomials Ln}q (x) of order a with their ^-correspondents. 
These are already well known a-Sheffer polynomials [17], [11], [12]. Specifically 
g-Laguerre polynomials Ln~q\x) = Ln,q(x) form the c^-basic polynomial sequence 

{£n,,(*)}n>0 of the dq operator Q(dq) = - £ o*+1 = g%- = - [dq + d2
q + 9?+ 

k=0 q 

d^ + d^-\ ] . Using then Theorem 1.1 one arrives at the explicit form of Ln>q (x). 
Namely: 

^q[g^l}-
nXn-1 = ^ig(dq-^-n-1 

W*) = -řЧã—ì~Пx - T ^ ~ ^*"-1 = 
П Oq — 1 П 

n Z-Л > Ы (n - fcì ! k. ' n f^ kq\ (n - k)q\ kq 

So finally 

* k 
тx • Л ("> w*)^£<-i>^(;:;) 

Note: ^-extended case is covered in this example just by replacement q —> tp. 
With the choice ipn (q) = [R (qn)\}~~ we arrive at interesting .R-Laguerre polynomials. 
Let us also stress here again that g-deformed quantum oscillator algebra provides a 

natural setting for g-Laguerre polynomials and a-Hermite polynomials [18], [19], [20]. 
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slq(2) and the g-oscillator algebra give rise to basic geometric functions as matrix 
elements of certain operators in analogy with Lie theory [18], [19], Also automorphisms 
of the ^-oscillator algebra lead to Sheffer ^-polynomials for example to g-generalization 
of the Charlier polynomials [18], [19]. 

2. EXTENDED UMBRAL CALCULUS AND ^-DEFORMED "QUANTUM OSCILLATOR" 
ALGEBRAS 

dq-delta operators and their duals and similarly c^-delta operators with their duals 
provide us with pairs of generators of ^-deformed quantum oscillator-like algebras 
(see Remark 2.2). Namely as we shall see: \Q (d^), xQ/d J = id. With the choice 

ipn(q) = [-R(^n)!]_1 and R(x) = ^ we get the well known g-deformed oscillator 
dual pair of operators — generators of the well known g-Heisenberg-Weyl algebra. 
These oscillator-like algebras generators and g-oscillator-like algebras generators are 
encountered explicitly or implicitly in [2], [3] and in many other subsequent references 
— see [26], [5] and references therein. In many such references [18], [19] g-Laguerre and 
q-Hermite or g-Charlier polynomials appear which are just either Sheffer ^-polynomials 
or just c^-basic polynomial sequences of the 9^-delta operators Q (d^) for tyn (q) = 
£p---; R(x) = j ^ - and corresponding choice of Q(d^) functions of d^ (for example 
Q = id). The case if>n (q) = - ^ - : ny, = nR\ d^ = dR and n^q) = nR{q) = R(qn) 
appears implicitly in [21] where advanced theory of general quantum coherent states is 
being developed. However there is no mention of R (gn)-umbral calculus in [21] neither 
in "^-references" quoted in this note. In the g-case it was noticed among others also 
in [22] that commutation relations for the g-oscillator-like algebras generators from 
[2, 3] and others (see [5]) might be chosen in appropriate operator variables to be of 
the form [22]: 

(2.1) AA+-nA+A = l; fi = q2 

As for the Fock space representation of normalized eigenstates \n > of excitation 
number operator N various ^-deformations of the natural number n are used in lit
erature on quantum groups and at least some families of quantum groups may be 
constructed from g-analogues of Heisenberg algebra [2], [3], [22], [4]. Our g-oscillator 
algebras generators are just the 9q-delta operators Q (dq) and their duals i.e. basic 
objects of the ^-extended finite operator calculus of Rota. (An elementary example: 
dqx - qxdq = id.) 

Here in below we shall propose a ^-extension of the g-oscillator model algebra using 
basic concepts of Viskov's ^-extension of calculus of Rota. 

Definition 2.1. Let {Pn}n>o be the dq-basic polynomial sequence of the dq-delta 
operator Q(dq). A linear map XQ(dq) : P —> P; XQ(dq)Pn = Pn+ii n > 0 is called 
the operator dual to Q (dq). 

For Q = id we have : XQ^) -= Xdq -= x. 

Definition 2.2. Let {pn}n>o be the d^-basic polynomial sequence of the d^-delta 
operator Q (d^) = Q. Then the q^,tQ-operator is a liner map; 

qM:P^P; q^Qpn = ̂ f±pni n > 0. 
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We call the q^yQ operator the q^}Q-mutator operator. 
Note: For Q = idQ(9^) = d^ the natural notation is q^ = q^. For Q = id and 
^ (?) = i~r~ a n d R (x) = w $M? = feid = <?R " fy,id = & = $ and ^ , Q x n = ga;n. 

Definition 2.3. Lei -4 and B be linear operators acting on P; 
A: P —• P; B : P —• P. T/ien .AI? - (J^QBA = [.A, .B]^tQ zs called q^Q-mutator of A 
and B operators. 

Note: Q(d^xQ^-qMxQ^Q(d^) = [ 0 ( ^ ) . * Q ( ^ ) J = id-

This is easily verified in the d^-basic {pn}n>0 ofthe fy-delta operator Q (c\,). 
Equipped with pair of operators (Q(d^,)} XQ^)) and g^Q-mutator we have at our 

disposal all possible representants of "canonical pairs" of differential operators on the 
P algebra. For historical reasons let us however at first quote a suitable remark [1]. 

Remark 2.1. The ^-derivative is a particular example of a linear operator that re
duces by one the degree of any polynomial. In 1901 it was proved [23] by Pincherle and 
Amaldi that every linear operator T mapping P into P may be represented as infinite 
series in operators x and D. In 1986 Kurbanov and Maximov [24] supplied the explicit 
expression for such series in most general case of polynomials in one variable; namely 
according to Proposition 1 from [24] one has: " Let V be a linear operator that reduces 
by one each polynomial. Let {qn (x)}n>o be an arbitrary sequence of polynomials in 
the operator x. Then T = —I qn (x)Vn defines a linear operator that maps polynomi-

n>0 

dls into polynomials. Conversely, if T is linear operator that maps polynomials into 
polynomials then There exists a unique expansion of the form 

T=Z<in(£)vn". 
n>0 

Note: In 1996 this was extended to algebra of many variables polynomials [25]. 

Remark 2.2. The importance of the pair of dual operators: Q (d^) and xQfd \ is 

reflected by the facts: 

a) Q (fy) * Q ( ^ ) - Q^Q(drl>)Q (9V>) = [Q (dl>) i *Q(0V,)J . = id-

b) Let {qn [xQrd ))}n>o be an arbitrary sequence of polynomials in the operator 

xQrd \. Then T = ]~ qn (xQtd \)Q(d^)n defines a linear operator that maps 

polynomials into polynomials. Conversely, if T is linear operator that maps 
polynomials into polynomials then there exists a unique expansion of the form 

(2-2) r = ~*.(-Q(a,))m)B-
n>0 

Equipped with pair of operators (Q(c^), XQ^)) and ^g-mutator we have at our 
disposal all possible representants of "canonical pairs" of differential operators on the 
P algebra such that: 

a) the above unique expansion T = —I qn (xQ/d \ jQ (d^)n holds 
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b) we have the structure of ^-umbral or -^-extended finite operator calculus -
coworking. 

3. LOOKING FOR ^-ANALOGUE OF QUANTUM g-PLANE FORMULATION 

Cigler and Kirschenhofer defined in [11, 12] the polynomial sequence. {pn}™ of q~ 
binomial type equivalently by 

(3.1) pn (A + B) = J2 (Y) Pk (A)Pn-k (B) where [B,A]q = BA- qAB = 0. 
k>o ч ' я 

A and B might be interpreted then as coordinates on quantum g-plane. For example 
A = x and B = yQ where Q(p(x) = (p(qx). With this being adopted the following 
identification holds: 

pn (x +qy) = Ey (dq)pn(x) = J2 ( J Pk (x)Pn-k (y) =pn(x + yQ) 1 
k>o\K'i v 

Also a-Sheffer polynomials {5n(x)}^!=0 are defined equivalently (see 2.1.1. Kirschen
hofer in [12]) by 

(3.2) sn(A + B) = Y(n)sk(A)Pn.k(B) 
*>n W a k>0 ч ' Я 

o o where [S, A]q = BA - qAB = 0 and {pn (x)}^=0 of ^-binomial type. For example 
A = x and B = yQ where Qip(x) = <p(qx). Then the following identification takes 
place: 

(3.3) sn (x +q y) = Ey (dq) sn (x) = £ (n J sk (x)pn-k(y) = sn(x + yQ) 1 
fc>o \K'q v 

This means that one may formulate a-extended finite operator calculus with help of 
the "quantum g-plane" g-commuting variables A, B: 
AB - qBA = [A, B]q = 0. 

Let us now try to formulate — perhaps in vain — the basic notions of ^-extended 
finite operator calculus with help of the "quantum ^-plane" ^.g-commuting variables 
A, B : [A, B]^ Q = 0 exactly in the same way as it was done by Cigler and Kirschen
hofer in [11], [12]. 

For that to do let us consider appropriate generalization of A = x and B = yQ 
where this time the action of Q on {xn}^° is to be found from the condition 

AB-qi)BA = [A,B]q^ = 0. 

Acting with [A, B]^ on {xn}^ one easily sees that due to q^xn = (n+1V"1
a;n. 

n > 0, Qxn = bnx
n where b0 = 0 and bn = f] + , v>" for n > 0 is the solution of the 

*=i * 

difference equation: bn — 6n-i——^— = 0; n > 0. 
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Witji all above taken into account one immediately verifies that for our A and B 
g^-commuting variables already 

(3.4) {A + B)n*Y,(1) ^^ 
k>o vVv, 

unless ipn (q) = j ^ ; R (x) = ^ hence q^Q = qR,\& = fa = qqt\d = qq =• q and 
q^tQXn = qnxn i.e. unless we are back to the g-case. 

In conclusion one sees that the above identifications of polynomial sequence {pn}™ 
of g-binomial type and ShefFer g-polynomials {sn ( z ) } ^ ^ *0 D e extended to the 
more general ^-case. This means that we cannot formulate that way the ^-extended 
finite operator calculus with help of the "quantum -0-plane" (^-commuting variables 
A, B : AB - q^qBA = [A, J3]$ = 0 while considering algebra of polynomials P over 
the field F. 

Nevertheless — already the g-case is already reach enough in abundant applications 
to various "g-quantum mechanical models" — q = u = exp {-^} case included. One 
may expect the natural use of g-umbral calculus in these applications to be advan
tageous. Models using g^.Q-mutator \Q (d^) ,£gta \ I = id relations are suitable 

play-ground for -0-umbral calculus (leading perhaps to -0-lasers ? — see the g-footnote 
in [2, p. 1887]). 

For the most general cases and for further links to further readings the reader is 
referred to [27] and [28]. 

For very recent and qualitatively new applications of g-umbral and ^(<l)-calculus 
one is referred to [29], [30], [31] and [32]. There — due to the invention of a specific 
*tp product of formal series — new families of ^(g)-extensions of Poisson processes 
and g-Bernoulli-Taylor formula with the rest g-term of the Cauchy type are derived 
among others. 
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