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RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
Seгie II, Suppl. 71 (2003), pp. 163-183 

T H E GENERALIZED ^ - A L G E B R A S T R U C T U R E ON B G G 
SEQUENCES AND GENERALIZED ASSOCIATIVE OPERAD 

PETR SOMBERG 

ABSTRACT. We discuss from scratch the structure of a generalized Aoo-algebra on 
the set of pieces of Bernstein-Gelfand-Gelfand (BGG) sequences. This algebra is 
determined by a curvature endomorphism, BGG differential operators, cup product 
and higher multilinear differential operators. We compute explicit form of higher 
operations of this generalized .Aoo-algebra, e.g. the pentagon condition. 

In the second part, we show that these generalized A»-algebras are algebras over 
certain operad in the monoidal category of graded vector spaces with a distinguished, 
not necessary nilpotent, endomorphism. 

1. INTRODUCTION 

There are two main directions of interest in the study of *4oo-algebras arising in 
geometry. The first one is related to problems in the study of suitable subsequences 
(subcomplexes) of the twisted de Rham sequence (the de Rham complex) and its 
corresponding Hodge theory. The second one (in some sense related to the previous 
problem) originates in the problems of deformation theory of geometrical structures 
on manifolds, e.g. the structure of the formal moduli space of flat connections on a 
fixed vector bundle over base manifold. 

We shall focus in this article on the first problem. The discussion of the second one 
can be found in [1]. 

In the first part of this article, we shall motivate the origin of our example of gen­
eralized .Axralgebra in parabolic geometry by comparison with .Ao-algebra structure 
associated to (real, complex etc.) Hodge theory of Kahler manifolds and we shall 
indicate their similar and different features. 

In the second part we discuss in more (than in [1]) detail the origin of these gener­
alized (or sometimes called curved) .Aoo-8-lgebras. In particular they are determined 
by quadratically nilpotent codifferential on conilpotent tensor coalgebra (<8>A)C canon-
ically attached to a given type of parabolic geometry. We add moreover many explicit 
formulas, for example the (generalized) pentagon relation. 
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In the last part, based on this example of the generalized A»-algebra and standard 
constructions in the universal algebra, we give the definition of generalized associative 
operad over which the (generalized) A»-algebra lives. 

1.1. Ax-algebras and Hodge theory. In this subsection we shall first review a few 
basic facts concerning Hodge theory and related *Aoo-algebra on a compact Kahler 
manifold M and than compare it to its counterpart in parabolic geometry. As we 
shall see, the Hodge theory in parabolic geometry is accompanied by generalized Axr 
algebra. 

Let A*(M) be the algebra of real differential forms on M, A#,*(M) the algebra of 
complex differential forms with Hodge gradation (on a general manifold only the Hodge 
filtration) together with differentials of degree one: 

3 : A*'#(M) - A#+1'#(M) , 3 : A#'#(M) -> A# '#+1(M), 

d = 3 + d : A#(M) -> A#+1(M) , dc = id-id: A'(M) -> A#+1(M). 

Their conjugates (w.r. to the Kahler metric and Kahler form ft) defined by (3—, —) = 
(- , 9*—), ( 3 - , - ) = (-, 3 ), ( - A ft, —) = (- , ft*L-) are linear operators 

3* : A*'#(M) -> A - ^ A f ) , 3*: A*'#(M) -> A ^ ' - ^ M ) , 

cf = 3* + 3*: A#(M) -> A - ^ M ) , d* = z3* - z3*: A*(M) -> A - ! ( M ) . 

The Laplace operators (depending on the Kahler metric) are defined by 

Ad = 3d* + 3*9 , A^ = 33* + 3*3, 
Ad = dd* + d*d , Adc = dc<Tc + <Tcdc 

and simple algebra gives 

A a = A ^ = - A d = - A d c . 

The s/(2)-algebra of operators {dyd, ft*} G End(Am>*(M)) 

[ft*, 3] = -id", [ft*, 3] = z3*, [ft*, d] = i<Tc, 

determines the Lefschetz decomposition of A#(M). Finally, the Hodge decomposition 
implies that there is an orthogonal decomposition of u G A#,*(M) on the harmonic 
part and the images of 3,3*: 

(1) CJ = wlxer(A) © { 9 A ^ 3 » + 3 * A ; 1 3 » } 

and similarly for 3, d, dc. 
Let us recall a few standard facts concerning the origin of .Aoo-algebras in Hodge 

theory. We shall start with review of strong homotopy associative algebras for Kahler 
manifolds, see [6]. 

• The real Ao-algebra of a Kahler manifold M is based on the subcomplex of 
the de Rham complex (Z/2-graded differential algebra) 

(2) (A-(M)\KeT{dihd)c(A'(M),d) 
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with strong homotopy retract Q = dcA^Ct*. By elementary algebra 

1 - [d,Q] = 1 - [d,dcAd
ln*) = (ddc = -dcd) = 

1 + dc[d, A^fi*] = (dAd
x = Ad'd) = 1 + dcA^[d, fi*] = 

t([n*,d] = d*c) = l - dcAd
ld*c = IlKer(d.), 

where the last equality follows from Hodge theory (i.e. 1 — dcAd
ldl is the 

projector nKer(d+) ' A#(M) -> A*(M)\Ker{dt)). The space A*(M)\Ker{d%) car­
ries a structure of ^loo-algebra, such that we have /zi = d, /i2(—, —) = (1 — 
dcAj1d*)(- A —) etc. Note that the product of two d*-closed forms is again 
d*-closed form. 

• The complex .y4oo-algebra of a Kahler manifold M is based on the subcomplex 
of the Dolbeault complex (Z/2-graded differential algebra) 

(3) (A*'(M)\Kerm,d)c(A"(M),d) 

with strong homotopy retract Q = idA^Q,*. A simple algebra gives 

(4) 1 - [d, Q] = 1 - dA~d
ld* = UKer{d.), 

which is again by Hodge theory the projector 

I W > ) : A^(Af) - A-'-(M)|Ker(0*). 

The space A9'9(M)\Ker(e+) has canonical structure of ^-loo-algebra, such that 
fix = 9, /i2(—, —) = (1 - 9A^19*)(— A —) etc. In particular the product of two 
9*-closed forms is again 9*-closed. 

• (,Aoo-a.lgebra of Calabi-Yau manifolds) 
In the case the base manifold M is a Calabi-Yau manifold there is, for a suitable 
Q, d, an .Aoo-algebra structure on the graded algebra A*(TM) ® A*(T M) with 
multiplication given by the wedge product. Its full definition together with 
applications in the context of Mirror symmetry can be found in [3]. 

We would like to emphasize that Hodge theory just reviewed is based on two differ­
ential operators, e.g. 9, d*. This will not be the case in our example called parabolic 
geometries, which will occupy almost the rest of this article. 

• Let (G,Q,PyM,u>) be a parabolic geometry on M given by a principal fiber 
bundle G —• M with typical fiber P and a Cartan connection a;, u : TUG —* 
g (Vu € G). For every finite dimensional irreducible g-module W, the twisted 
exterior differential operator dfl is a linear map (acting on smooth sections) 

(5) dfl : T(M, A'm* ® W) —• T(M, Ai+1m* ® W), 

where m := g/p (resp. (g/p)* -̂  m* via Killing-Cartan form) is isomorphic to a 
typical copy of the tangent (resp. cotangent) space in a given point of M (the 
isomorphism comes from the Cartan connection u). The Eilenberg-Chevalley 
algebra codifferential 5m* acts on the chain complex 

(6) ^ : C . ( m * , W ) - * C i . i ( m * , W ) 

and it is P-equivariant. It follows that 5m* descends to an algebraic operator 
5T*M on M. Harmonic theory for the couple (dfl, 5T*M). given by the differential 
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operator of first order and the algebraic operator is based on the differential 
operator of first order O9 = d0oY*M + &T*Md9, such that its inverse 09~l is 
differential operator of finite order. 

The subsequence of twisted de Rham sequence (Z/2-graded differential al­
gebra) 

(7) (A'(M) ® iyk ( m . , W ) , V) C (A*(M) ® W, d»), 

where W is the bundle on M induced from a finite dimensional g-mod W, is 
called BGG sequence. The role of a retraction homotopy from the twisted de 
Rham complex to BGG sequence is played by Q = 09~X5T*M. such that the 
BGG sequence is in the image of IF = 1 - [dfl,Q]. Note that IIfl is not in 
general a projector, but rather fulfills II02 = II0 H- QR9Q for the curvature R9 

(see the next section for more properties of these operators). 

2 . AxrALGEBRA STRUCTURE ON PLACES OF B G G SEQUENCES 

2.L Summary of basic operations and their properties. In this article, we shall 
restrict ourselves to the case of the regular normal parabolic geometry (see the next 
notation for the explanation of adjectives regular and normal). 

Notation 2.1. We shall first recall the set of operators entering the definition of 
regular normal parabolic geometry (see for example, [I]): 

• d9 : J2(Afc(T*M) ® W) -* Afc+1(T*M) ® W is the twisted exterior covariant 
derivative (twisted de Rham differential) associated to a g-module W and acting 
on the first jet bundle of the tensor product bundle. 

• proj o — denotes the composition with the projection from Ker(5) to the Lie 
algebra homology Ker(5)/Im(5), and —o repr denotes the choice of a represen­
tative from the quotient space Ker(5)/Im(5) in Ker(5). Except a few cases, we 
shall suppress explicit notation of these two operations. The set of differential 
operators 

(8) Uk : T(AfcT*M ® W) -+ T(AfcT*M ® W), k G N 

then have their images in Ker(5), vanish on Im(5) and induce identity map 
on the Eilenberg-Chevalley homology of 5. 

• R9 is the curvature of d9, i.e. (d9)2 = R9. For the regular parabolic geometry 
it is the zero-order differential operator (i.e. it is an algebraic operator). The 
action of R9 on s G T(AfcT*M ® W) is given by wedge product with 2-form 
part of KM £ T(M, A 2 T * M ® ^ M ) followed by the action ofgM part of KM on 
W-values of the section s, i.e. 

(9) R9 : s G T(AfcT*M ® W) -+ Tr(X -> KM A X • s) G T(Afc+2T*M ® W), 

where X G gM and gM is the vector bundle on M induced from the p -module g. 
• The KostanVs quabla differential operator O9 and the chain homotopy defor­

mation retract (differential) operator Q9. Their explicit form will be discussed 
in the next paragraph. 

Let us briefly summarize a few basic facts necessary for the construction of a gen­
eralized .Axralgebra structure on the set of pieces of BGG resolutions. The source for 
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all these results (although without much details) is [1]. Note that in many formulas 
we suppress the superscript g, i.e. we shall write Q instead of Qfl, • instead of Dfl etc. 

• The homomorphism dll is a map dl l : KerS —» KerS: 

Sdu = (• - ds)u = (<sn = o) = nn = (nn = SRQ = SRD^S) = SROTXS , 

and so instead of BGG operator V := Ildll one can use the shorthand notation 
V = dll. We shall often add a subscript to D, which simply means that we 
restrict V to a particular graded component. 

• (Leibniz rule). Let us use a shorthand notation for the sheaves of sections, i.e. 
0(Hk(W)) instead of T(M,V(Hk(W))) (which means the space of sections of 
the vector bundle V(Hk(W)) induced from the p-module Hk(W)). 

For 5 l E 0(Hk(Wl))1s2 e 0(Ht(W2)) 

£W.(siUs2) = 

(Vksx U s2) + (-)fc(si U Vts2) + [nfc+,+1((QflIIfcSi A Uts2)+ 

(-)kUkSl A Q.RIijs2 - RQ(UkSl A n / 5 2))] , 

because 
dn2(nSl A ns2) = 

(n2 = n + QRQ) = dU(uSl A ns2) + dQRQ(uSi A ns2) = 

{dll = Ud + QR- RQ) = Ud(USl A ns2) + QR(USl A ns2) 

- RQ(USi A IIs2) + dQflQ(nsi A IIs2) = (Id = n + dQ + Qd) 

= nd(IIsi A ns2) - URQ(USl A IIs2) + Im(5) = (d(IIsi A ns2) 

= (duSl A ns2) + (-)fc(ns! A dns2)) = n(dnsi A ns2)+ 

(-)fcn(IIsi A dns2) - URQ(Usx A IIs2) = {Id = II + dQ + Qd) 

= {u(UduSl A ns2) + n(dQdnsi A ns2) + n(Qd2nsi A ns2)}+ 

(-)k{l <->2}- ni?Q(ns! A ns2) = (dU : KerS -* KerS, 

Q(KerS) = 0) 

= (Vksx U s2) + (-)k(sx U Vts2) + [Uk+M((QRUkSl A nzs2) 

+ (-)fcIIfcSi A QRUts2 - RQ(UkSl A I ! ^ ) ) ] . 

2.2. First four structure operations of the generalized .Aoo-algebra struc­
ture on BGG sequence. The purpose of this section is to explain the origin of the 
structure operations of the generalized A»-algebra on the BGG sequence. 

Let us recall that we shall consider regular (i.e. the geometric weights of the curva­
ture are negative) parabolic geometry with exterior covariant derivative dfl. This means 
that d°KM = 0 (differential Bianchi identity) and 5T*MKM = 0, i.e. KM is uniquely 
determined by its (<Jr*Af-homology) class K := [KM]<$r*M- Because KM = n2/C, we 
have V2K = 0 for V2 (invariant differential operator) on BGG torsion-free sequence 
of the g-module g. Moreover, for s G G(Hk(W))y we get 

£>fc+i£>fcs = K u s = nfc+2(n2/c A iifcs) = IW.KM A Hfcs) = nfc+2it*iifcs, 
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where we used homomorphism (given by the g-action on W) g <8> W —> W and we 
again suppressed the symbol "proj o" for the projection on _»j*A_--homology. 

Definition 2.2. Suppose R C IZ[g] is a subring of the ring of finite dimensional 
representations of a semisimple Lie algebra g. freely generated by the set of irreducible 
representations W\,..., Wn. For example, one can take R -__. C[VVi,..., VVranfc(fl)] with 
W\,..., JVranfc(B) the set of fundamental representations o/g. Using the notation W := 
W\ © . . . Wn, we define the structure of Lie algebra on the vector space given by the 
semi-direct product g tx W: 

(oi,wi) o (a2,w2) = ([ai,a2],0) , aua2 e g, wuw2 eW 

(with the commutative ring structure on W). The universal enveloping algebra U(Q K 
W) is g-module via 

(Q^U(Q))->End(U(g*W)). 

An equivalent definition relies on the notion of the semiholonomic enveloping algebra. 
It is defined by 

(9) Tc(g © W)/{I = a ® ^ - ^ a - a ^ } = 

= {C©C ® (g© W) ©C® 2 (g © W) © . . . }/I, </> G Tc(g ®W),aeg, 

such that the action of $ is diagonal on g © VV (i.e. ada <8) Id + Id® a) and extended 
diagonally to the whole tensor algebra. 

For any differential form s with values in the associated vector bundle of this Lie 
algebra, we have 

(10) Vk+xVks = / C U s - s U / C , V2K = 0 

and for si G 0(Hk(Wx)), s2 G 0(Ht(W2)), equation (10) reads as 

-Pfc+ifai U s2) = (l̂ fcSi U s2) + (-) f c(si U V{82) 

- (AC,su s2) + (si, /C, s2) - (si, s2, AC) 

with 

(/c,si,s2) = nfc+f+i^rCAQ^fcSiAn^-nfc+i+^Q^/CAnfcsOAn/s,), 

(si, /c, s2) = (-)fcnfc+/+i(nfcSi A Q(n2/c A n ^ ) ) - ^+^+1(0(^51 A n2AC) A n,s2), 

(51, s2, AC) = (-)fcnfc+/+i(nfcSi A Qtn/s, A n2/c)) - nfc+,+i(Q(iifcSi A n,s2) A n2/c). 

More generally, for sx G 0(Hk(Wi))y s2 G 0(Ht(W2)), s3 G 0(Hm(W3)) one can define 
a trilinear differential pairing 

(-, - , - ) : 0{Hk{W,)) ® 0(ffi(W2)) ® 0(ffm(w3)) - o(fffc+i+m_i(vy4)) 

by 

. . (si, s2, s3) =(-)fcnfc+.+m_i(nfcsi A Q(n,s2 A nms3)) 
j -nfc+(+m_1(Q(nfcs1An.s2)Anms3) 

using for all terms a fixed homomorphism W\ ® Wi ® W3® —• W4 of g-modules. 
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The deviation from non-associativity of the cup product U together with (in the 
non-flat case appearing) quartylinear products of the form (/C, 5i,52, S3) is measured 
by 

£>/fc+.+ro-l(Sl, s2, S3) = (Si U S2) U S3 - Si U (s2 U S3) - (VkSU S2, S3) 

( 1 2 ) - R f c ( s i , V,s2, s3) - (-)*+'(Si, s2, Vms3) 

+ (K, si, s2, s3) - (si, K, s2, s3) 

+ (si, s2, K, s3) - (si, s2, s3, £ ) 

for si € 0(Hk(Wi)),s2 G o(ff,(W2)),s3 € o(tfm(W2)). Let us verify equation (12). 
It follows from the definition that 

(si u s2) u s3 = nfc+,+m(nfc+,(iL.si A n,s2) A nms3) 
+ Uk+t+m(Q(U2K A Q(nfcsi A n,s2)) A nros3) 
- nfc+,+m(Q(Q(nfcs1 A n,s2) A U2K) A nms3), 

sj u (s2 u s3) = nk+,+m(nfcsi A n,+m(n,s2 A nms3)) 
+ IL.+,+m(IIfcsi A Q(U2K A Q(n,s2 A nms3))) 

- nfc+,+m(nfcsi A Q(Q(n,s2 A nms3) A U2K)) 

and 

(PfcSi,S2,S3) = 

nfc+,+m((-)fc+1nfc+idnfcsi A Q(n,s2 A nms3))-
nfc+,+ro(Q(nfc+idiifcsi A n,s2) A nms3), 

(Si,P,S2,S3) = 

nk+l+m((-)knkSl A Q(n,+idn,s2 A nms3))-
nfc+,+ro(Q(nfcsi A n,+idn,s2) A nms3), 

(si,s2,.9ms3) = 

uk+i+m((-)kuksi A Q(n,s2 A nm+idnms3))-

Uk+i+m(Q(Uksi A II,s2) A nm+idllms3). 

Moreover, the identity II = Id — dQ — Qd gives 

dQtHtSi A II,s2) = (IlfcSi A n,s2) - Uk+i(UkSi A n,s2) 

- Q(dIIfcsi A n,s2) - (-)!Q(nksi A dn,s2). 

Because UdU = dll on Ker(5), we have 

dllll = (dU = Ud + QR- RQ) = UdU + QRU = (QRU C Im(5)) = 
= UdU = U2d + UQR- URQ = Ud + QRQd-URQ = Ud-URQ. 
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Both latter displays enter the computation of LHS of equation (12): 

^ + I + m - l ^ S b S г . S э ) = 

Пfc+,+md((-)fcПfcS1 Л Q(П,s2 Л П m s 3 ) ) 

- Uk+l+md(Q(UkSl Л П,s2) Л П m s 3 ) -

- Uk+l+mRQ((-)kUkSl Л Q(П,s2 Л П m s 3 ) ) + 

Uk+l+mRQ(Q(UkSl Л П,s2) Л П m S з ) 

= (-)fcПfc+,+m(Пfc+1dПfcSl Л Q(П,S 2 Л П m s 3 ) ) + 

(- ) f c Щ + , + m (Q(П 2 X: Л ЩsO Л Q(П,s2 Л П m s 3 ) ) -

- ( - ) f c Щ + , + m ( Q ( Щ S l Л U2K) Л Q(П,s2 Л П m s 3 ) ) 

- Uk+i+m(UkSl Л П / + m (П,s 2 Л П m s 3 ) ) -

- Щ + , + m (Щsi. Л Q(П,+1<Ш,s2 Л П m s 3 ) ) 

- Пt+,+m(ПfcSl Л Q(Q(U2K Л П,S 2) Л П m s 3 ) ) + 

+ Пfc+,+m(ПfcSl л Q(Q(п, S 2 л u2к) Л П m s 3 ) ) -

( - ) ' Щ + , + m ( Щ s 1 Л Q(П,s2 Л П m + 1 <ff l m s 3 ) ) -

- ( - ) ' Щ + / + m ( Щ s 1 Л Q(П,s2 Л Q(U2K Л П m s 3 ) ) ) + 

(-УПfc+í+^ПfcS! Л Q(П,s2 Л Q ( П m s 3 Л П 2 £ ) ) ) + 

+ Пfc+,+m(Пfc+,(ПfcSl Л П,S2) Л П m s 3 ) + 

Пfc+,+m(Q(Пfc+idПfcSl Л П,S2) Л П m s 3 ) + 

+ Щ+,+ m (Q(Q(П 2 £ Л ПfcSl) Л П,S2) Л П m s 3 ) -

Uk+l+m(Q(Q(UkSl Л U2K) Л П,s2) Л П r o S з ) + 

+ (-) f cПfc+,+m(Q(ЩS l Л П, + 1 GШ,S 2 ) Л П m s 3 ) 

+ (-)fcПfc+/+m(Q(ПfcS1 Л Q(U2K Л UlS2)) Л П m s 3 ) -

- (- ) f c Щ + / + m (Q(Пfc S l Л Q(П,S 2 Л U2K)) Л П m s 3 ) + 

(-) fc+'Пfc+,+m(Q(ПfcSl Л П,S2) Л П m + 1 c ? П m S з ) + 

+ (- ) f c + 'Пfc + , + m (Q(Щ S l Л П,S2) Л Q(U2K Л П m S з ) ) -

( - ) f c + ' Щ + l + m ( Q ( Щ s 1 Л П,s2) Л Q ( П m s 3 Л U2K))-

- (- ) f c Щ + / + m (П 2 /C Л Q ( Щ S l Л Q(П / S 2 Л П m s 3 ) ) ) + 

Uk+[+m(U2K Л Q ( Q ( Щ S l Л П,s2) Л П m s 3 ) ) . 



THE GENERALIZED ^..-ALGEBRA STRUCTURE ON BGG SEQUENCES,... 171 

After the identification of quarty-linear terms 

(/C,si,s2,s3) = 

- (-)kuk+l+m(u2K A Q(nfcsi A Q(n.s2 A nms3)))+ 

+ (-)fcnfc+1+ro(Q(n2K A ukSl) A Q(n.s2 A nros3))+ 

Uk+l+m(Q(Q(U2K A IUsi) A n,s2) A nms3)+ 

+ uk+l+m(u2K A Q(Q(ntsi A n.s2) A nros3)) 

- uk+l+m(Q(u2K A Q(ntsi A n.s2)) A n ros3), 

(si,£,s2,s3) = 

nfc+i+m(nfcsi A Q(Q(n2£ A niS2) A nms3))+ 

+ (-)fcnfc+i+ro(Q(nfcsi A u2K) A Q(n,s2 A n ros3))-

(-)fcnfc+i+ro(Q(nfcs1 A Q(U2K A niS2) A nros3))+ 

- nfc+i+ro(nks! A Q(U2K A Q(n.s2 A nros3))) 

+ nfc+i+ro(Q(Q(n*si A u2K) A n.s2) A nms3), 

(si,S2,K,s3) = 

nfc+i+m(nfcsi A Q(Q(n,s2 A U2K) A n ros3))-

- (-)lUk+l+m(UkSl A Q(niS2 A Q(U2K A nros3)))-

(-)fcnt+i+ro(Q(ntsi A Q(n,s2 A n2^)) A nros3)+ 

+ (-)fc+'nfc+i+ro(Q(nfcs1 A n,s2) A Q(U2K A nros3)) 

+ nfc+i+ro(Q(Q(nfcsi A n,s2) A U2K) A nros3), 

(si, s2, S3, K) = 

Uk+l+m(UkSl A Q(Q(UlS2 A nros3) A U2K))~ 

- (-)'n*+i+ro(ntsi A Q(niS2 A Q(nros3 A U2K)))-

(-)kUk+l+m(Q(UkSl A Q(n,s2 A nms3)) A n2£)+ 

+ (-)fc+'nfc+i+m(Q(nfcs1 A n,s2) A Q(nros3 A n2x:)) 

+ nfc+i+ro(Q(Q(njtsi A n(s2) A nms3) A U2K) , 

we directly recognize all terms of the non-flat homotopy associativity equation (12). 

• 
Equation 12 can be conveniently represented by the same picture as in the standard 

case (i.e. with trivial curvature endomorphism): 
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2.3. The structure of codifferential on generalized ^-loo-algebra. Equations 
(10), (11) and (12) are the first four defining operations of generalized Aso-algebra. In 
this subsection we shall describe in detail the whole generalized w4oo-algebra. Let us 
first recall its axioms, [4]. 

Definition 2.3. A generalized AOQ-algebra is a Z-graded vector space A (over the 
field C) together with a collection of multilinear maps 

(14) /ifc : ®kA-+A,k6N0 

of degree deg(fik) = 2 — fc, satisfying the compatibility condition 

j-i 

( 1 5 E ]TR*+/+* /+*E!=1 WA*(*I, .•••*!, W-(*i+i, • • • > **+/)> **+.+!, • • •, sm) = 0 
j+fc=m+l / = 0 
j>l,fc>0 

for all Si G A of degree \si\. 
Note that in the previous subsection we used the notation (—,—,...,—) for multi­

linear map fi. 

In particular the Z-grading on A, A c* {©jfc*4fc}*€Z> is compatible with multilinear 
operations Hk in such a way that 

Hk : -4(ti-i)+i ® -4(,-2-i)+i • • • ® .4(ifc-i)+i —• >4((f-1_i)+...+(<fc_i)+i)+i. 

Let us consider the tensor algebra ®A of A and the corresponding projections pk : 
®A —• ®Ak (k e N0), such that \ik : ®A —• A factors through p^ Let us extend 

(16) (fi:= ^Vk): ®A-+A 
JfceNo 

to a coderivation /ic of the tensor coalgebra of A 

(17) pf : (®A)C -» (®A)C 

inductively by 

• Po»c = 0 (p0fM
c : ®A -+ C); 

• px[ic = // (pxtf : ®.4 -> A); 
• A/xc= (l<8)//c-j-/ic<8)l)A, 
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where A : A —• A ® A is the conilpotent coproduct on ®*4, defined by 

k 

(18) A(ai ® ai ® • • • ® ak) = ^ ( a i ® • • • 0 a*) ® (a^+i ® • • • ® a*) 
i = i 

for ax ® ax ® • • • ® a*. E ®* A 

Lemma 2.4. VVe Aave the equality (fic)2 = /ic/xc = (/i/ic)c, i.e. (/xc)2 = 0 iff \i[ic = 0. 

Proof. The proof follows from the definition of the coproduct. In particular, 

• Po(wc)c = Po(wc) = (Po^)/ic = 0 = (potitf = M V , 
• p\(wc)c = /x/xc = (pi/xc)/xc = Pi(/ic/xc) = Pi(/xc)2; 
• by definition, ///xc is extended to the coalgebra <%>A by 

(19) A(/i/xc)c = (fic ® 1 + 1 ® /xc) A/ic, 

which is in correspondence with A/xc/zc = (/xc ® 1 -f 1 ® fic) A/xc. 

Combining all three observations together yields the desired equality • 

It is well known that the existence of .Axrstructure on the vector space A is equiv­
alent to the existence of conilpotent coderivation /ic on the tensor coalgebra (®-4)c, 

[4]-
Our aim in the remaining part of this section is the construction of this codifferential 

in the case of parabolic geometry In this case the A^-algebra A has the following 
structure. Let U C M be an open set on the manifold M with parabolic structure. 
Then A is the sheaf of (smooth) sections associated to the presheaf 

(20) A\u = T(U,®kHk(U(BKW))), 

and the first four multilinear maps are 

(21) џo : 1 —• A , , łio(l) = / C є O ( Я 2 

џ\ : Л —> A , , M = P> 
Џ2 : A ® A —• A , i Џ2 = Ц , 

џз : Л ® Л ® Л —• Д j » Mз = (->->)ø-

Each of the members in the collection of maps {/XiJfceN acts> ^ definition of A, on 
the sections of vector bundles induced from Lie algebra homology modules. Let us 
now define inductively the collection of multilinear maps {A*}^,, acting on sections 
of vector bundles induced from Lie algebra chain bundles: 

(22) Afc(ai,...,afc) = 

= J2 (-)°'-1 ) ( i + | a i l +-^^ 
i+j=k 

*>-.J>-

where we define Q\\ := -px. The relation between {fik}ken0
 a n d {A*}fceN0 is (for 

k>2) 

(23) fik(su...,sk) = UXk(Usu...1Usk) , * € 4 V t - = l . - - - . f c 

and explicitly fio = /C, {J,\(s\) = Vs\. 
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Lemma 2.5. The curvature R9 acts on A via 

(24) R* = -A2(KM ® 1 + 1 ® KM), 

Proof. First of all note that the wedge operator A (applied on two elements of A 
means to lift them by II to chain complex, then to use the wedge on forms followed 
by representation projection on irreducible g-module and finally apply n once again) 
has degree one, because it maps 

(25) A : A®A->A 

| A | : |ai| + | a 2 | - > M + M + l 

(or, in degrees shifted by one, {|ai| + 1} + {|a2| + 1} -> {(|oi| + |a2| + 1) + 1}). The 
rest follows from the fact, that as an element of KM € A has shifted degree 1. D 

Lemma 2.6. The recursive definition of \, 

j+fc=mj>l,*>l 

is equivalent to 

(26) A = A2((QA + QAi) 0 (QX + QAX)) A . 

Proof. The (recursive) definition follows from the associativity of A2 (A2 is just the 
associative wedge product). The composition of (reduced) coproduct with (QX + 
QAi) 0 (QX + QAi) reproduces Z)j+fc-=mj>i,Jk>i Qxj ® Qxk in the recursive definition, 
and then the application of A2 gives the result. D 

Lemma 2.7. The following (recursion) relations are satisfied: 

(27) AAC = \2((QA - J*) ® QAAC + QAAC ® (Q\ - Pl))A 

d»A + A(ď>)c - A([d9, Q]A)C = A2((oA - Pl) ® Q(d3\ + \(da)c-

(28) H[d*, Q]\)c) + Q(d"A + A(d f l)c-
\([ds,Q]\)c)®(Q\-Pl))A 
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A2((QA-Pl)®QAAT^+ 

Q A A ^ ® ( Q A - P l ) ) A -

-A(QA2((QA-Pi)®/i-M+ 

KM ® (oA - P l))) c = A2(QA2((QA - P l ) ® Q\KC
M+ 

Q\KC
M ® (QA - P l ) )A ® (QA - P l ) + 

(QA - P l ) ® QA2((QA - P l ) ® Q\KC
M+ 

Q\Kc
M®(Q\-pi))A)A-

\2(Q\(Q\2((Q\-Pi)®KM+ 
KM®(Q\-pi)))c®(Q\-pi)+ 
(QA - P l ) ® Q\(Q\2((Q\ - P i ) ® KM+ 

KM®(Q\-PI)))C)A. 

Proof. Using Lemma 2.6 with QAi = - P i , we get 

AAC = 

A 2 ( (QA- P l )®(QA- P l ) )AA c = 

A2((QA - P l ) ® (QA - P l ) ) ( l ® Ac + Ac ® 1) A = 

(p,Ac = A) = A2((QA - P l ) ® QAAC+ 

QAAC ® (QA - P l ) )A - A2((QA - P l ) ® A+ 

A ® (QA - P l)) A = A2((QA - P l ) ® QAAC+ 

QAA c®(QA-P l ) )A, 

because the second term 

A2((QA - P l ) ® A + A ® (QA - P l ) )A = 

A2((QA - P l ) ® A2((QA - P l ) ® (QA - P l ) )A+ 

A2((QA - P l ) ® (QA - P l ) )A ® (QA - P l ) )A 

cancels out due to the associativity of A2, i.e. 

A2(- ® A2(- ® - ) ) = -A2(A2(- ® - ) ® - ) 

or (— A (— A —)) = ((— A —) A —). In the last equality with the wedge product 
the minus sign on the right hand side disappeared in comparison with the last 
but one equation containing A2 due to passing the first A2 through the second 
A2 (in the shifted (suspended) degrees has A2 degree one). 

• The Leibniz rule yields d8A2(- ® - ) = -A2(d» - ®-) - A2(- ® d*-) (da, 
\dB\ = 1, passes through elements with suspended grading by one, i.e. A2 has 
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suspended degree 1). 

d"A + A(d9)c-A([d9,Q]A)c = 

d9A2((QA - P l) ® (QA - P l)) A+ 

A 2 ( (QA -P l )®(QA-P l ) )A(d") c -

A2((QA - P l ) ® (QA - P l)) A([dfl, Q]A)C = 

A2(-d
9(QA - P l ) ® (QA - P i )+ 

(QA - P l ) ® -d9(QA - P l ) )A+ 

A 2((QA-P l)(d 9) c®(QA-P l)+ 

(QA - P l )®(QA - P l ) (d 9 ) c )A -

- A2((QA - P l ) ® (QA - Pl)([d9, Q]A)C+ 

(QA-P l)([d9 ,Q]A)c®(QA-P l)) = 

A2((QA - P l ) ® {-d9(QA - P l ) + (QA - P l ) ( d 9 ) c -

(QA-Pl)([d9,Q]A)c}+ 

{-d"(QA-P l) + (QA - P l ) (d 9 ) c -

(QA - Pl)([d
9, Q]A)C} ® (QA - P l ) )A . 

The term in any of the last two curly bracket can be reorganized as 

- d9(QA - P l ) + (QA - Pl)(d9)c - (QA - Pl)([d
B, Q]\)c = (dBQ + QdB = [dB, Q}) = 

- [d9, Q]A + Qd9A + dfl + QA(d9)c - d9 - QA([dfl, Q]A)C + [dB, Q}\ 

= Q(dB\ + \(dB)c - \([dB,Q}\)c) 

which is the formula (27). 
• Let us treat both terms of the LHS (28) separately. Using recursive definition 

of A, we get 

A2((QA-Pl)®QAi^+ 

QA^®(QA - P l ) )A = 

A2(QA2((QA - Pl)K
c
M ® (QA - P l)+ 

(QA - Pl) ® (QA - Pl)K
c
M) A ® (QA - P l)+ 

+ (QA - P l) ® QA2((QA - Pl)K
c
M ® (QA - P l)+ 

(QA-P l)®(QA-P l) /^)A)A 

= A2(QA2(QAK^ ® (QA - P l)+ 
( ' (QA - P l) ® Q\KC

M)A ® (QA - P l)+ 

+ (QA - Pl) ® Q\2(Q\KC
M ® (QA - P l)+ 

(QA-P l)®QA^)A)A+ 

A2(QA2(-/^®(QA-Pl)+ 

(QA - Pl) ® -KC
M) A ® (QA - P l)+ 

+ (QA - Pl) ® Q\2(-K
C

M ® (QA - P l)+ 

(QA- P l )®- i^)A)A 
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\(Q\2((Q\-Pi)®KM+ 
KM®(Q\-pi)))c = 

\2((Q\ - PI) ® (Q\ - PI))MQ\2((Q\ - PI) ® KM+ 
KM®(Q\-PIW 
= \2((Q\ - Pi)(Qh((Q\ - Pi) ® KM+ 

KM ® (Q\ - PiW ® (QA - pi)+ 
(Q\ - PI) ® (Q\ - Pi)(Q\2((Q\ - Pi) ® KM+ 
KM®(Q\-PIW)& 

[ } = \2(Q\(Q\2((Q\ - Pi) ® KM+ 
KM ® (Q\ - Pi))f ® (Q\ - Pi)+ 
(Q\ - Pi) ® Q\(Q\2((Q\ - Pi) ® KM+ 
KM®(Q\-Pi)))c)A+ 
\2(-Q\2((Q\-PI)®KM+ 
KM®(Q\-PI))®(Q\-PI)+ 
(Q\ - Pi) ® -Q\2((Q\ - Pi) ® KM+ 
KM®(Q\-PI)))&. 

In the difference of LHS of the last two equations exactly the second terms of RHS 
cancel out, i.e. 

(29)-(30) = 
\2(Q\2(Q\KC

M ® (Q\ - Pi) + (Q\-Pi) ® Q\KC
M)A ® (Q\ - pi)+ 

(Q\ - pi) ® Q\2(Q\KC
M ® (Q\ - pi) + (Q\ - pi) ® Q\KC

M)A)A-
\2(Q\(Q\2((Q\ - Pi) ®KM + KM® (Q\ - Pi)))c ® (Q\ - Pi)+ 
(Q\ - pi) ® Q\(Q\2((Q\ - pi) ®KM + KM® (Q\ - PiW)A 

which proves the third equation. D 

The following Theorem lies in the heart of this article. 

Theorem 2.8. The linear map \f is quadratically nilpotent coderivation 
(i.e. (co)differential) on tensor conilpotent coalgebra ®A, i.e. 

(31) McMc = 0. 

Proof. As follows from Lemma2.4, it is sufficient to prove /t/zc = 0. 

n(KM + d° + \)n[n(KM+d* + \)n]c = (po[n(KM + #> + \)n\c = o, 
) PlM-= = n) = ndm[n(KM + d* + A)n] + Ti\[n2(KM + ď + \)n]c = 

ndm2KMn + nd9n2d8n + nďn2An + n\[n2(KM + ď + \)n]c. 
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Because 

pro;'nd8n2 = 

(33) (projUdm = projn(de - R"Q)) = projn(de - ReQ)U = 

(ffll = 0) = projUdm = projn(de - ReQ), 

the first term of (32) is trivial: 
ndeU2KMn = n(de - ReQ)KMn = (SKM = 0=> KMU e KerS) = 

= ndenKMn = ndeKMn = udeKMn = (deKM =- o) = o. 

The second term of (32) reduces to 

n(de - i?BQ)dBn = ((Mi G KerS) = n(de)2n = nRe
Pln, 

the third term of (32) gives ndBn2An = II(c.8 - ReQ)\n , the fourth term of (32) can 
be reduced using 

. [n2ATM]cn = Kc
Mn, 

• [n2d°]cn = (ndmrepr = (de-QRe)nrepr) = [II(d» - QRe)Yn = (UQ = 0) = 
[(de-QRe)Yn, 

• [n2A]cn = (n2 = n + QReQ) = [IIA + QReQ\Yn 
and so we acquire 

(34) (32) = n f l^n+n(d e - ReQ)\n 

+ U\[KM + de- QRepi. + n\ + QReQX\cn. 

The previous terms can be collected and further simplified in the following way: 

nde\n + nA(dB)cn+nA(nA)cn = n(dBA + \(de)c+A(nA)c)n, 

-nA(Qi?Bpi)cn + U\(QReQ\)cn = -U\(QRe(pi - Q\))cn = (Lemma(2.5)) = 
n\(Q\2(KM ® (pi - QA) + (Pl - Q\) ® KM)c)n, 

n A ^ n = nA2((QA -pi ) ® (Q\-PI)) • &Kc
Mn = 

n\2((Q\ - pi) ® (QA - Pi))(Kc
M ® 1 +1 ® KC

M) • An, 

nRe
Pln - UReQ\n = 

nflB(pi - QA)n = nM(KM ®\ + \®KM)(Q\- px)n = 

(Lemma(2.5)) = n\2(KM ® (QA - px) + (QA - px) ® KM)U, 

and so we get 

(34) = n(dBA + A(dB)c + A(nA)c)n + U\(Q\2(KM ® (pi - QA) 
+ (pi-Q\)®KM)c)n 

(6 ' + n\2((Q\ - pi) ® (QA - Pi))(Kc
M ® 1 + 1 ® KC

M)AU 
+ U\2(KM ® (QA - pi) + (QA - pi) ® KM)n. 
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Concerning the first term of (35), we use 

(IIA)C = {(Id - dBQ - QdB)\)c = \ c - ([dB, Q]\)c 

(note the appearance of the Z^-graded commutator and \Q\ = 1 = |<iB|). The third 
and the fourth terms of (35) can be combined, 

nA2((QA - in) ® (QA - Pl))(K
c
M 0 1 + 1® KC

M) A n + 

U\2(KM ® (QA - p.) + (QA - pi) ® KM)U = 

E\2(Q\KC
M®(Q\-Pl)+ 

(Q\-pi)®Q\Kc
M)AU 

and so finally 

(35) = 

U(d9\ + \(d*)c - ([d», Q]\)C)U + n(AAc)n + U\2(Q\KC
M ® (QA - pi)+ 

(QA - pi) ® Q\KC
M) A n + U\(Q\2(KM ® (px - QA) + (px - QA) ® KM)C)E. 

Now the application of recursion relation in the Lemma 2.7 to all terms (36) makes 
them trivial due to the associativity of A2. This completes the proof. • 

2.4. Generalized pentagon (associahedron) condition. In the previous discus­
sion we have explored the generalized associator on the set of pieces of BGG sequences, 
i.e. the expression (si U s2) U s3 — sx U (s2 U s3), in the framework of generalized Aoo-
algebra. 

In this subsection, we shall write down explicit formulas for the generalized associ­
ahedron as the next multilinear operation of .Aoo-algebra. Equation (15) implies, for 
m = 4 and si G G(Hk(Wl)),s2 G 0(«(W 2 ) ) ,5 3 € 0(Hm(VV3)),s3 G 0(Hn(W4)), the 
following coherence condition: 

0 = 

//i(/z4(si, s2, s3, s4)) - /x2(/x3(si, s2, s3), s4) 

- ( - ) V2(«l, A*3(S2, «3, S4)) + ,U3(/X2(Si, S2), S3, S4) - /X3(Si, fl2(s2l S3), S4) 

(36) + /i3(si, s2, /x2(s3, s4)) - {/i4(/xi(si), s2, s3, s4) + (-)kfi4(su /ii(s2), s3, s4) 

+ R* + Wsi,S 2 , / i l ( s 3 ) ,S 4 ) + (-)fc+/+m^4(5l,S2,S3,/ii(s4))} 

+ /15(A*O(1), Si, S2, 53, 54) - fl5(sU /X0(l), 52, *3, S4) + /X5(Si, S2, /Z0(l), 53, 54) 

- M5(Sl, S2, S3, / i0( l ) , S4) + ^5(Sl, S2, S3, 54, M 1 ) ) , 

and (or) in terms of invariant differential BGG operators, (36) amounts to 

D*+/+m+n_i(si, 52, s3, s4) = (si, s2, s3) U s4 + (-)*si U (s2, s3, s 4 ) -

(si U s2, s3, s4) + (si, s2 U s3, s4) - (si, s2, s3 U s4)+ 

, . ( îfeSl, 52, 53, S4) + (-)&(si , £>/S2, S3, S4) + 

(-) f c+Z(Sl,S2 ,PmS3 ,54) + ( - ) f c + Z + m (S i ,S 2 ,5 3 ,P n S 4 ) -

(/C, Si, s2, s3, s4) + (si, /C, s2, s3, s4) - (si, s2, /C, s3, s4) 

+ (si, s2, s3, /C, s4) - (si, s2, s3, s4, /C). 
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In the conventional graphical form are equations (36), (37) represented by picture 
(where we use parenthesis instead of trees): 

((••)(••)) 

((••) • •) (• • (••)) 

(((••)•)•) 

((•••)•) 

(•(•(••))) 

(•(• • •)) 

((•(••))•) (•(••)•) (•((••)•)) 

3. GENERALIZED GRADED ^-IOO-OPERAD 

The structure of the .Ax-algebra on the set of pieces of BGG sequences, studied in 
the previous sections, is an example of generalized strongly homotopy algebra, i.e. a 
standard .Aoo-algebra equipped with a strong unit /zo : 1 —* A. In this section we are 
going to define the operad over which this algebra lives. 

In the standard situation, [4], the differential graded operad Aoo for strongly homo­
topy Ao-algebras is the free operad living in the category of differential graded vector 
spaces: 

where the first term represents \ii, the second /X3 etc., the grading of n-ary operation 
is deg{fin) = |/xn| = 2 - n, with the differential given on generators by 

f + 1 ... i + l 

1 2 . . . n 
fc—1 

= E E (-i)wl)N 

/ 2=0 

1..Л І + l + l.П 



THE GENERALIZED A»-ALGEBRA STRUCTURE ON BGG SEQUENCES,... 181 

and extended by derivation property. In the previous summation, we have used the 
notation I := {k +1 = n +11 k = 2 , . . . n — 1, I = 2 ,3 , . . . n - 1}, and in what follows 
we shall use for these relations the notation {.Rn}n€N<>-
Let us consider the case of generalized A^-algebra, which (probably for the first time) 
appeared in [2], and corresponding generalized Axj-operad: 

Definition 3.1. The generalized Aoo-operad is the free graded (non-differential) op-
erad 

equipped with linear map d acting on generators by 
ż + 1... ż + i 

1 2 . . . n 
ż + 1 

1...Ї Ä ѓ + 2 . . n + l 

+ ê Ы)Щ^^=Y: E (-D'+<(,+ 

.=0 I / i=0 

where I := {k +1 = n + 11 k = 2,... n — 1, £ = 2,3,.. . n — 1}, or in a more compact 
form 

z + 1 ... i + l 

1 2 . . . n fc-1 

= E E (-i)ł*«+i> 
/' i=0 

1 ...i г + l + l.n 

where V := {fc + / = n +11 k = 2,... n - 2, n - 1, n + 1, J = 0,2,3,... n - 1} and tfie 
linear map d is extended by derivation property. 

Note that this operad lives in the monoidal category of graded vector spaces with a 
distinguished (and not necessarily nilpotent) endomorphism. 

Remark 3.2. The previous definition, based on the preferred choice of the linear map 
d, can be rewritten in the following way. The generalized Aoo-operad is the quotient 
space of the free graded operad 



182 PETR SOMBERG 

by the ideal generated by {Rn}nen0' 
Note that this definition is more standard (classical) in the sense that the generalized 

Aoo-operad lives in the monoidal category of graded vector spaces. 

Note that we have tacitly omitted in the previous definition the adjective differential. 
The reason for that is d2 7-- 0, i.e. the linear map d is not a differential in Hom(A®k, A). 
Consequently, we do not get (on the tree level) the (graph) complex but instead only 
the (graph) sequence. 

Remark 3.3. The results of the previous section concerning the codifferential property 
of the map fic : (®A)C —• (®A)C: 

џc = + 

(38) 

make it possible to compute the homology of \ic (recall that (/JLC)2 = 0), i.e. 
H*((®A)c,iic). 

Regrettably we did not find in the literature any explicitly computed example of 
this homology of the generalized ^co-algebra. 

Example 3.4. In the case ofn = 3, we have 

4 

[<*,/i3](--,-)+ Y, (-)W-,...,v..,-) 
.=1 (i-/C) 

= /i2(M2(- - ) , " ) - /A2(- M2(", - ) ) 

with \ii = (-,—) f l = Ufl,/i3 = (-, —,-)fl,M4 = ( - » - , - , - ) * and BGG operators 
d = V. Taking into account the gradings of evaluation elements 51,52,53 G A, we 
reproduce immediately equation (12). 

Remark 3.5. (Corrections) In the sources cited in the article there are some miss-
prints. 

In the reference [5] there is mistake on p. 2 in the last equation concerning the sign e. 
The summation over |a»| should end by \as\. 

In the reference [6] there is mistake on pA, equation (3). In the first summation 
there should be k + l = n instead of k + / = n -f 1. 

Acknowledgment: It is my pleasure to thank M. Markl for many discussions on 
universal algebra, and D.M. J. Calderbank for patient explanation of his results. 
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