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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 72 (2004), pp. 43-78 

LECTURES ON GROUPS OF SYMPLECTOMORPHISMS 

DUSA MCDUFF 

ABSTRACT. These notes combine material from short lecture courses given in Paris, 
France, in July 2001 and in Srni, the Czech Republic, in January 2003. They discuss 
groups of symplectomorphisms of closed symplectic manifolds (M, u) from various 
points of view. Lectures 1 and 2 provide an overview of our current knowledge of 
their algebraic, geometric and homotopy theoretic properties. Lecture 3 sketches 
the arguments used by Gromov, Abreu and Abreu-McDuff to figure out the rational 
homotopy type of these groups in the cases M = CP2 and M = S2 x S2. We 
outline the needed J-holomorphic curve techniques. Much of the recent progress in 
understanding the geometry and topology of these groups has come from studying the 
properties of fibrations with the manifold M as fiber and structural group equal either 
to the symplectic group or to its Hamiltonian subgroup Ham(M). The case when 
the base is S2 has proved particularly important. Lecture 4 describes the geometry 
of Hamiltonian fibrations over S2, while Lecture 5 discusses their Gromov-Witten 
invariants via the Seidel representation. It ends by sketching Entov's explanation of 
the AB W inequalities for eigenvalues of products of special unitary matrices. Finally 
in Lecture 6 we apply the ideas developed in the previous two lectures to demonstrate 
the existence of (short) paths in Ham (M,u/) that minimize the Hofer norm over all 
paths with the given endpoints. 
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1. OVERVIEW 

There are many different aspects to the study of groups of symplectomorphisms. 
One can consider 

• algebraic properties; 

• geometric properties; 

• their homotopy type; 

• their stability under perturbations of the symplectic form. 

One could also look at the dynamical properties of individual elements or of one 
parameter subgroups. But we will not emphasize such questions here, instead concen­
trating on the above mentioned properties of the whole group. In this article we will 
first survey some old and new results, mentioning some open problems, and then will 
sketch some of the relevant proofs. Background information and more references can 
be found in [45, 46, 47]. Since the survey [44] discusses recent results on the homotopy 
properties of the action of the Hamiltonian group on the underlying manifold M, this 
aspect of the theory will be only briefly mentioned here. 

1.1. Basic notions. Throughout (M,CJ) will be a closed (i.e. compact and with­
out boundary), smooth (i.e. C°°), symplectic manifold of dimension 2n unless it is 
explicitly mentioned otherwise. The symplectomorphism group Symp(M,u;) consists 
of all diffeomorphisms (j) : M -j> M such that <t>*(u)) = u, and is equipped with the 
C°°-topology. Its identity component is denoted Symp0 (M,u;). The latter contains 
an important subgroup Ham(M,o;) whose elements are time 1 maps of Hamiltonian 
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flows (/)?\ These are the flows (j>H,t e [0,1], that at each time t are tangent to the 
symplectic gradient X? of the function Ht: M —> R, i.e. 

(1) ^{x) := ${<${x)) = X?{fl{x)), o;{Xt
H, •) = -tiff,. 

Thus we have a sequence of groups and inclusions 

Ham(M,o;) «-> Symp0(M,u;) -̂> Symp(M,u;) <-> Diff(M). 

These groups are all infinite dimensional. As explained in Milnor [50], they can each be 
given the structure of a Frechet Lie group. As such they have well defined Lie algebras, 
with an exponential map. For example, the Lie algebra of Ham(M,a;) consists of 
the space Co°(M,R) of smooth functions on M with zero mean JMHun

y and the 
exponential map takes the (time independent) Hamiltonian H to the time 1-map ^ 
of the corresponding flow. Observe that this map is never surjective. 

The most important elementary theorems in symplectic geometry are: 

• Darboux's theorem: every symplectic form is locally diffeomorphic to the linear 
form 

UQ := dx\ A dx2 H h d£2n-i A dx2n 

on Euclidean space; and 

• Moser's theorem: any path ut,t € [0,1], of cohomologous symplectic forms on a 
closed manifold M is induced by an isotopy (j>t : M —> M of the underlying manifold, 
i.e. 4>*t(ut) = UQ, 0O = id. FormsUQ,UI that are related in this way are calledisotopic. 

The fact that there are no local invariants of symplectic structures is closely re­
lated to the fact that the symplectomorphism group is infinite dimensional. Contrast 
this with Riemannian geometry in which the curvature is a local invariant and isom-
etry groups are always finite dimensional. Moser's theorem implies that the groups 
Symp(M,u;) and Ham(M,o;) depend only on the diffeomorphism class of the form u. 
In particular, they do not change their topological or algebraic properties when ut 

varies along a path of cohomologous forms. However, changes in the cohomology class 
[u] can cause significant changes in the homotopy type of these groups: see Proposi­
tion 2.3. In turn, this is closely related to the fact that the Moser theorem fails for 
families of noncohomologous forms. As shown by McDuff [37] (cf. [47, Chapter 9]), 
there is a family of noncohomologous symplectic forms W t , 0 < K l , o n S 2 x 5 2 x T 2 

such that UQ is cohomologous to u\ but not isotopic to it. Here u\ is constructed to be 
diffeomorphic to UQ, but the construction can be modified to give a family of symplec­
tic forms ut, 0 < t < 1, on an 8-dimensional manifold such that UQ is cohomologous to 
u\ but not diffeomorphic to it. 

Another basic point is that each of these groups have the homotopy type of a 
countable CW complex (cf. [47, Chapter 9.5]). 

1.2. Algebraic aspects. Let Symp0(M) denote the universal cover of Symp0(M).1 

Its elements (j> are equivalence classes of paths {0jte[o,i] starting at the identity, where 

1 We shall often drop u from the notation when it can be understood from the context. 
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{<M ~ {$} i^^i = 0i a n d t n e paths are homotopic with fixed endpoints. We define 

Flux(0)= [ [u(j>t,>)]eHl(M,R). 
Jo 

One can check that F\ux((j>) is independent of the choice of representative for <j>, and 
that the map $ H> F1UX(0) defines a homomorphism Symp0(M) —> Hl(M,R). This is 
known as the Flux homomorphism. One way to see that Flux(0) is well defined is 
to use the following alternate description. Since Flux(0) is a cohomology class, it is 
determined by its values on loops s »-> 7(5), s G S1, in M, and one can check that 

(2) Flux(£)(7)=/ u, 

where ^ ( 7 ) is the 2-cycle 

[0,1] x Sl -> M :(t,8)ir>(M7(s)). 
(For a proof of this and the other basic results in this section see [46, Chapter 10].) 

One of the first results in the theory is that the rows and columns in the following 
commutative diagram are short exact sequences of groups. 

7r1(Ham(M)) —> 7r1(Symp0(M)) - ^ Tu 

4 4 4 
(3) HJmi(M) —> Symp0(M) ^ Hl(M,R) 

4 4 4 
Ham(M) —> Symp0(M) ^-> Hl(M,R)/ru . 

Here rw is the so-called flux group. It is the image of 7Ti(Symp0(M)) under the flux 
homomorphism, and so far is not completely understood. In particular, it is not yet 
known whether Tu is always discrete. This question is discussed further in §1.4. 

One might wonder what other "natural" homomorphisms there are from Symp0(M) 
to a arbitrary group G. If M is closed, the somewhat surprising answer here is that 
every nontrivial homomorphism must factor through the flux homomorphism. Equiva­
lent^, Ham(M) is simple, i.e. it has no proper normal subgroups. The statement that 
Ham(M) has no proper closed normal subgroups is relatively easy and was proved by 
Calabi [9]. The statement that it has no proper normal subgroups at all is much more 
subtle and was proved by Banyaga [4] following a method introduced by Thurston to 
deal with the group of volume preserving diffeomorphisms. The proof uses the rela­
tively accessible fact2 that the commutator subgroup of Ham(M) is simple and the 
much deeper result that Ham(M) is a perfect group, i.e. is equal to its commutator 
subgroup. More recently, Banyaga [5] has shown that the manifold (M,u) may be 
recovered from the abstract discrete group Symp(M,o;). In other words, 

Proposition 1.1. If $ : Symp(M,<j) -> Symp(M',a/) is a group homomorphism, 
then there is a diffeomorphism f : M -> M1 such that 

f*(u') = ±u, $(</>) = focf) of1 for all (j> e Symp(M,a/). 

2 A general result due to Epstein [16] states that if a group G of compactly supported homeomor-
phisms satisfies some natural axioms then its commutator subgroup is simple. 
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When M is noncompact, the group Symp0(M,o;) has many normal subgroups, for 
example the subgroup Symp0(M,u;) fl Sympc(M,u;) of all its compactly supported 
elements. The identity component Symp{j(M,u;) of the latter group supports a new 
homomorphism onto R called the Calabi homomorphism, and Banyaga showed that 
the kernel of this homomorphism is again a simple group. However, there is very little 
understanding of the normal subgroups of the full group Symp(M). In view of the 
above discussion of the closed case the most obvious question is the following. 

Question 1.2. Is Symp(R2n,(j0) a perfect group? 

It is known that the group of volume preserving diffeomorphisms of R*,k > 3, 
is perfect and is generated by elements whose support lies in a countable union of 
disjoint closed balls of radius 1: see McDuff [36] and Mascaro [35]. (The same holds 
for the group of diffeomorphisms of R" in any dimension.) However, the first of these 
statements is unknown in the symplectic case (even in the case of R2!) while the 
second is false: see Barsamian [6]. 

Some other questions of an algebraic nature are beginning to be tractable. Using 
ideas of Barge and Ghys, Entov [14] has recently shown that in the closed case the 
perfect groups Symp0(M,cj), Ham(M,o;) as well as their universal covers all have 
infinite commutator length, while in [62] Polterovich develops methods to estimate 
the word length of iterates fon in finitely generated subgroups of Ham(M,cj). This 
leds to interesting new restrictions on manifolds that support symplectic actions of 
nonamenable groups such as SL(2,R). 

Entov and Polterovich [15] have also recently constructed a a nontrivial continuous 
quasimorphism /i on Symp(S2). A quasimorphism on a group G is a map /x: G -> R 
that is a bounded distance away from being a homomorphism, i.e. there is a constant 
c = c(ii) > 0 such that 

\l*(9h) - p{g) - /i(A)| < c, g,heG. 

There is no such homomorphism because Symp(52) is simple. Their construction uses 
the structure of the quantum cohomology ring of S2, and it is not yet clear whether it 
can be extended to all symplectic manifolds. 

1.3. Geometric aspects. The Lie algebra of the group Symp(M) is the space of all 
symplectic vector fields X, i.e. the vector fields on M such that the 1-form ix(u) is 
closed. Similarly, the Lie algebra LieHam(M) is the space of all Hamiltonian vector 
fields X, i.e. those for which the 1-form ix(u) is exact. Since each exact 1-form may 
be uniquely written as dH where H has zero mean fM Hwn, LieHam(M) may also be 
identified with the space CQ(M) of smooth functions on M with zero mean. With this 
interpretation, one easily sees that LieHam(M) has a nondegenerate inner product 

(4) (H,K)=f 
Jм 

HKun 

IM 

that is bi-invariant under the adjoint action 

Ad^(H) = Ho(/> 

of (j> e Symp(M). Since a finite dimensional semisimple Lie group is compact if 
and only if it has such an inner product, this suggests that Ham(M) is an infinite 
dimensional analog of a compact group. Of course this analogy is not perfect: as we 
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shall see in §2.1 below, Ham(M) does not always have the homotopy type of a compact 
Lie group since it can have infinite cohomological dimension. Nevertheless, it seems 
interesting to try to compare its properties with those of a compact Lie group. 

One way in which Ham(M) does resemble a compact Lie group is that it supports 
a bi-invariant Finsler metric known as the Hofer metric: see [20]. To define this, 
consider a path {$* }te[o,i]> i" Ham(M) generated by the function {Ht}tG[0,i]- Assuming 
that each Ht has zero mean JM Htu

n, we can define the negative and positive parts of 
its length by setting3 

C~(Ht)= f - mm Ht(x)dt, C+(Ht)= [ m*xHt(x)dt. 
JO X€M JO X$M 

Accordingly, we define seminomas pr" and p by taking p±((/>) to be the infimum of 
C±(Ht) over all Hamiltonians Ht with time 1 map 0, and p(<f>) to be the infimum of 

C(Ht)=C+(Ht) + C~(Ht) 

over all such paths. It is easy to see that 

P+W = P-{4>-1), P * ( # ) < pH<t>) + PHW . pHrlH) = PH*) • 

It follows that the metric dp((j>^) := pty^'1) is bi-invariant and satisfies the triangle 
inequality. Its nondegeneracy is equivalent to the statement 

p((j)) = 0 4=> <£ = i d . 

This deep result is the culmination of a series of papers by Hofer [20], Polterovich [56] 
and Lalonde-McDuff [26]. The key point is the following basic estimate which is known 
as the energy-capacity inequality. 

Proposition 1.3. Let B = ^(^^(r)) be a symplectically embedded ball in (M,CJ) of 
radius r. If <j)(B) n B = 0, then pQ>) > nr2/2. 

There has also been some success in describing the geodesies in (Ham(M),/9). This 
study was first initiated by Bialy-Polterovich, and a good theory has been developed 
for paths that minimize length in their homotopy class. In §5 we shall sketch the proof 
that absolutely length minimizing paths exist. Here is a simple form of the result. (It 
has been recently generalised by Oh [53] to quasiautonomous Hamiltonians.) 

Proposition 1.4. The natural 1-parameter subgroups {(f>f*}t£R generated by time in­
dependent H minimize length between the identity and $ for all sufficiently small \t\. 
Thus for each H there is T = T(H) > 0 such that 

p(0f) = C({H}t,mm) = \t\(m*xH- mmH) 

whenever \t\ < T. 

There are still many interesting open questions about Hofer geometry, some of which 
are mentioned below. Interested readers should consult Polterovich's book [61] for ref­
erences and further discussion. There are also beginning to be very interesting dynam­
ical applications of Hofer geometry: see, for example, Biran-Polterovich-Salamon [7]. 

3To simplify the notation we will often write Ht for the path {Ht}t€[o.i] and </>t instead of {<pt}. 
Since it is seldom that we need to refer to Ht for a fixed t this should cause no confusion. 
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Question 1.5. Does Ham(M) always have infinite diameter with respect to the Hofer 
norm p? 

This basic question has not yet been answered because of the difficulty of finding 
lower bounds for p. The most substantial result here is due to Polterovich, who gave 
an affirmative answer in the case M = S2: see [60, 61]. 

Question 1.6. Find ways to estimate the maximum value of T such that the path 
{</> }̂te[o,r] minimizes the length between the identity and $% among all homotopic 
paths with fixed endpoints. 

If H is time independent it has been shown by McDuff-Slimowitz [48] and Entov [13] 
that one can let T be the smallest positive number such that either the flow <$ of H or 
one of the linearized flows at its critical points has a nontrivial periodic orbit of period 
T. A Hamiltonian that satisfies this condition with T = 1 is said to be slow. If a 
compact Lie group G acts effectively on (M, u) by Hamiltonian symplectomorphisms 
then its image in Ham(M) consists of elements that axe the time-1 maps of the flows 
of autonomous Hamiltonians. Hence its image is totally geodesic with respect to the 
Hofer norm. Moreover the restriction of the Hofer norm to G often has interesting 
geometric properties. For an example, see the discussion of the ABW inequalities in 
Section 4.4. 

Oh has made considerable progress with the general question (for nonautonomous 
flows) in his recent paper[53]. He has also defined a refined version of the Hofer norm 
using spectral invariants, that coincides with it in a neighbourhood of the identity but 
in general is smaller. 

Question 1.7. What conditions on the Hamiltonian H : M -» R imply that p((j>?) -> 
oo as t -> co ? 

Clearly, we need to assume that H does not generate a circle action, or more gener­
ally, that its flow $ ,t > 0, is not quasiperiodic in the sense that its elements are not 
contained in any compact subset of Ham(M). However, this condition is not sufficient. 
For example, if H has the form F — F o r where F 6 LieHam(M) has support in a set 
U that is disjoined by r (i.e. r(U) D U = 0), then 

4? = [4>F,T] = <j>FT(<t>FYlT-\ 

Hence 

M?) < pWfTfofn + rtr-1) < 2p(T). 
Therefore p((j>^) is bounded. But it is easy to construct examples on S2 for which the 
sequence <^,n -= 1,2,3,... has no subsequence that converges in the C° topology. 
Thus the flow is not quasiperiodic. 

Exercise 1.8. Suppose that M is a Riemann surface of genus > 0 and that H has 
a level set that represents a nontrivial element in 7Ti(M). Show that p((j>") -> oo as 
t -> oo by lifting to the universal cover and using the energy-capacity inequality. 

Question 1.9. Is the sum p+ + p~ of the one sided seminorms nondegenerate for all 
(M,u)? 
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The seminomas p+ and p~ are said to be "one sided" because they do not in general 
take the same values on an element 0 and its inverse. (As we show in Proposition 3.7 
they also have very natural geometric interpretations in which they measure the size 
of (j> from just one side.) Their sum p+ + p~ is two sided. Hence its null set 

n u h V + P~) = {* : P + M + /T(fl = 0} 

is a normal subgroup of Ham(M). Therefore it is trivial: in other words, p+ + p~ is ei­
ther identically zero or is nondegenerate. Thus to prove nondegeneracy one just has to 
find one element on which p+ + p~ does not vanish. The paper [43] develops geometric 
arguments (using Gromov-Witten invariants on suitable Hamiltonian fibrations over 
S2) that show that it is nondegenerate in certain cases, for example if (M,u) is a 
projective space or is weakly exact, i.e. u vanishes on 7T2(M). (For the latter case, see 
also Schwarz [66].) However the general case is still open. An even harder question is 
whether the one sided norms p- are each nondegenerate. Now the null set is only a 
conjugation invariant semigroup and so could be a proper subset of Ham(M). Hence 
it seems that one could only prove nondegeneracy by an argument that would apply 
to an arbitrary element of Ham(M). 

1.4. Questions of stability. One of the first nonelementary results in symplectic 
topology is due to Eliashberg [11] and Ekeland-Hofer [10]: 

• Symplectic rigidity theorem: the group Symp(M,u;) is C°-closed in Diff(M). 

This celebrated result is the basis of symplectic topology. The proof shows that 
there is are invariants c(U) (usually called symplectic capacities) of an open subset 
of a symplectic manifold that are continuous with respect to the Hausdorff metric on 
sets and that are preserved only by symplectomorphisms. (When n is even, one must 
slightly modify the previous statement to rule out the case 4>*(u)) = -a;.) There are 
several ways to define suitable c. Perhaps the easiest is to take Gromov's width: 

c(U) = sup{7rr2: B2n(r) embeds symplectically in U} . 

Here B2n(r) is the standard ball of radius r in Euclidean space. 

• Stability properties 0/Symp(M) and Symp0(M). 

By this we mean that if G denotes either of these groups, there is a C^neighbourhood 
Af(G) of G in Diff (M) that deformation retracts onto G. This follows from the Moser 
isotopy argument. In the case G = Symp(M) take 

JV(Symp) = {<j> e Diff(M) : t<j)*(u)) + (1 - t)v is nondegenerate, for all t G [0,1]}. 

By Moser, one can define for each such <f> a unique isotopy fa (that depends smoothly 
on <j)*(u))) such that (j>*t(t(j>*(ui) + (1 - t)u) = u) for all t. Hence fa e Symp(M). 
Similarly, when G = Symp0(M) one can take Af(G) to be the identity component of 
Af(Symp). 

Question 1.10. Is there a C°-neighborhood o/Symp0(M) in Diff0(M) that deforma­
tion retracts into Symp0(M)? 
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• The Flux conjecture 

The analogous questions for the Hamiltonian group are much harder, and much 
less is known. We do not even know if the group Ham(M) is always closed in the 
^-topology, let alone whether it is C°-closed. It follows from diagram (3) that 
Ham(M) is enclosed in Symp0(M) if and only if the flux group rw is closed. There­
fore, the most important question here is the following. 

Question 1.11. Is T^ a discrete subgroup of HX{M,R)? 

The hypothesis that it is always discrete is known as the Flux conjecture. rw 

is known to be discrete for many (M,o>). For example, it follows from (2) that Fu 

is a subgroup of HX(M\VJ) where Vu denotes the periods of [CJ], i.e. its values on 
H2(M;Z).4 Thus r^ is discrete if [LJ] e H2(M;Z). Another easy case is when 

A[u>]n~l : HX(M,R) -> H2n~l{M,R) 

is an isomorphism (eg. if (M, u) is Kahler.) Nevertheless, this question does not yet 
have a complete answer: see Lalonde-McDuff-Polterovich [31, 32] and K§dra [23, 24]. 
It follows that there may be manifolds {M,u) for which the normal subgroup Ham(M) 
of Symp(M) is not closed with respect to the C°° topology. In fact, if rw is not 
discrete then one should think of Ham(M) as a leaf in a foliation of Symp0(M) that 
has codimension equal to the first Betti number rk(H*(M,R) of M. 

• Special geometric properties of elements in Ham(M). 

One indication that T^ may always be discrete is that the elements Ham(M) have 
special geometric properties. In particular, according to Arnold's celebrated conjecture 
(proven by Fukaya-Ono and Liu-Tian based on work by Floer) the number of fixed 
points of (j> e Ham may be estimated as 

#Fix <j> > ^ rank Hk (M, Q) 
k 

provided that all its fixed points are nondegenerate (i.e. the graph of </> is transverse 
to the diagonal.) The following simple argument shows how this is related to the Flux 
problem. Denote r{M) : ]TjbrankiIA:(M,Q). 

Lemma 1.12. Suppose that A C Hl{M;R) has the property that every element a E 
/Y^MjR) \ A is the flux of some symplectic path {<t>?}te[oti] whose time-1 map is 
nondegenerate and has < r{M) fixed points. Then rw C A. 

Proof. Suppose this is false, and let {ipt} be a loop in Ham(M) with flux equal to 
a E H*(M;R) \ A. Then the path {V,r1(/>t[}tG[o,i] is Hamiltonian and has time 1-map 
05*. Therefore (j>* must have at least r{M) fixed points by Arnold's conjecture, which 
contradicts the hypothesis. • 

For example, one can apply this to the standard torus (T2n,a;o) = (R2n/Z2n,u;o), 
taking A to be the lattice Hl{T2n\'L)) and conclude that the flux group must be 
contained in this lattice. But we knew this anyway. So far, no one has succeeded in 
getting very far with this kind of geometric argument. 

4In fact, one can restrict to its set of values on spheres by Proposition 1.14 (i) below. 
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• Stability of Hamiltonian loops 

Although what one might call geometric stability (even for fixed u) has not yet 
been established for the Hamiltonian group, it does have stability properties on the 
homotopy level. Here is a typical question. Suppose given continuous map from a finite 
CW complex X to Ham(M,o;). What happens if we perturb u7 If u/ is sufficiently 
close to LJ, then it follows by Moser stability that X is homotopic through maps to 
Diff(M) to a map itno Symp(M,o/). But can we always deform X into Ham(M,a/)? 
Since 7Tjb(Ham(M)) = 7TA;(Symp0(M)) when k > 1 by diagram (3) this is automatic 
when X is simply connected. However the case X = Sl is not at all obvious, and is 
proved in [32, 40]. In the version stated below (MM)id denotes the group of homotopy 
self-equivalences of M, i.e. the identity component of the space of degree 1 maps 
M-^M. 

Proposition 1.13. Suppose that <j) G 7Ti(Symp(M,o;)) and ft e 7Ti(Symp(M,u/)) 
represent the same element of iri((MM)id). Then 

F l u x ^ ) = 0 <F=> Fluxu;/ ((j)f) = 0. 

This is an easy consequence of a more general vanishing theorem for various actions 
of the Hamiltonian group. One can generalise the defining equation (2) for the Flux 
homomorphism to get a general definition of the action tr ,̂ : H*(M) -> H++k(M) of 
an element $ e Hk(M

M). Namely if (f> is represented by the cycle t »-> (j>t for t E Vk 

and c e H*(M) is represented by x i-> c(x) for x E C then tr^(c) is represented by the 
cycle 

V * x Z - > A f :(*,*)•-» &(x). 
To say this action is trivial means that 

tr^(c) = 0 whenever c e Hk(M), k > 0. 

If Vk = Sk is a sphere then this action is precisely the differential d in the Wang long 
exact sequence for the associated bundle M -> P -> S*+1: 

> Hi(M) -> Hi(P) -> Hi_kM 4 Hi_iM - > . . . 

Therefore the triviality of the action is equivalent to saying that H*(P) is isomorphic 
to the tensor product H*(M) <g> H * (Sfc+1). 

The results to date on these questions are still incomplete. The following proposition 
states the most important known conclusions. The first result below is a consequence 
of the proof of the Arnold conjecture. Another more direct proof may be found in 
Lalonde-McDuff-Polterovich [32]. The second part is proved in Lalonde-McDuff [30] 
and the third is an easy consequence. Since the main ideas in the proofs are sketched 
in the survey article McDuff [44] we shall not say more about them here. 

Proposition 1.14. (i) The evaluation map 7Ti(Ham(M)) -> 7Ti(M) is zero. 
(ii) The natural action of H*(Ham(M),Q) on i/*(M,Q) is trivial. 
(iii) If (M,{j) -> P —> S*+1 is any bundle with structural group Ham(M) then 

H,(P;Q)^H,(M;Q)^)H,(Sfc+1;Q). 

It would be very interesting to know if there are any similar results in other related 
categories, such as the category of Poisson manifolds. Even though it does not seem as 
if there would be a good analogue for the Hamiltonian group as such, there still might 
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be a notion of something akin to a Harailtonian bundle and hence some analogue of 
property (iii) above. 

Note that (iii) definitely fails for general symplectic bundles over S2: if {ipt}tesl 

is a symplectic loop with nontrivial flux then the corresponding bundle over S2 has 
nontrivial Wang differential. This situation is discussed further in Section 3. But when 
k > 1 there is no difference between Hamltonian and symplectic bundles over S*+1, 
since, as we already mentioned, Tr̂ (Ham) = ^(Symp) for k > 1. 

Here is another rather curious consequence of Proposition 1.14. It applies to any 
symplectic fibration (M,UJ) —> P —> S2, not just Hamiltonian fibrations. 

Corollary 1.15. Let (M,CJ) —i> P -> S2 be any symplectic fibration and let d be its 
Wang differential Then d o d : H{M -> Hj+2(M) is zero. 

It is quite possible that this is always true for any smooth fibration over S2 (with 
compact total space), but I do not know a proof. 

2. T H E HOMOTOPY TYPE OF Symp(M) 

2.L Ruled 4-manifolds. Another set of questions concerns the homotopy type of the 
group Symp(M). In rare cases this is completely understood. The following results 
are due to Gromov [19]: 

Proposition 2.1. (i) Sympc(R4,cJo) is contractible; 
(ii) Symp(S2 x 52,cr + o) is homotopy equivalent to the extension of SO(3) x SO(3) 

by Z/2Z where this acts by interchanging the factors; 
(iii) Symp(CP2,u;) is homotopy equivalent to PU(3). 

It is no coincidence that these results occur in dimension 4. The proofs use J-
holomorphic spheres, and these give much more information in dimension 4 because 
of positivity of intersections. Abreu [1] and Abreu-McDuff [3] recently extended Gro-
mov's arguments to other ruled surfaces. Here are their main results, stated for con­
venience for the product manifold E x S 2 (though there are similar results for the 
nontrivial S2 bundle over £.) We sketch the easiest proofs in Section 2.4. 

Consider the following family of symplectic forms on Mg = Sfl x S2 (where g is 
genus(E)): 

W/i = I^OY. + o~5- , /i > 0 , 

where oy denotes (the pullback to the product of) an area form on the Riemann 
surface Y with total area 1.5 Denote by G^ = G^ the subgroup 

Gl := Symp(M„a;/i) n Diff0(M5) 

of the group of symplectomorphisms of (M^aL^). When g > 0 /i ranges over all positive 
numbers. However, when g = 0 there is an extra symmetry — interchanging the two 
spheres gives an isomorphism G^ = G\, — and so we take [i > 1. Although it is not 
completely obvious, there is a natural homotopy class of maps from C7£ to Gj + e for all 
e > 0. To see this, let 

GU= U M x G J C RxDiff(M,). 
.ue[o,6] 

5Using results of Taubes and Li-Liu, Lalonde-McDufT show in [28] that these are the only sym­
plectic forms on £ x S2 up to diffeomorphism. 
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It is shown in [3] that the inclusion Gg —•» Gg
a 6, is a homotopy equivalence. Therefore 

we can take the map G£ -> G*+e to be the composite of the inclusion G£ -> G? +£, 
with a homotopy inverse G? _,i -> G£+fr 

Proposition 2.2. As \x -> oo, the groups GJ tend to a limit G9^ that has the homotopy 
type of the identity component VQ of the group of fiberwise diffeomorphisms of Mg = 
E5 x S2 -> E. 

Proposition 2.3. When £ < \JL < £ + 1 for some integer £>1, 

/r(Gj,Qj=A(t,sfy)®QM, 
where A(t, x, y) is an exterior algebra over Q with generators t of degree 1. and x, y of 
degree 3 and Q[wi] is the polynomial algebra on a generator wt of degree A£. 

In the above statement, the generators x, y come from H*(Gj) = H*(SO(3) x SO(3)) 
and t corresponds to an element in 7Ti(G°),/z > 1, found by Gromov in [19]. Thus 
the subalgebra A(t,x,y) is the pullback of H*(V%,Q) under the map G^ -> X>g. The 
other generator wt is fragile, in the sense that the corresponding element in homology 
disappears (i.e. becomes null homologous) when JJ> increases. 

There are still many unanswered questions about these groups. Here is a sampling. 

Question 2.4. Is the group GJ connected for all \i > 0,g > 0? 

It is shown in McDuff [42] that the answer is "yes" whenever \i > [g/2]. (The case 
g = 0 was proved in [3].) This paper also provides an affirmative answer to the next 
question in the genus zero case. 

Question 2.5. Is the homotopy type of the groups G£ constant on the intervals /z G 
(1,1+1]? 

Question 2.6. The group G* is known to be constant for 0 < \i < 1. What is its 
homotopy type? 

The methods used to prove the above results extend to certain other closely related 
manifolds. For example, Pinsonnault in thesis [54] studies the symplectomorphism 
group of the one point blow up of (S2 x S2,u^) with \i = 1 and shows it is homotopic 
to the 2-torus, T2. As shown by Lalonde-Pinsonnault in [33] this group becomes more 
complicated when 1 < /z < 2, and its homotopy groups change when the blow up 
radius r passes through the critical level nr2 = \x- 1. This implies that the homotopy 
type of the associated space of symplectically embedded balls also changes, the first 
known example of such a phenomenon. 

There has been some attempt to generalize these results to higher dimensions. Le-
Ono [34] and Buse [8] use parametric Gromov-Witten invariants to obtain information 
on the symplectomorphism groups of products (Mgiu^) x (N,u), while Seidel studies 
the case of products of two projective spaces in [68]. 

2.2. The topology of Symp(M) for general M. 7r0(Symp(M)) 
This group is known as the symplectic mapping class group. Seidel has done 

interesting work here, studying symplectic Dehn twists especially on manifolds with 
boundary. He considers the group Symp(M,9M) of symplectomorphisms that are the 
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identity near the boundary, detecting quite large subgroups of 7r0(Symp(M,9M)) by 
using Floer homology to study the effect of Dehn twists on the Lagrangian submani-
folds in M: cf [69]. 

7Ti(Symp(M)) 

This is an abelian group and one can try to detect its elements by studying various 
natural homomorphisms. One such is the Flux homomorphism: 

Fluxw:7r 1(Symp(M))->rw C Hl(M,R)9 

that has kernel equal to 7Ti(Ham(M)). There are several other interesting homomor­
phisms defined on this kernel, most notably a homomorphism to the units in the 
quantum homology ring of M known as the Seidel representation [67, 31]: cf. §4. 

Very little is known about the higher homotopy groups. Observe, however, that the 
existence of the diagram (3) implies that the inclusion Ham(M) -» Symp(M) induces 
an isomorphism on itj, j > 1. 

2.3. Characteristic classes. Reznikov shows in [63] how to define classes A* G 
H2*-i(Ham(M),R) for /- > i that he calls higher Cartan classes using the invari­
ant inner product of (4) and an analog of Chern-Weil theory. However, one can define 
the corresponding classes 

cf G H2Jfe(HHam(M),R), k > 2, 

on the classifying space using the notion of the coupling class of a symplectic fibration. 
As we will see in §3, given any smooth fibration n : M -> P —> B with structural 
group Ham(M,u;) there is a canonical class u G H2(P) that extends the symplectic 
class on the fibers, u is called the Guillemin-Lerman-Sternberg coupling class and 
is characterized by the property that the integral of u n + 1 over the fibers of 7r is 0 in 
H2(B): cf [18, 61], or [46, Ch 6]. Then we set 

cЯ:= I uk+\ 
Jм 

k> 1 

This defines cf G H2k(B). By naturality this has to come from a class cf G 
II2fc(HHam(M)) that we shall call a Hamiltonian Chern class. 

Other characteristic classes can be constructed using the Chern classes of the ver­
tical tangent bundle TyertP -> P whose fiber at x G P is the tangent space to the 
fiber through x. Denoting these classes by cjjert we get corresponding elements in 
H*(HHam(M,o;)) by integrating products of the form 

/vert rvert 
u c k i '••% 

over the fibers of P -> B. Rather little is known about these classes, though Janusz-
kiewicz and K§dra [22] have recently calculated them for symplectic toric manifolds. 
(They appear in slightly different guise in [32]. Note also that the classes cj£ert exist 
for symplectic bundles, and so when £ = 0 the classes extend to H*(JBSymp(M)).) 

Now consider a situation in which a compact Lie group acts on (M, u) in such a 
way as to induce an injective homomorphism G -» Ham(M). (Such an action is often 
called weakly Hamiltonian.) Then there is a corresponding map of classifying spaces: 

BG -> BHam(M) 
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and one can ask what happens to the Hamiltonian Chern classes c% under pullback. 
It follows from Reznikov's definitions that if G is semisimple and the action is effective 
then the pullback of df is nonzero. Hence 

H3(Ham(M)) 7- 0 

whenever (M,u) admits such an action. Moreover he shows by direct calculation 
that, in the case of the action of the projective unitary group PU(n + 1) on complex 
projective space CPn, the pullbacks of the cf to BPU(n + 1) are multiplicatively 
independent. Thus the inclusion PU(n -f 1) -> Ham(CPri) induces an injection on 
rational homotopy. 

Question 2.7. What conditions imply that such an inclusion G -> Ham(M) is non-
trivial homotopically? 

The above question is deliberately vague: what does one mean precisely by "nontriv-
ial"? Presumably one could extend Reznikov's calculation to other actions of compact 
semisimple simply connected Lie groups G on their homogeneous Kahler quotients: 
see Entov [13]. 

Reznikov's argument is elementary. In contrast, the next result uses fairly sophisti­
cated analytic tools: cf. McDuff-Slimowitz [48]. 

Proposition 2.8. Given a semifree Hamiltonian action of Sl on (M,u), the associ­
ated homomorphism 

7Ti(51)->7ri(Ham(M)) 

is nonzero. 

Proof. Recall that an action {(j>t}teR/z of Sl is called semifree if no stabilizer subgroup 
is proper. Equivalently, the only points fixed by some (j>r for 0 < T < 1 are fixed for 
all t. Therefore, by the remarks after Question 1.6, both the paths {̂ t}*e[o.3/4] ^ d 
{<f>-t}o<t<i/4 a r e length minimizing in their respective homotopy classes. Since they 
have different lengths, these paths cannot be homotopic. • 

This result has been considerably extended by McDuff-Tolman [49]. Note also that 
the semifree hypothesis is crucial: for example the action of S1 on M = CP2 given by 

[zo : *i : z2) K> [e2"i0zo : e " 2 ^ : z2] 

gives rise to a nullhomotopic loop in Ham(M). On the other hand the image of TTI(S1) 

in 7Ti(Ham(M)) might be finite: for example the rotation of S2 by one turn has order 
2inSymp(S2)~SO(3). 

In an ongoing project [25], K§dra and McDuff have recently shown that if a Hamil­
tonian circle action is inessential (i.e. gives rise to a contractible element in 
7Ti(Ham(M))) then there is an associated nontrivial element in 7r3(Ham(M)). This 
extends Reznikov's result: in the case when the circle is a subgroup in a semisimple 
Lie group G then this element is precisely the one he detected. 

Finally, in [34] Le-Ono define Gromov-Witten characteristic classes on 
BSymp(M). If one restricts to BHam(M) and fixes the genus g, these are indexed by 
the elements of H2(M;Z) and can be defined as follows. Let MHam -* £Ham(M) de­
note the bundle with fiber M associated to the obvious action of Ham(M) on M . Then, 
by Proposition 1.14 H2(M-RdLm) splits as the sum H2(M)(BH2(BRam(M)). Hence each 
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A £ H2(M',R) gives rise to a well defined class in the homology of the fibers of the 
fibration MHam -> BHam(M), and there is a class GW^ £ H/i(A|(HHam(M)) whose 
value on a cycle / : B -> _BHam(M) is the "number of isolated J-holomorphic genus 
g curves in class An in the pullback fiber bundle /*(MHam) -> B. Here the almost 
complex structure J is compatible with the fibration in the sense that it restricts on 
each fiber (M^ui) to a tame almost complex structure, and the index 

li(A) = (g-l)(2n-6)-2cl(A). 

(Of course, to define the invariants correctly one has to regularize the moduli space in 
the usual way: see for example [64].) 

Question 2.9. When are these characteristic classes nontrivial? 

Unfortunately one cannot get very interesting examples from the groups G° dis­
cussed above. Le-Ono show that when \x > 1 the 1-dimensional vector space 
H2(HG°,R) is generated by a Gromov-Witten characteristic class GW^. However, 
the nontriviality of this class GW^ can also be proved by purely homotopical means 
since the corresponding loop in G° does not vanish in the group of self homotopy 
equivalences of S2 xS2. (In fact, Le-Ono show that the cohomology ring of the cor­
responding fibration over S2 is not a product ring.) It is shown in [3] that the new 
elements wt £ H*(G°) do not transgress to H*(BGty, but rather give rise to relations 
in this ring. 

One can also define classes by evaluating appropriate moduli spaces of J-holomorphic 
curves at k points for k > 0. One interesting fact pointed out in Kedra [24] is that the 
nontrivial Gromov-Witten classes of dimension fi(A) = 0 constrain the image of the 
Flux homomorphism. 

2.4. J-holomorphic curves in S2 x S2. In this section we shall give a brief overview 
of the proof of some of the results on G^ := Symp(MxM, or") mentioned in §2.1. Fuller 
details may be found in the survey article [29] as well as in Abreu's beautiful paper [1]. 
An introduction to some of the technicalities may be found in the lecture notes [39] 
or the more broadly based survey [38]. Proposition 2.1 is proved in exhaustive detail 
in [47]. The proofs are based on the behavior of J-holomorphic spheres in 4-manifolds. 
Here is a summary of their most important properties. 

2.5. Analytic background. Almost complex structures: An almost complex 
structure J on M is an automorphism of TM with square — 1. It is said to be o;-tame 
if u(v, Jv) > 0 for every nonzero v £ TM. For every symplectic manifold, the space 
J(UJ) of u) -tame almost complex structures is nonempty and contractible. Given 
J £ J(u) we shall always use the associated Riemannian metric 

gj(v, w) := -(u(v, Jw) + u(w, Jv) 

on M. 

J-holomorphic curves: A map u : (S2, j) -> (M, J) is said to be J-holomorphic if 
it satisfies the following nonlinear Cauchy-Riemann equation: 

dju := -(du + J o du o i) = 0. 
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If J € J(u) then u restricts to an area form at all non singular points in the image of 
u. Therefore if u represents the homology class A G H2(M) we must have u(A) > 0 
unless .4 = 0 and u is constant. Note also that the Mobius group PSL(2,C) acts by 
reparametrization u »-> u o 7 on the space of J-holomorphic spheres. 

In many respects the behaviour of these curves is exactly the same as in the in-
tegrable case. In particular, in dimension 4 there is positivity of intersections: 
every intersection point of two distinct J-holomorphic curves contributes positively to 
their intersection number, with nontransverse intersections contributing > 1. Thus if 
A - B = 0 every J-holomorphic .4-curve is disjoint from every J-holomorphic .B-curve, 
while if A • B = 1 every J-holomorphic .A-curve meets every J-holomorphic B-curve 
precisely once and transversally. This is relatively easy to prove when one is consid­
ering two distinct curves. A rather more subtle result is that this remains true for a 
single (non multiply covered) curve; in particular any singular point on a curve u (i.e. 
point where du = 0) contributes positively to the self-intersection number. This can 
be formulated as the adjunction inequality: 

• ifu: (S2,j) -> (M4, J) is a J-holomorphic sphere in class A then j is an embedding 
if and only if 

d(A) = 2 + A-A. 

Thus there is a homological criterion for a curve to be embedded. In particular if .A can 
be represented by a J-holomorphic sphere then every J'-holomorphic representative of 
A is embedded for any J' 6 J(u). 

The moduli space M(A\ J): The main object of interest to us is the moduli space 
M(A\ J) of all J-holomorphic .A-spheres. This has two fundamental properties. 

• There is a set Jreg of second category in J(u) such that M(A\J) is a smooth 
manifold of dimension In + 2ci(.A) for every J £ JTeg. 

The proof involves Fredholm theory. 

• Since PSL(2,C) is noncompact, the space M(A\ J) is never compact except in the 
trivial case when A = 0. However the quotient At(.A;J)/PSL(2,C) is sometimes 
compact. Even if it is not, it has a well behaved compactification that is made up 
of genus 0 stable maps in class A. These objects were called cusp-curves by Gromov 
and are sometimes known as bubble trees. One shows that JVf(-4;J)/PSL(2,C) can 
be noncompact only if A has a representation by a connected union of two or more 
J-holomorphic spheres. In particular, this can happen only if the class A decomposes 
as a a sum A = AY + A2 where u(Ax) > 0,u(A2) > 0. Hence M(A\ J)/PSL(2,C) is 
compact in the case when [u] is integral and u(A) = 1. 

Fredholm theory and regularity: We now say a little more about Fredholm theory 
and regularity since this is so crucial to our argument. 

Let M(A, J) be the space of all pairs (u, J), where u : (S2,j) -> (M, J) is J-holo­
morphic, u*([.S2]) = A G H2(M), and J e J(u). One shows that a suitable completion 
of M(A, J) is a Banach manifold and that the projection 

K:M{A,J)->J 

is Fredholm. In this situation one can apply an infinite dimensional version of Sard's 
theorem (due to Smale) that states that there is a set JTeg of second category in J 
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consisting of regular values of 7r, i.e. points where dn is surjective. Moreover by the 
implicit function theorem for Banach manifolds the inverse image of a regular value is 
a smooth manifold of dimension equal to the index of the Fredholm operator n. Thus 
one finds that for almost every J 

TT-1(J)=M(A\J) 

is a smooth manifold of dimension 2(c\(A) + n). The index calculation here follows by 
investigating the linearization of n which turns out to be essentially the same as the 
linearization 

(5) Du : C°°(S2,u*(TM)) -> n°/(S2,u*(TM)) 

of the operator dju. One can check that Du is a zeroth order perturbation of the 
usual Dolbeault differential d from functions to (0, l)-forms with values in the bundle 
u*(TM). Hence Du has the same index as d, which in turn is given by the Riemann-
Roch theorem. 

There is another important point here. When u : S2 -> M4 is an embedding, the 
bundle u*(TM) splits (as a complex bundle) into the sum of the tangent bundle to 
S2 with the normal bundle L to Imu. The restriction of Du to the tangent bundle is 
always surjective. It follows that Du is surjective if and only if its restriction to the 
line bundle L is surjective. In this case, the Riemann-Roch theorem says there is a 
dichotomy: 

• either Ci(L) > — 1 and Du is surjective; 
• or Ci(L) < - 1 and the rank ofcokeiDu is constant (and equal to 2(|ci(L)| - 1).) 

We will use this fact later. 
Next observe that, by a transversality theorem for paths, given any two elements 

Jo,J\ € Jreg there is a path Ju 0 < t < 1, such that the union 

W = UtM(A\Jt) = 7r-l(UtJt) 

is a smooth (and also oriented) manifold with boundary 

dW = M(A\ Ji) U -M(A\ J0). 

It follows that the evaluation map 

evj : M(A\ J) XPSL(2,Q S2 -•> M , (u, z) i-> u(z), 

is independent of the choice of (regular) J up to oriented bordism. In particular, if 
we could ensure that everything is compact and if we arrange that ev maps between 
manifolds of the same dimension then the degree of this map would be independent 
of J. 

2.6. The case S2 x S2. In the case of (S2 x S 2 , ^ ) we are interested in looking at 
curves in the classes A := [S2 x pi] and B := \pt x S2]. Thus Ci(.A) = Ci(-B) = 2 and 

dim(M(-4; J) xG S2) = 2(Cl(A) + 2) - 6 + 2 = dim(M). 

If \i = 1 the above remarks about compactness imply that the moduli spaces 
M(A\ J)/PSL(2, C)) are always compact and evj has degree 1. Moreover, for each J 
the J-holomorphic .A-curves are mutually disjoint (by positivity of intersections), and 
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one can show that they form the fibers of a fibration of S2 x S2. Similar statements 
holds for the B-curves. 

When \x > 1 this remains true for the smaller sphere B (though one needs some 
extra arguments to prove this). On the other hand, it is now possible for the .A-curve 
to decompose since UJ^(A - B) > 0. Moreover the class A — B is represented by 
the symplectic embedding of S2 onto the antidiagonal z i-> (z, —z) where we think 
of z G S2 C 1R3}, and this submanifold can be made J-holomorphic for suitable 
J.6 Thus there are J G J(u)^) for which the curve A — B is represented. Since 
(A — B) • (A - B) = - 2 , positivity of intersections implies that this representative is 
unique. Moreover, there cannot be any _4-curves since A • (A — B) = — 1. It follows 
that when 1 < // < 2 every J G J(OJ^) is of one of two kinds: 

(i) if A is represented, S2 x S2 has two transverse fiberings, one by .A-curves and one 
by H-curves; 
(ii) if A is not represented, S2 x S2 is still fibered by the H-curves; however there is a 
unique (A — H)-curve and there are no A-curves. 

Thus we may decompose J := JUlt into the disjoint union of two sets: Jo on which 
A is represented and J\ on which A — B is represented. (For \i G (£ — 1, £] one defines 
Jk for k < £ to be the set of J for which A - kB is represented.) 

To go further, we need to use the consequences of the Riemann-Roch theorem that 
were mentioned above. Since the normal bundle to an A- or H-curve is trivial, every 
A- and every B- curve is regular, i.e. Du is always onto in this case. Since regularity 
is an open condition this means that the set Jo is open. On the other hand the class 
A - B cannot be represented by a regular curve w, i.e. Du can never be surjective, 
since Ci(L) = - 2 in this case. But the cokernel of Du has constant rank, and one can 
show that this implies that J\ is a submanifold of J of codimension 2. (In fact the 
normal bundle to J\ in Jo at a point (w,J) can be identified with cokerL)u: see [1].) 
Thus J(uJn) is a stratified space when 1 < /x < 2 with 2 strata. The picture is similar 
when \x > 2 except that there are now more strata: see [41]. This complicates the 
calculations that we present below. 

The strata Ji as homogeneous spaces: In what follows we either suppose that 
\i = 1 and let i = 0 or suppose that 1 < \i < 2 and let i = 0,1. 

Each stratum Ji contains an integrable element J*. We may take Jo to be the 
product structure j x j and Ji to be the Hirzebruch structure obtained by identifying 
S2 x S2 with the projectivization ¥(L2 © C), where L2 —> CF1 is a holomorphic line 
bundle of Chern class 2. (Note that the section given by F(L2 © 0) is rigid, with self-
intersection number - 2 : hence it corresonds to the antidiagonal.) Denote by K,- the 
maximal compact subgroup in the identity component of the complex automorphism 
group of Jj. Thus K0 * SO(3) x 50(3), while Kx =* SO(3) x S1. Here the SO(3) 
factor can be identified with the diagonal subgroup of K0, while the S1 factor is 
generated by an S1 action. This can either be thought of as coming from the action 

6Given a symplectically embedded submanifold C of (M,u) one can always choose J G J(u) so as 
to preserve TC since the set of choices at each point is contractible. When C is 2-dimensional, every 
almost complex structure on it is integrable. Hence there is a complex structure .; on C for which 
the obvious inclusion i: (C, J) -> (M, J) is J-holomorphic . 
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[WQ : wi] i-> [e2mtwQ : wi], or can be explicitly described by the formula: 

(f>t:S
2 xS2 -*S2 x S2 , (z, w) H> (z, Rz,tw), 

where RZft rotates the sphere about the axis through the points ±z by the angle e2nit. 
Note that the diagonal and antidiagonal are fixed by each (j)t. 

Now consider the map 

GM := Ham(52 x S2, uj -> Ji, <£ >-> ^ (J<). 

Since the stabilizer of J,- is precisely Kj this induces a quotient map 

(6) qi:G/Ki-+Ji. 

The claim is that these maps qt are homotopy equivalences. When /i = 1 so that 
Jo is contractible, this will follow if we produce a map SQ : J0 —> G/KQ such that 
SQ o q0 ~ id. The general argument is a little more complicated and may be found 
in [1]. 

To construct s0 we proceed as follows. Fix a point XQ in S2 x S2 and for each J G JQ 
let CA,CB be the unique A- and B-curves through XQ. We shall think of these as 
"coordinate axes" and of the families of A and B curves as corresponding to their 
parallel translates w = const and z — const. More precisely, choose parametrizations 
u : S2 -> CA,V : S2 -> C#, and denote by CW%A the unique ,4-curve through the point 
v(w) € Ca and by CZjB the unique H-curve through u(z) € CB- Then define the map 
0j € Diff(S2 x 52) by setting 

^j(y) = (*i w) eS2 x S2, where y = CZjB n C„,|i4. 

Because the fibrations by A and B curves are transverse, this map <\>j is a diffeo-
morphism. Though it is not quite symplectic, it turns out that it lies in the "Moser 
neighborhood" of Symp, in other words, it can be canonically isotoped into G^. If fij 
denotes the endpoint of this isotopy, we define 

s0(J):=cl>tjKQeG1/KQ. 

To check that s0 is well defined one must investigate the effect of changing the 
parametrizations u,v. Initially these are defined modulo PSL*, the subgroup of 
PSL(2, C) consisting of elements that fix a point. Since this is homotopy equivalent to 
S1, it is not hard to see that there is a consistent choice of u,v modulo Sl C SO(3), 
at least over compact families. There are many ways of getting round this point, for 
example by using balanced maps as in [47]. 

Proof of Proposition 2.1(H). When /z = 1 there is just one stratum: J = J0. 
Since J is contractible, the result is immediate from (6). • 

Proof of Proposition 2.3 in the case 1 < /x < 2. In this case there are two strata 
so that J = Jo U Ji. By Alexander-Spanier duality we know that 

^ ( J O ^ H ^ U ) , i>0 . 
Abreu also shows that the spectral sequence of the fibration K^ —> G^ —> Ji degener­
ates for i = 0,1. Therefore 

(i) ff*(GM;R) = H*(J0) ® IT(SO(3) x SO(3)) 

(ii) H*(G»;R) =• iT(J i ) ® H*(Sl x SO(3)). 
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The argument is now a simple algebraic computation. Since G^ is a Hopf space, its 
cohomology algebra is free. It follows that H*(Ji) is also a free algebra. Let t (resp. 
x.y) be the image in H*(G^;M) of the generator of H1^1) (resp. the generators of 
H3(SO(3)xSO(3)).) Comparing the ranks of Hz in (i) and (ii) we see that H3(JX) must 
have at least one generator, say x\. Therefore HA(J0) has a corresponding generator, 
say w. One now proves that there can be no other new generator: if there were, let 
k be the minimum dimension of such an element in H*(G^) and use the isomorphism 
Hk(J0) = Hk~l(Ji) to show that there would also have to be a new generator in 
dimension k — 1. Hence H*(Gp\ R) is generated by t, x, y, w. • 

The proof for the other cases [i > 2 is similar, but both its aspects become more 
complicated because there are more strata Jk. One must work harder to show that 
the Jk do form a stratification of J (see [41]), and the algebraic calculation is also 
considerably more elaborate. 

3. SYMPLECTIC GEOMETRY OF FIBRATIONS OVER S2 

Many of the proofs of the propositions above rely on properties of Hamiltonian 
fibrations over S2. In this lecture we consider the geometric properties of such fixa­
tions, relating them to the Hofer norm. The main ideas in this section come from 
Lalonde-McDuff and Polterovich. 

3.1. Generalities. Consider a smooth fibration IT : P —> B with fiber M, where B is 
either S2 or the 2-disc D. Here we consider S2 to be the union D+ U D_ of two copies 
of D, with the orientation of L)+. We denote the equator D+ fl FL by 9, oriented as 
the boundary of D+, and choose some point * on d as the base point of S2. Similarly, 
B = D is provided with a basepoint * lying on d = dD. In both cases, we assume that 
the fiber M* over * has a chosen identification with M. 

Since every smooth fibration over a disc can be trivialized, we can build any smooth 
fibration P —•> S2 by taking two product manifolds D± x M and gluing them along 
the boundary d x M by a based loop A = {Xt} in Diff(M). Thus 

P = (D+ x M) U (FL x M)/ ~ , (eft, \t(x))+ = (e", x)_ . 

A symplectic fibration is built from a based loop in Symp(M) and a Hamiltonian 
fibration from one in Ham(M). Thus the smooth fibration P —•> S2 is symplectic if 
and only if there is a smooth family of cohomologous symplectic forms ub on the fibers 
Mb. It is shown in [67, 46, 30] that a symplectic fibration P -> S2 is Hamiltonian if 
and only if the fiberwise forms ub have a closed extension fi. (Such forms Q, are called 
cj-compatible.) Note that, in any of these categories, two fibrations are equivalent if 
and only if their defining loops are homotopic. 

From now on, we restrict to Hamiltonian fibrations. By adding the pullback of a 
suitable area form on the base we can choose the closed extension Q, to be symplectic. 
Observe that there is a unique class u G H2(P,R) called the coupling class that 
restricts to [u] on the fiber M* and has the property that 

L wn+1 = 0 . 
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(This class will have the form [ft] — 7r*(a) for a suitable a G H2(B, dB).) Correspond­
ingly we decompose ft as 

(7) Q = r + 7r*(a.) 

where [r] = u, and call r the coupling form. (Although we will not need this, there 
is a canonical choice for the form r depending only on the connection defined by ft.) 

The closed form ft defines a connection on IT whose horizontal distribution is fl-
orthogonal to the fibers. If 7 is any path in B then n~l(j) is a hypersurface in P 
whose characteristic foliation consists of the horizontal lifts of 7, and it is not hard to 
check that the resulting holonomy is Hamiltonian round every contractible loop, and 
hence round every loop. (A proof is given in [46, Thm 6.21].) 

Thus, given ft, it can be symplectically trivialized over each disc D± by parallel 
translation along a suitable set of rays. This means that there is a fiber preserving 
mapping 

*± : 7T~l(D) -> M x L>_, 9\Mm = id* 
such that the pushforward ($_)*-"-: restricts to the same form u on each fiber M x pt. 
These two trivializations differ by a loop 

eil t-> & = * + o (9_)-l{eu) G Symp(Af-w) 

where elt is a coordinate round the equator d = D_ n -D+. 

Exercise 3.1. Check that this loop is homotopic to the defining loop for the fibration 
P -J> S2. (Since ir\(G) is abelian for any group G it does not matter whether or not 
we restrict to based homotopies.) 

Definition 3.2. The monodromy (j> = (j>(P) G Ham(M) of a fibration (P,ft) -> B 
is defined to be the monodromy of the connection determined by ft around the based 
oriented loop (d, *). Using the trivialization of P over d provided by B itself if B = D 
or by .D+ if B = S2, one gets a well defined lift (f> of <j) to the universal cover Ham. 

Exercise 3.3. Start with a fibration (P, ft) -> S2 and break it in half to get two 
fibrations (P+,ft) -> D+ and (P_,ft) -> -D_. Here the inclusion L)+ -> S2 is orienta­
tion preserving, while D_ —•> S2 is orientation reversing. What is the relation between 
the monodromies of these fibrations, (a) considered as elements in Ham(M) and (b) 
considered as elements in Ham(M)? 

In Section 4.4 we shall consider a fibration over a base B which is the sphere S2 

with some points removed. We assume that near each deleted point (i.e. end of B) 
the fibration is identified with the product [0,00) x Sl x M and that the form Q is 
normalized so that in the coordinates (5, £, x) it can be written as a(s, t)ds A dt + u -
duHt A dt, where dM denotes the exterior derivative on M. 

Exercise 3.4. Check that the monodromy of CI round such an end is precisely the 
Hamiltonian flow of Ht := Ht+\. (The sign conventions are given in (1).) 

3.2. The area of a fibration. We define the area of a fibration (P, ft) -> B to be: 

v ; vol(M,w) ( n + l ) / M « » 

Thus a product fibration (B x M,as-¥ w) has area JB as-
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Exercise 3.5. Decompose Q, as T + 7r*(oj) as in (7). Show that area(P,fi) = JBa. 

The next definition describes ways to use this area to measure the size of elements 
ofHam(M)orHam(M). 

Definition 3.6. (i) a+(0) (resp. a+((f>)) is the infimum 0/area (P, Q) taken over 
all u-compatible symplectic forms D, on the fibration P -» D with monodromy <j) 
(resp. (j)). 

(ii) a((j>) is the infimum of area (P, fi) taken over all fibrations (P, ft) -> S2 with 
monodromy (j>. 

(iii) a~(4>) :=a+($~l) anda'((t>) := a+((j>-1). 

We now show that these area measurements agree with Hofer type measurements. 
Recall that p^((j>) is the infimum of C*(Ht) over all Hamiltonians Ht whose times 1 
map is (j). Similarly, we define p*(<j>) to be the infimum of £+(Ht) over all Hamiltonians 
Ht whose flow over t E [0,1] is a representative of the element (j> £ Ham(M). 

The following lemma is a slightly sharper version of Polterovich's results in [59]. 

Proposition 3.7. (i) p+(<£) = a+($); 
(ii)p+(<j>) + p-(<t>) = a(<l>); 

We prove (i). The proof of (ii) follows easily (see [43]). 

Proof that p+(0) > 5+(<£): 

This is by direct construction. Suppose that the path (/>? generated by Ht is <t>. 
For simplicity let us suppose that the functions min(i) = minxHt(x) and max(t) = 
maxxHt(x) are smooth, so that by replacing Ht by Ht — max(£) we have that 
mdxxHt(x) = 0 for all t. Suppose also that Ht(x) = 0 for all x £ M and all t 
sufficiently near 0, l.7 Then define the graph TH of Ht by 

r # := {(x,t,Ht(x)) :xeM,t<E [0,1]} C M x [0,1] x R. 

For some small e > 0 choose a smooth function p,(t) : [0,1] —> [0, +2e] such that 

/ n(t) dt = e. 
Jo 

Consider the following thickening of the region over TH: 

Rjj(e) := {(x, t, h) | Ht(x) <h< fx(t)} C M x [0,1] x R. 

Note that if p, is chosen for t near 0,1 to be tangent to the lines t = const at t = 0,1 
we may arrange that RH(e) is a manifold with corners along t = 0,1. (Recall that 
Ht == 0 for t near 0,1.) 

Let QQ = UJ + dt A dh be the standard symplectic form on M x [0,1] x R. Then the 
monodromy of the hypersurface TH (oriented as the boundary of RH(e)) is precisely 
<j>f, while the rest of the boundary has trivial monodromy. Further, it is easy to define 
a projection 7r from RH(e) to the half disc HD whose fibers all lie in the hypersurfaces 
t = const. Thus, after rounding the corners, we get a fibered space n : RH(e) -» D 

7This can be arranged without altering the time-1 map or the Hofer length. For this and other 
technicalities see [27] or [43]. 
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with monodromy cj). It remains to check that the area of (-R^(e), ft0) (before rounding 
corners) is precisely C+(Ht) + e. • 

Remark 3.8. Similarly, we can define a manifold with corners Rff(e) that thickens 
the region below TH by setting 

R]t(e) := {{x,t,h) \ mm(t) - p,(t) <h< Ht(x)} C M x [0,1] x R. 

Note that area (R^(e)) = C~(Ht) + e. 

To prove the other inequality we combine Polterovich's arguments from [57] §3.3 
and [59]§3.3. 

Lemma 3.9. 5+(<£) > p + (^). 

Proof. Suppose we are given a fibration (P,ft) -•> D with area < p*(<j>) and mon­
odromy (j). By Moser's theorem we may isotop ft so that it is a product in some 
neighborhood ir~l(Af) of the base fiber M*. Identify the base D with the unit square 
K = {0 < x,y < 1} taking M to a neighborhood of &K = dK - {1} x (0,1), and 
then identify P with K x M by parallel translating along the lines y = const. In these 
coordinates, the form ft may be written as 

ft = UJ + dA/F; A dy + L'dx A dy 

where F', V are suitable functions on K x M and OM denotes the fiberwise exterior 
derivative. Because ft is a product near ir~l(dfK), dMF' = 0 there and V reduces 
to a function of x, y only. By subtracting a suitable function c(x, y) from F' we can 
arrange that F = F' — c(x,y) has zero mean on each fiber 7r_1(x,H) and then write 
H + dxc(x, y) as - L + a(x, y) where L also has zero fiberwise means. Thus 

(8) ft = u + dMK A dy - Ldx A du + a(x, y)dx A dy, 

where both F and L vanish near n~l(d/K) and have zero fiberwise means. Since Q 
is symplectic it must be nondegenerate on the 2-dimensional distribution HOT formed 
by the fi-orthogonals to the fibers. Hence we must have -L(x,y,z) + a(x,y) > 0 for 
all x,y £ K,z e M. Moreover, because L has zero fiberwise means, area (P, Q) = 
J a(x, y)dx A dy. Hence 

(9) / max L(x, y, z)dx A dy < / a(x, y) dx A dy = area (P, ft). 
J zeM J 

We claim that — L is the curvature of the induced connection fir- To see this, 
consider the vector fields X = 9X, Y = dy - s.gradF on P that are the horizontal lifts 
of 9x,9y.8 It is easy to check that their commutator [X, Y] = XY — YX is vertical 
and that 

[K, Y] = -s.grad(9xF) = s.gradL 
on each fiber 7r_1(x,y) as claimed. (In fact, the first three terms in (8) make up the 
coupling form r r.) 

Now let / , G Ham(M) be the monodomy of fir along the path t »-> (s, t), t G [0,1]. 
(This is well defined because all fibers have a natural identification with M.) The 

8Here the symplectic gradient s.gradF is defined by setting U(s.gradF, •) = -dMF(*)-
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path s i-> fs is a Hamiltonian isotopy from the identity to (j> = / i , and it is easy to see 
that it is homotopic to the original path (f> given by parallel transport along t »-> [lft]. 
(An intermediate path pr in the homotopy might consist of the path s i-> fj for 
0 < ^ < T, where /5

T is the monodromy along t .-> (s/Tft),t € [0,T], followed by 
the lift of 4>s,s e [T,l], to Ham.) Therefore £+(/5) > p+(0), and we will derive a 
contradiction by estimating C+(fs). 

To this end, let Xs,Yl be the (partially defined) flows of the vector fields X,Y 
on P and set hs>t = YtXs. Consider the 2-parameter family of (partially defined) 
vector fields vS)t on P where vSOito(p) is tangent to the path 5 •-> ft5)to at hSOtyo(p) for 
p = (x, y, z) e P. Thus 

vSit = dshs>t = Yl(X) on Imft5>t. 

In particular u5.i(x, y, z) is defined when y = 1, s < x. Since fs = ft5>i we are interested 
in calculating the vertical part of vS}i(s, \,z). Since the points with y = 1 are in Im ft5jt 

for all (s, t) we may write 

vSii = vS}0 + / dt(vSit) dt 
Jo 

= dx+ [ Yl([X,Y])dt. 
Jo 

We saw above that [X, Y] = s.gradL. Hence Y}([X, Y]) = s.grad(L o (Yl)~l) and 

vSfl(s,l,z) = dx+ [ s.grad^ay*)-1^,!,^)^ 
Jo 

= dx + s.grad / L(5,1 - t, ft')-*(*)) d^ 
^o 

where l̂ f denotes the vertical part of Yt. Hence the Hamiltonian H5 that generates 
the path fs,s € [0,1], and has zero mean satisfies the inequality 

Hs(z) < I (maxL(s,t,z))dt < a(s,t)dt 

since L(s,t,z) < a(s,t) by (9). Thus p+(^>) < areaP, contrary to hypothesis. • 

4. T H E QUANTUM HOMOLOGY OF FIBRATIONS OVER S2 

In this lecture we show how to use the Seidel representation 

5:7r1(Ham(M,o;))->(QHet;(M))x 

to estimate areas of fibrations and also get information on the homotopy properties of 
Hamiltonian fibrations. 
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4.L Quantum and Floer homology. First of all, what is the small quantum ho­
mology ring QH,(M)? Because it is more efficient, we shall use the formulation in [47], 
which is slightly different from [32, 40]. 

Denote by Auniv the universal Novikov ring formed by all formal power series with 
rational coefficients \K of the form 

A = ]TA / C* / C , #{K£R\\K T - 0 , / c > c } <OO forall c E R . 

Thus the power K of t is allowed to go to -co . Set A := Aumy[q,q~l], where q is a 
variable of degree 2. Additively, the quantum homology is simply the usual homology 
with coefficients in A: 

QH,(M) := QH,(M;A) = H.(M)®A. 

We may define an R grading on QH,(M; A) by setting 

deg(a ® qdtK) = deg(a) + 2d, a E H,(M), 

but can also think of QH„(M; A) as Z/2Z-graded with 

QHev = Hev(M)®A, QHodd = Hodd(M)®A. 

The quantum intersection product is linear over A and is defined on classes a £ 
Hi(M),p E Hj(M) as follows. We abbreviate c := cx(M). 

(10) a*P= ] T (a*(3)B®q-«BU-"W e QH .+ ._2n(M), 
BeH*{M) 

where (a * /?)B E Hi+J_2n+2ci(B)(-W) is defined by the requirement that 

(11) (a*P)B • 7 = GW^3(a,/5,7) forall j £ H.(M). 

Here GWM
z(a,P,r)) denotes the Gromov-Witten invariant that counts the number of 

H-spheres in M meeting representing cycles for the classes a, (3,7 E H»(M), and we 
have written • for the usual intersection pairing on H*(M) = II*(M, Q). In good cases, 
one can compute GWM

3(a,P,j) as the intersection number of the class a x 0 x 7 in 
M3 with the image of the evaluation map 

ev : M(M, B\ J) -> M 3 , u »-> (n(0), u(l), tx(oo)), 

where J is a generic cj-tame almost complex structure and JVf(M, B; J) denotes the 
(2n + 2c(H))-dimensional moduli space of J-holomorphic H-spheres in M as discussed 
in Section 2.4. (In general one needs to use the virtual moduli cycle.) Note that 
a - P = 0 unless dim (a) + dim(/3) = 2n in which case it is the algebraic number of 
intersection points of the cycles. The product * is extended to QH#(M) by linearity 
over A, and is associative. Moreover, it preserves the R-grading. 

This product * gives QH* (M) the structure of a graded commutative ring with unit 
1 = [M]. Further, the invertible elements in QHev(M) form a commutative group 
(QHev(M, A))x that acts on QH#(M) by quantum multiplication. 

We shall say very little about Floer homology; basic definitions can be found for 
example in [38, 65, 45, 47]. It is the Morse complex of the action functional on the 
loop space of M. Given a Hamiltonian function Hh := Ht+1 satisfying a suitable 
nondegeneracy hypothesis, one forms a chain complex that is generated as a A-module 
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by the 1-periodic orbits x of # . When # is autonomous (i.e. independent of time) 
and is sufficiently C2-small, these orbits are simply the critical points of # . The y-
coefficient of the boundary 6(x) is formed by counting isolated Floer trajectories 
from x to y, i.e. solutions u : R x S1 —r M of the Floer equation 

(12) d3u + J(u)(dt(u) -XH(u)) = 0 , lim u(s,-) = x, lim u(s,•) = y . 
a - f - o o 5—•oo 

The resulting homology groups are denoted FH»(M;#, J). They are all canonically 
isomorphic. For each (nondegenerate) # , there is a canonical isomorphism <£> from 
quantum homology QH„(M;A) to Floer homology FH*(M;#, J) given by counting 
maps u : C -> M that are J-holomorphic near the unit disc D with Floer boundary 
conditions at infinity; in other words, if we identify C \ D with the cylinder (0, oo) x 
S1 then u(s, t) satisfies the Floer equation (12) for s > 2. These isomorphisms are 
called PSS isomorphisms after Piunikhin-Salamon-Schwarz [55]. This construction is 
important in the discussion of the ABW inequalities. 

4.2. The Seidel representation S. Now consider the fibration Px -» S2 constructed 
from a loop A E 7Ti(Ham(M)) as in §2.4. The manifold PA carries two canonical 
cohomology classes, the first Chern class of the vertical tangent bundle 

c:=Cl{TPlen)^H\Px,Z), 

and the coupling class U\, i.e. the unique class in #2(PA,R) such that 

*>A) = M , < + 1 = O > 
where i : M -> PA is the inclusion of a fiber. We denote by # 2 (P) set of section 
classes in #2(P\, -&), i.e. the classes that project to the positive generator of # 2(5 2 ; Z). 
We then define the Seidel element 

(13) 5(A) := Y, <*5®rc(5)t~,*(5) 

BeH*{P) 

where, for all 7 E #*(M), 

(14) a g - M 7 = GW£3([M],[M] l7). 

Note that S(\) belongs to the strictly commutative part QHev of QH^(M). Moreover 
deg(«S(A)) = In. It is shown in [40] (using ideas from Seidel [67] and Lalonde-McDuff-
Polterovich[32]) that for all Ai, A2 G 7Ti(Ham(M)) 

5(A1A2) = 5(A1)*5(A2), 5(0) = 11, 

where 0 denotes the constant loop. Therefore 5(A) is invertible for all A and we get a 
representation 

5:7r1(Ham(M,o;)) -> (QHev(M; A))x . 
Moreover since all ^-compatible forms are deformation equivalent, 5 is independent 
of the choice of Q. It is often useful to identify (QHev(M;A))x with the space 
Aut(Q*(M; A)) of automorphisms of QH*(M; A) considered as a (left) module over 
itself via the correspondence a i-> a * •. We denote by ^ the resulting representation: 

tf :7ri(Ham(M,cj)) -> Aut(QH,(M;A)), *(A)(o) := 5(A) * a. 

In this language, 5(A) = *(A)(1). 
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The fact that S(X) is a unit means that Hamiltonian fibrations over S2 always 
have plenty of holomorphic sections. This has consequences for the cohomology of P\. 
Indeed one deduces that the map H*(M\ R) -.> H*(P\\ R) is injective by showing that 
any class /? in its kernel must be annihilated by ^(A), i.e. $(A)(/3) = 0. Since $(A) 
is an isomorphism, this implies /? = 0. Since these arguments are sketched in [44], we 
shall concentrate here on explaining other applications. 

4.3. Using S to estimate area. Now let ft be any tj-compatible symplectic form on 
P\. As in Exercise 3.5, its cohomology class has the form 

[Q] = uA + 7r*([a]) 

where area (P\, ft) = /52 a. The next results are due to Seidel. 
Consider the valuation v : QH^(M) —•> R defined by 

(15) v (J2 adiK ® qdtK) = sup{/c : adyK ^ 0} . 

It follows from the definition of the quantum intersection product in (10), (11) that 
v(a * /3) < v(a) + v(/3). In fact, the following stronger statement is true. 

Denote the usual intersection product by D, so that a * b - a fl b is the quantum 
correction to the usual product. Define 

(16) h = h(M) = min{o;(H) : B ^ 0, some GW^3(a, /?, 7) 7- 0} , 

and note that h(M) > 0: standard compactness results imply that for each c > 0 
there are only finitely many classes B with u(B) < c that can be represented by a 
J-holomorphic curve for generic J, and it is only such classes that give rise to nonzero 
invariants. If all the invariants G W ^ a , / ? ^ ) with a,/3,7 G Ht(M) and B / 0 
vanish, we set h = 00. 

Lemma 4.1. For all a,/3 G QH,(M), v(a * p - a H /3) < v(a) + v(p) - h(M). 

Proof. This follows immediately from the definitions. • 

Proposition 4.2 (Seidel). For each loop X in Ham(M) 
area (PA, ft) > v(S(X)). 

Proof. Let 5(A) = E ^ ^ ® ^ . ™d let v(S(X)) = KQ. Then adfK0 7- 0. By 
definition a : ^ is determined by a count of J-holomorphic curves in (PA, ft) in the 
class B where c(B) = —d,u\(B) = —KQ. Hence this moduli space cannot be empty. 
Therefore 

0 < [Q](B) = **([a})(B) + ux(B) 
= Js2a~~ K° 
= area (PA, Q) — KQ . 

Thus area (PA, Q) > KQ for all ft, as claimed. n 

Corollary 4.3. In these circumstances p+(A) > v(S(X)). 

Proof. Combine Proposition 3.7(i) with Proposition 4.2. • 
For applications of this estimate, see [43] and Lemma 5.7 below. 
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4.4. The ABW inequalities. We now give a very brief sketch of Entov's explanation 
of the ABW (Agnihotri-Belkale-Woodward) inequalities concerning the eigenvalues of 
products of unitary matrices. Let us first consider the simplest case G = SU(2). The 
question is: suppose we know the eigenvalues of the elements Au A2 e G. What can we 
say about the eigenvalues of AiA2? Equivalently, suppose we know that AXA2A$ = 1. 
What can we say about their eigenvalues? In this case, Aj has eigenvalues e±2m^ for 
a unique Q £ [0,1/2], and one can prove by computation that the triples (Ci> C2,Ca) 
corresponding to solutions of the identity i4ii42-43 = B form the convex polygon in 
[0,1/2] x [0,1/2] x [0,1/2] c R3 described by the inequalities 

Ci + C? + G><i, Ci<C2 + C3, C2<C3 + Ci, C3<Ci + C2. 

There are corresponding inequalities that describe the relations among the eigenvalues 
of matrices Aj e SU(n), j = 1 , . . . , N such that JT • Aj = H. Belkale found a generating 
set of inequalities for the resulting convex set. Agnihotri-Wood ward then observed 
that one may choose generators that are in bijective correspondence to the nontrivial 
correlators in the quantum Schubert calculus. (These are the correlators that generate 
the relations in the quantum cohomology of the Grassmannian.) We now give a brief 
sketch of Entov's explanation of this fact. 

Entov considers the obvious action of SU(n) on the Grassmannian M = Gr(r, n) of 
complex r planes in C1. This action is Hamiltonian. Moreover each A £ G C Ham(M) 
is the time-1 map of a Hamiltonian flow generated by a function HA : M —> R whose 
critical points xj correspond to the fixed points of the action of A on Gr(r, n) and 
hence to the r-planes that are spanned by eigenvectors. Thus the label J is a subset 
of { 1 , . . . , n} of cardinality r. Moreover the critical value of HA at xj is just Ylkzi 0*-
where C>u > * * * > Gn are the eigenvalues of A. These critical values are precisely the 
terms that occur in the general ABW inequalities. (When n = 2 we take r = 1 and 
so are considering the action of SU(2) on CP1.) An important point here is that this 
Hamiltonian HA is slow in the sense of Section 1.3 so that the path it generates does 
minimize Hofer length. This is why the methods sketched below give sharp estimates. 

Suppose given a product Ylj=i Aj = 1 of N natrices. Entov constructs a Hamiltonian 
bundle M —•> (E, ft) —> B over B = S2\{zii..., zN) which is trivial topologically but 
supports a symplectic form ft whose monodromy round the jth puncture is (conjugate 
to) Aj. When f [ . Aj = 11 it is possible to construct E by cutting and pasting so that 
the area of (E, ft) is arbitrarily close to zero. Then one chooses an almost complex 
structure J on E so that the projection to B (with its obvious structure) is holomorphic 
and so that J is normalized near each puncture to be compatible with the monodromy. 
One can do this in such a way that, in the obvious product coordinates near each end, 
the J-holomorphic sections are graphs of solutions of the Floer trajectory equation (12) 
for the Hamiltonian functions Hj that generate the monodromy Aj. This has several 
consequences: 

• at the jth end each J-holomorphic section u : B -» E of finite energy converges to 
some critical point Xj. E M of the appropriate Hamiltonian Hj) 

• the symplectic area fBu*(Q) of the section (which has to be positive) is now the 
sum of three terms; the area of (#,ft), the term u(A) where A e H2(M) measures 
the homology class of u, and the boundary contribution, which is precisely equal to 
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the sum of the critical values HAJ(XJJ) at the limiting critical points. Thus for each 
section u one obtains an inequality 

N 

'Z-HAi{xiJ)<«,{A). 
j=-

Entov calls these action inequalities. They are generated in the same way as the 
area inequality of Proposition 4.2. Although they seem rather different, because they 
come from a section of a trivial bundle over a noncompact space rather than a section 
of a nontrivial bundle over S2, the next paragraph explains that there is little essential 
difference in the set up. 

We need to understand the moduli spaces of sections of (E, J) -> B. When are 
they nonempty? Here we are looking at sections over a punctured sphere with Floer 
boundary conditions. One can "cap off" these ends (by the same gluing arguments that 
establish the PSS isomorphism between quantum and Floer homology), constructing 
from such a section u a section v of the trivial bundle *S2 x M —> S2 such that 
V(ZJ) e Zj x Cjj, where Cjj is the Schubert cycle corresponding to the critical point xjj, 
i.e. the unstable manifold of XJ5 under the downward gradient flow of Hj. Conversely, 
given a J-holomorphic sphere v : S2 -» M such that V(ZJ) G Cjj for all j , one 
can construct from its graph v a J-holomorphic section u of (E, J) -> B with the 
corresponding limiting behaviour. Therefore we need to understand when these spheres 
v exist. Here the points Zj E S2 are fixed. Therefore, the number of such maps v is 
measured by the Gromov-Witten invariant 

(17) G W ^ 1 N){[Ch},...,[ClN}). 

The superscript { 1 , . . . , N} on GW indicates that the marked points are fixed, so that 
this invariant measures the number of intersections of [C/,] x ••• x [CjN] with the 
evaluation map 

ev : M(M,A\ J) -» MN, u i-> u(zu...,ZN). 

These invariants (or correlators) are nonzero precisely when the _4-component of the 
quantum product [C/J * • • -*[CjN_l] has nontrivial intersection with the Schubert class 
[CjN]. These are the nontrivial correlators in quantum Schubert calculus to which 
Agnihotri-Belkale refer. Whenever one such correlator is nonzero, the corresponding 
moduli space of sections cannot be empty, and hence one gets an inequality which 
turns out to be precisely one of the ABW inequalities. 

This is just one application of Entov's work. He generalizes Proposition 3.7 and 
Corollary 4.3 to give an interpretation of the action inequalities in terms of an ap­
propriate Hofer distance between the conjugacy classes in Ham(M) containing the 
elements A{. 

5 . EXISTENCE OF LENGTH MINIMIZING PATHS IN H a m ( M ) . 

Recall that a Hamiltonian Ht,t £ [0,1], is said to have a fixed minimum at the 
point p if each function Ht takes its minimum value at p. In this lecture we sketch the 
proof of the following result from [43]. Oh gives a quite different proof of this in [52]. 
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Theorem 5.1. IfHut e [0,1], has both a fixed maximum and a fixed minimum and if 
it is sufficiently small in the C2-norm, then the path (j>? that it generates in Ham(M) 
minimizes the Hofer norm, i.e. 

Remarks 
(i) The existence of the fixed extrema is necessary: any path without a fixed minimum 
for example can be altered (keeping the endpoints fixed) so as to preserve £ + but 
decrease C~. Therefore for C2 small paths the above proposition gives a necessary 
and sufficient condition for them to realise the Hofer norm. 
(ii) It is possible to extract from the proof a precise description of how small Ht must 
be for the above result to hold. The bound depends only on (M,u/). 

5.1. Idea of the proof. If p(<t>i) < C((f>t) then there is another shorter Hamiltonian, 
say Kt, with the same time-1 map. Therefore either C+(Kt) < C+(Ht) or C~(Kt) < 
C~(Ht)\ say the former. We then consider the space (RK,H(^),^Q) formed by gluing 
the thickened region (RH(e), QQ) under the graph of H to the region (-R£(e), Ho) above 
the graph of K along the monodromy of the hypersurfaces IV and IV. (For definitions, 
see the proof of Proposition 3.7.) This gives rise to a space (IV}# (2s), ft0) with trivial 
monodromy round its boundary and that fibers over a disc. Identifying the boundary 
of this disc to a point, one therefore gets a symplectic fibration 

(PK,H(2e),n0) -> S2. 

By construction, 

area(Ptf,tf(2e),fio) = C+(Kt) + C~(Ht) + 2e < C{Ht), 

provided that e is sufficiently small. 
Next we use the following fact from [27] which is proved by a simple geometric 

construction. Recall that the capacity of a ball of radius r is 7rr2. 

Lemma 5.2. Jf Ht is sufficiently small in the C2-norm and has a fixed maximum 
(resp. minimum), then for all e > 0 it is possible to embed a ball of capacity C(Ht) in 
R~H(e) (resp. RH(e)). 

Therefore the manifold (PK-,H(2£),fi0) contains an embedded ball with capacity 
larger that its area. If the fibration (PK,H(^),^O) -> S2 were symplectically trivial, 
this would contradict the nonsqueezing theorem proven in [27] for so-called "quasi-
cylinders". As it is, we have no control on the topology of this fibration: it is built 
from the loop A = (cj)f) * (<j)t)~

l which does not have to contract in Ham(M). There­
fore, what we need to do is prove a version of the nonsqueezing theorem that holds in 
this context. 

The rest of the lecture will discuss this question. Full details of the argument 
outlined above can be found in [43, 27]. 
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5.2. Nonsqueezing for fibrations of small area. 

Definition 5.3. We say that the nonsqueezing theorem holds for the fibration 
(P, fl) —> S2 if area(P, ft) constrains the radius of any embedded symplectic ball 
B2n+2(r) in (P,Q) by the inequality 

7rr2 < area(P,fi). 

Here is a question that is still open for arbitrary manifolds (M,u). 

Question 5.4. Is there an e = e(M,uS) > 0 such that the nonsqueezing theorem holds 
for all fibrations (P\,Q) -> S2 whose generating loop A has length p+(A) < e? Would 
this be true if we bounded the length of both sides of\, i.e. we assumed that both p+(A) 
and p~(\) = P+(-A) are <e? 

An affirmative answer (to either question) would be enough to finish the proof of 
Theorem 5.1. For, by choosing Ht so small that C(Ht) < e/2 we could ensure that 
both (PKtH(25),Q,0) and (PH,K(25),Q,0) had area < e. But they both contain balls of 
capacity = C(Ht) by Lemma 5.2, and one of them has to have area < C(Ht). 

We show in [43] that if (M,u) is a spherically integral symplectic manifold (i.e. 
[u] E H2(M,Z)), the nonsqueezing theorem holds for all loops A in Ham(M,cj) with 
p+(A) + p~(\) < 1/2. Thus in this case we may take e = 1/2. 

The best result for general manifolds involves the idea of weighted nonsqueezing. 
In other words the nonsqueezing inequality must be modified by a weight K0. NOW the 
size of e is governed by the constant ft of equation (16). 

Proposition 5.5. Suppose that A is a loop in 7Ti(Hara(M),cj)) such that p+(±\) < 
h(M)/2. Then there is « 0 6 R with \K0\ < max(p+(A),p+(-A)) such that the radii of 
all symplectically embedded balls in (P±\,fi) are constrained by the inequalities 

nr2 < area (P\, Q) + Ko, nr2 < area (P_A, ft) - «o-

Proof of Theorem 5.1 assuming Proposition 5.5. 

Suppose as above that $? = <$ has Hofer norm < ft/4 and that 

C+(Kt) + C~(Kt) = Cd)-5 < C+(Ht) + C-(Ht)<h/4. 

As before, we may assume that: 

£+(K t) = C+(Ht)-6' < C+(Ht), C~(Kt) = C-(Ht)-6 + 6', 

for some 6' > 0. Let A = $ o (<j>?)-1 as before so that P*^ = PA, PH,K = P-A- Then 
for small e 

axea(Ptf,tf(e),ft0) = C(Ht)-6' + e < C(Ht) < ft/4, 
area(Ptf,K(e),ft0) = C(Ht)-6 + 6' + e < 2C(Ht)<h/2. 

By Proposition 5.5 there is K0 with |/c0| < ft/2 such that embedded balls satisfy 

7rr2 < area (PKiH(e), ft) + ^o, ^r2 < area (PH,K(£)>
 n ) " ^o • 

But, by construction, both (PKtH(e),Q) and (PHIK(S),Q) contain embedded balls of 
capacity 7rr2 = £(7) > area(PA(/Co),ft)- Hence K0 > 0. .Further, 

C(Ht) < area(P^tf(e),n) + /c0 = C(Ht) - 6f+ e +K0 

C(Ht) < axea,(PH)K(e),n)-K0 = C(Ht) - 6 + 6'+ e - K0. 
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Adding, we find 0 < -S + 2e. Since S is positive and e can be arbitrarily small, this 
is impossible. Hence result. • 

It therefore remains to prove Proposition 5.5. Recall the definition of 5(A) from (13) 
It will be convenient to separate out the terms in 5(A) with a^K G H2n{M). Since 
5(A) has degree 2n, such terms must have d = 0. Thus we write 

S{\) = J2 rKt®tK + x', 
0,/c 

where H = [M] is the unit element, rK£Q and 

x' £ QH+ := ^ H2n.i{M) <g> A. 
«>o 

Definition 5.6. We say that the fibration (P,fi) -> S2 with fiber M has a good 

section of weight K0 if there is a class B € H2(P) such that 

(i)GWP
S3([M},[M},pt)?0; 

(ii) u{B) = -/c0 where u is the coupling class. 

Note that K0 could be positive or negative. 

In particular, in the language of Lemma 4.1, we can take 

K0 = v(j>2rKl®tKy 

Lemma 5.7. Suppose that (P\,fi) has a good section of weight KQ. Then the radius 
r of an embedded ball in (P, fl) is constrained by the inequality: 

7rr2 < area (P, Q) - KQ . 

Proof. The hypotheses imply that for some section class B with u\{B) = — K0 we 
have 

GWp
§t3([M},[M},pt)=rK?0. 

Since this invariant counts perturbed J-holomorphic stable maps in class B through 
an arbitrary point, it follows that there is such a curve through every point in P. Since 
the perturbation can be taken arbitrarily small, it follows from Gromov's compactness 
theorem that there has to be some J-holomorphic stable map in this class through 
every point in P. Hence the usual arguments (cf. [19] or [26]) imply that the radius r 
of any embedded ball satisfies the inequality: 

?rr2 < [A](JB) < area(PA,-l)-K;o, 

where the last inequality follows as in Proposition 4.2. The result follows. • 

Proof of Proposition 5.5 

By hypothesis there are fibrations (P±A,fi) each with area < ft/2. Choose 5 > 0 so 
that 

(18) p+{\) + p-{\)<ti-26. 
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By Proposition 3.7, there is a ^-compatible symplectic form Ct\ on Px with area 
< p+{\) + 5, and a similar form Q_A on P-\ with area < p+(-\) + 5. Write 

S{\) = J2 i®rKtK + x, <S(-A) = ] £ J ® r'KtK + x' 
K K 

where rK,rK G Q and x,xf £ QH+. Proposition 4.2 implies that 

rK^0 =*K< p+{\) + 6, r^7-0 => K < p^(-\) + 6. 

Next apply the valuation v in (15) to the identity 

5 (A)*5( -A)=5(0) = H. 

We claim that at least one of 5(A), <S(-A) has a nonzero term 11 ® rKtK with K > 0. 
For otherwise since <S(A) * <S(—A) = B, the product x * x' must contain the term 11 ® t° 
with a nonzero coefficient. Because this term appears in x * xr — x C\ xf we find from 
Lemma 4.1 that 

0 = v{l®t°) < v{S{\)) + v{S{-\))-h{M) < p+(A) + p + ( - A ) + 2 5 - ^ < 0, 

contradicting (18). Therefore for A' equal to at least one of A or -A, <S(A') has a term 
rKl (8) tK with rK ̂  0 and 0 < K < area (Pv, Q). 

For A' = ±A set 
K(A') = max{/c : r« 7-- 0 in <S(A')} . 

The equation <S(A)*5(-A) = 11 implies that AC(A) = -AC(-A). Moreover, by Lemma 5.7, 
the radius r of any embedded ball in (Py, Q) satisfies 

TIT2 <area(PA/,Q)-/c(A'). 

Hence we may take KQ = —/c(A). 
This completes the proof of Theorem 5.L • 
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