Lenka Lakomá; Mare Jukl
 The decomposition of tensor spaces with almost complex structure

In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 23rd Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2004. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 72. pp. [145]--150.

Persistent URL: http://dml.cz/dmlcz/701730

Terms of use:

(C) Circolo Matematico di Palermo, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

THE DECOMPOSITION OF TENSOR SPACES WITH ALMOST COMPLEX STRUCTURE

LENKA LAKOMÁ, MAREK JUKL*

Abstract

Decomposition of tensor spaces with almost complex structures is a standard task in representation theory and thus in differential geometry. Our aim is to deduce explicit formulae by an elementary and straightforward approach. This decomposition is computed for tensors of the type $(1,3)$ with symmetries of certain curvature tensors, providing an illustration of the general method on this well known example.

1. Introduction

Let E be a real n-dimensional vector space and E_{q}^{p} the tensor space of tensors of the type (p, q). A fixed basis of E determines a unique basis of E_{q}^{p}. The components of any tensor A with respect to this basis will be denoted $A_{j_{1} j_{2} \cdots j_{q}}^{i_{1} i_{2} \cdots i_{p}}$. Now let F_{j}^{i} be an arbitrary tensor of the type $(1,1)$ such that $F_{\alpha}^{\alpha}=0$. A tensor $A \in E_{q}^{p}$ is called F-traceless if the following conditions hold

$$
\forall k=1, \cdots, p ; \quad \forall r=1, \cdots, q: \quad F_{\beta}^{\alpha} A_{\cdots j_{k-1} \alpha j_{k+1} \cdots}^{\cdots i_{k-1} \beta i_{k+1} \cdots}=0, \quad A_{\cdots j_{r-1} \alpha j_{r+1} \cdots}^{\cdots i_{k-1} 1 i_{k+1} \cdots}=0 .
$$

The following theorem was proved in [5] and it shows F-decomposition for e-structures. e-structures are structures where the condition $F_{\alpha}^{i} F_{j}^{\alpha}=e \delta_{j}^{i}, e= \pm 1$ is fulfilled.

Theorem 1. Let A be a tensor of the type (p, q). If $n>2(p+q)$ then there exists a unique decomposition of A in the form

[^0]where
\[

$$
\begin{aligned}
& \bigoplus= \begin{cases}\rho_{1}, \rho_{2}, \cdots, \rho_{t} \in\{1,2, \cdots, p\} & \left(\rho_{1}<\rho_{2}<\cdots<\rho_{t}\right), \\
\sigma_{1}, \sigma_{2}, \cdots, \sigma_{t} \in\{1,2, \cdots, q\} & \text { (} \sigma_{i} \text { are mutually different) }, \\
\tau_{1}, \tau_{2}, \cdots, \tau_{t} \in\{0,1\} & \end{cases} \\
& \star=\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{t}\right\}, \quad \diamond=\left\{\begin{array}{c}
\rho_{1}, \rho_{2}, \cdots, \rho_{t} \\
\sigma_{1}, \sigma_{2}, \cdots, \sigma_{t} \\
\tau_{1}, \tau_{2}, \cdots, \tau_{t}
\end{array}\right\} .
\end{aligned}
$$
\]

2. Decomposition of tensors of the type (1,3).

In this section we will compute F - decompositon of tensors of the type $(1,3)$ for e-structures with $e=-1$. This structure is called almost complex structure. It was proved in [4] that we get 48 algebraic equations in 48 unknowns in generally and this system is not easy solvable. Therefore in [4] the contents of the theorem 1 was extended.

We compute the decomposition of tensors of the type $(1,3)$ which have following properties.
(a) $A_{i j k}^{h}+A_{i k j}^{h}=0$;
(b) $A_{i j k}^{h}+A_{j k i}^{h}+A_{k i j}^{h}=0$;
(c) $A_{\alpha j k}^{\alpha}=0$;
(d) $A_{i j \bar{k}}^{h}=A_{i j k}^{h}$.

We will use next notation.

$$
\begin{equation*}
A_{\cdots i \cdots}^{\cdots} \equiv F_{i}^{\alpha} A_{\cdots}^{\cdots}, \quad A_{\cdots \cdots}^{\cdots \cdots} \equiv F_{\alpha}^{i} A_{\cdots}^{\cdots \cdots} \tag{3}
\end{equation*}
$$

It follows from this notation $A_{\ldots \bar{i} \ldots}^{\cdots}=-A_{\cdots i \ldots}^{\ldots}$. If we denote

$$
\begin{equation*}
A_{i j} \equiv A_{i j \alpha}^{\alpha} \tag{4}
\end{equation*}
$$

we can also deduce following properties

$$
\begin{equation*}
A_{i j}=A_{j i} \tag{5}
\end{equation*}
$$

For example the Riemannian tensors of Kählerian space, K-space, CR-space have these properties ([6], [7]). We have the next theorem.
Theorem 2. Let A be a tensor of the type (1,3) with properties (2), (5). Let F be almost complex structure. If $n>4$ then there exists unique F-decomposition of the tensor A in the form

$$
\begin{equation*}
A_{i j k}^{h}=B_{i j k}^{h}+\delta_{i}^{h} C_{j k}+\delta_{j}^{h} D_{i k}+\delta_{k}^{h} E_{i j}+F_{i}^{h} G_{j k}+F_{j}^{h} H_{i k}+F_{k}^{h} I_{i j}, \tag{6}
\end{equation*}
$$

where tensors $B_{i j k}^{h}, C_{j k}, D_{j k}, E_{j k}, G_{j k}, H_{j k}, I_{j k}$ have following form

$$
\begin{align*}
C_{j k} & =0 ; \\
D_{j k} & =-\frac{1}{n+2} A_{j k} ; \\
E_{j k} & =\frac{1}{n+2} A_{j k} ; \\
G_{j k} & =-\frac{2}{n+2} A_{j \bar{k}} ; \tag{7}\\
H_{j k} & =-\frac{1}{n+2} A_{j \bar{k}} ; \\
I_{j k} & =\frac{1}{n+2} A_{j \bar{k}} ; \\
B_{i j k}^{h} & =A_{i j k}^{h}+\frac{1}{n+2}\left(\delta_{j}^{h} A_{i k}-\delta_{k}^{h} A_{i j}+2 F_{i}^{h} A_{j \bar{k}}+F_{j}^{h} A_{i \bar{k}}-F_{k}^{h} A_{i \bar{j}}\right)
\end{align*}
$$

and the tensor B is F-traceless.
The aim of the following text is to prove the main Theorem 2. We will suppose, that the tensor A can be expressed in a form (6) where $B_{i j k}^{h}$ is F-traceless tensor and $C_{j k}, D_{i j}, E_{i j}, G_{j k}, H_{i k}, I_{i j}$ are certain tensors. We will suppose that the tensor $B_{i j k}^{h}$ has algebraic properties analogous to algebraic properties of the tensor $A_{i j k}^{h}$, i.e.

$$
\begin{equation*}
B_{i j k}^{h}+B_{i k j}^{h}=0 ; \quad B_{i j k}^{h}+B_{j k i}^{h}+B_{k i j}^{h}=0 ; \quad B_{i j k}^{h}=B_{i j k}^{h} \tag{8}
\end{equation*}
$$

Let us alternate the expression (6) in j, k. Using

$$
A_{i j k}^{h}+A_{i k j}^{h}=0 ; \quad B_{i j k}^{h}+B_{i k j}^{h}=0
$$

we can write

$$
\delta_{i}^{h}\left(C_{j k}+C_{k j}\right)+F_{i}^{h}\left(G_{j k}+G_{k j}\right)+\delta_{j}^{h}\left(D_{i k}+E_{i k}\right)+\delta_{k}^{h}\left(D_{i j}+E_{i j}\right)
$$

$$
\begin{equation*}
+F_{j}^{h}\left(H_{i k}+I_{i k}\right)+F_{k}^{h}\left(H_{i j}+I_{i j}\right)=0 \tag{9}
\end{equation*}
$$

Suppose that $C_{j k}+C_{k j} \neq 0$. Then there exists a tensor ϵ^{j} such that

$$
\epsilon^{j} \epsilon^{k}\left(C_{j k}+C_{k j}\right)= \pm 1
$$

Contracting (9) by $\epsilon^{j} \epsilon^{k}$, we obtain

$$
\begin{equation*}
\pm \delta_{i}^{h}+a \delta_{i}^{h}+\epsilon^{h} \stackrel{1}{Q}_{i}+\epsilon^{\bar{h}} \stackrel{2}{Q}_{i}=0 \tag{10}
\end{equation*}
$$

where $\stackrel{1}{Q_{i}}=2 \epsilon^{\alpha}\left(D_{i \alpha}+E_{i \alpha}\right)$ and $\stackrel{2}{Q}_{i}=2 \epsilon^{\alpha}\left(H_{i \alpha}+I_{i \alpha}\right)$. After contraction (10) by \bar{i} we have

$$
\begin{equation*}
\pm \delta_{\bar{i}}^{h}-a \delta_{i}^{h}+\epsilon^{h} \stackrel{1}{Q}_{\bar{i}}+\epsilon^{\bar{h}} \stackrel{2}{Q}_{\bar{i}}=0 \tag{11}
\end{equation*}
$$

Let's substitute δ_{i}^{h} from (11) in (10) then we get the following condition

$$
\begin{equation*}
\pm \delta_{j}^{h}\left(1+a^{2}\right)+\epsilon^{h}\left(\mp a \stackrel{1}{Q}_{\bar{j}}+\stackrel{1}{Q}_{j}\right)+\epsilon^{\bar{h}}\left(\mp a \stackrel{2}{Q}_{\bar{j}}+\stackrel{2}{Q}_{j}\right)=0 \tag{12}
\end{equation*}
$$

Since Rank $\left\|\delta_{j}^{h}\right\| \leq 2$ it contradicts the assumption $n>2$. We have following lemma.

Lemma 1. The condition

$$
\begin{equation*}
C_{j k}+C_{k j}=0 \tag{13}
\end{equation*}
$$

holds for coefficients $C_{j k}$.
We can use the previous arguments for the coefficients $G_{j k}$ and we get
Lemma 2. The condition

$$
\begin{equation*}
G_{j k}+G_{k j}=0 \tag{14}
\end{equation*}
$$

holds for coefficients $C_{j k}$.
The equation (9) now has a form

$$
\begin{equation*}
\delta_{j}^{h}\left(D_{i k}+E_{i k}\right)+\delta_{k}^{h}\left(D_{i j}+E_{i j}\right)+F_{j}^{h}\left(H_{i k}+I_{i k}\right)+F_{k}^{h}\left(H_{i j}+I_{i j}\right)=0 \tag{15}
\end{equation*}
$$

Suppose that $D_{i k}+E_{i k} \neq 0$. Similarly to the previous cases we get the existence of a bivector $\epsilon^{i} \eta^{k}$ such that

$$
\epsilon^{i} \eta^{k}\left(D_{i k}+E_{i k}\right)=1
$$

When we contract (15) by $\epsilon^{i} \eta^{k}$ we obtain the equation

$$
\begin{equation*}
\delta_{j}^{h}+a \delta_{\bar{j}}^{h}+\eta^{h} \stackrel{1}{Q}_{j}+\eta^{\bar{h}} \stackrel{2}{Q}_{j}=0 \tag{16}
\end{equation*}
$$

where $\stackrel{1}{Q}_{i}=\epsilon^{\alpha}\left(D_{\alpha j}+E_{\alpha j}\right)$ and $\stackrel{2}{Q}_{i}=\epsilon^{\alpha}\left(H_{\alpha j}+I_{\alpha j}\right)$. Contracting (16) we express $\delta_{\bar{j}}^{h}$, then we replace it in equation (16):

$$
\begin{equation*}
\delta_{j}^{h}\left(1+a^{2}\right)+\eta^{h}\left(\stackrel{1}{Q}_{j}-a \stackrel{1}{Q_{\bar{j}}}\right)+\eta^{\bar{h}}\left(\stackrel{2}{Q}_{j}-a \stackrel{2}{Q}_{\bar{j}}\right)=0 . \tag{17}
\end{equation*}
$$

The equation (17) has no solution for $n>2$.
Lemma 3. The condition

$$
\begin{equation*}
D_{j k}+E_{k j}=0 \tag{18}
\end{equation*}
$$

holds for coefficients $D_{j k}, E_{j k}$.
In a similar way we obtain
Lemma 4. The condition

$$
\begin{equation*}
H_{j k}+I_{k j}=0 \tag{19}
\end{equation*}
$$

holds for coefficients $H_{j k}, I_{j k}$.
When we apply lemmas to the Theorem 2 we have
Lemma 5. When the condition (2(a)) is fulfilled then for $n>2$ the tensor A may be expressed in a form

$$
\begin{equation*}
A_{i j k}^{h}=B_{i j k}^{h}+\delta_{i}^{h} C_{j k}+\delta_{j}^{h} D_{i k}-\delta_{k}^{h} D_{i j}+F_{i}^{h} G_{j k}+F_{j}^{h} H_{i k}-F_{k}^{h} H_{i j}, \tag{20}
\end{equation*}
$$

where

$$
C_{j k}+C_{k j}=0, \quad G_{j k}+G_{k j}=0
$$

Using properties $A_{i j k}^{h}+A_{j k i}^{h}+A_{k i j}^{h}=0 ; \quad B_{i j k}^{h}+B_{j k i}^{h}+B_{k i j}^{h}=0$ we get the equation

$$
\begin{equation*}
\delta_{i}^{h} \Omega_{j k}+\delta_{j}^{h} \Omega_{k i}+\delta_{k}^{h} \Omega_{i j}+F_{i}^{h} \bar{\Omega}_{j k}+F_{j}^{h} \bar{\Omega}_{k i}+F_{k}^{h} \bar{\Omega}_{i j}=0 \tag{21}
\end{equation*}
$$

where

$$
\Omega_{j k}=C_{j k}-D_{j k}+D_{k j} ; \quad \bar{\Omega}_{j k}=G_{j k}-H_{j k}+H_{k j}
$$

But $\Omega_{j k}=0 ; \bar{\Omega}_{j k}=0$ for $n>4$, i.e.

$$
\begin{equation*}
C_{j k}=D_{j k}-D_{k j} ; \quad G_{j k}=H_{j k}-H_{k j} \tag{22}
\end{equation*}
$$

Let us replace $C_{j k}$ and $G_{j k}$ in (20) by (22). Then we get
Lemma 6. If conditions (2 (a), (b)) are fulfilled then for $n>4$ the tensor A may be expressed in a form

$$
\begin{align*}
A_{i j k}^{h}=B_{i j k}^{h} & +\delta_{i}^{h}\left(D_{j k}-D_{k j}\right)+\delta_{j}^{h} D_{i k}-\delta_{k}^{h} D_{i j} \\
& +F_{i}^{h}\left(H_{j k}-H_{k j}\right)+F_{j}^{h} H_{i k}-F_{k}^{h} H_{i j} \tag{23}
\end{align*}
$$

The condition $A_{i j k}^{h}=A_{i j k}^{h}$ gives

$$
\begin{align*}
& \delta_{i}^{h}\left(D_{j k}-D_{k j}-D_{\overline{j k}}+D_{\overline{k j}}\right) \\
+ & \delta_{j}^{h}\left(D_{i k}+H_{i \bar{k}}\right)-\delta_{k}^{h}\left(D_{i j}+H_{i \bar{j}}\right) \tag{24}\\
+ & F_{i}^{h}\left(H_{j k}-H_{k j}-H_{\overline{j k}}+H_{\overline{k j}}\right) \\
+ & F_{j}^{h}\left(H_{i k}-D_{i \bar{k}}\right)-F_{k}^{h}\left(H_{i j}-D_{i \bar{j}}\right)=0 .
\end{align*}
$$

Equation (24) implies

$$
\begin{equation*}
H_{i k}=D_{i \bar{k}} ; \quad D_{j k}-D_{k j}=D_{\overline{j k}}-D_{\overline{k j}} \tag{25}
\end{equation*}
$$

Using conditions $A_{\alpha j k}^{\alpha}=B_{\alpha j k}^{\alpha}=0$ and conditions (25) in the equation (23) we have after contraction by δ

$$
\begin{equation*}
(n+1)\left(D_{j k}-D_{k j}\right)+D_{\overline{j k}}-D_{\bar{k} j}=0 \tag{26}
\end{equation*}
$$

It follows from (26)

$$
\begin{equation*}
D_{j k}=D_{k j} \tag{27}
\end{equation*}
$$

Substitute (27) to (22). We obtain

$$
\begin{equation*}
C_{j k}=0 ; \quad G_{j k}=2 D_{j \bar{k}} \tag{28}
\end{equation*}
$$

We can rewrite the equation (23) in a form

$$
\begin{equation*}
A_{i j k}^{h}=B_{i j k}^{h}+\delta_{j}^{h} D_{i k}-\delta_{k}^{h} D_{i j}+2 F_{i}^{h} D_{j \bar{k}}+F_{j}^{h} D_{i \bar{k}}-F_{k}^{h} D_{i \bar{j}} \tag{29}
\end{equation*}
$$

Contract (29) by δ_{h}^{k} then

$$
\begin{equation*}
A_{i j}=-(n+2) D_{i j} \tag{30}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
D_{i j}=-\frac{1}{n+2} A_{i j} \tag{31}
\end{equation*}
$$

Substituting (18) to (19), (25), (28), (31) we get coefficients $C_{j k}, D_{j k}, E_{j k}, H_{j k}, I_{j k}$ in the form mentioned in the Theorem 2. Now the tensor $B_{i j k}^{h}$ has a form

$$
\begin{equation*}
B_{i j k}^{h}=A_{i j k}^{h}+\frac{1}{n+2}\left(\delta_{j}^{h} A_{i k}-\delta_{k}^{h} A_{i j}+2 F_{i}^{h} A_{j \bar{k}}+F_{j}^{h} A_{i \bar{k}}-F_{k}^{h} A_{i \bar{j}}\right) \tag{32}
\end{equation*}
$$

All computed tensors are F-traceless and the proof is complete.
When $A_{i j k}^{h}$ is the Riemannian tensor then $B_{i j k}^{h}$ (32) is well known tensor of the holomorphically-projective curvature.

Allow us to express our thanks to Prof. Mikeš for his advices and ideas.

References

[1] Krupka, D., The Trace Decomposition Problem, Beiträge zur Algebra und Geometrie 36, N. 2 (1995), 303-315.
[2] Lakomá, L., Projections of Tensor Spaces, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 38 (1999), 87-93.
[3] Lakomá, L., Mikeš, J., On the special trace decomposition problem on quaternionic structure, Proc. of the Third International Workshop oh Differential Geometry and its Applications; The first German-Romanian seminar on geometry; Sibiu / Romania, September 18-23, 1997, 225-230.
[4] Lakomá, L., Mikeš, J., Mikušová, L., The Decomposition of Tensor Spaces, Differential Geometry and Applications; Satelite Conf. of ICM in Berlin, Aug. 10-14, 1998, Brno, Masaryk Univ. Brno, Czech Rep., 1999, 371-378.
[5] Mikeš, J., On general trace decompositon problem, Proc. Conf., Aug. 28-Sept. 1, 1995, Brno, Czech Rep., Masaryk Univ., Brno (1996), 45-50.
[6] Mikes̆, J., Holomorphically projective mappings and their generalizations, J. Math. Sci. 89(3) (1998), 1334-1353.
[7] Yano, K., Differential geometry on complex and almost complex spaces, Oxford-London-New York-Paris-Frankfurt: Pergamon Press. XII, 1965, 323p.

Department of Algebra and Geometry, Faculty of Science
Palacky University
Tomkova 40, 77900 Olomouc, Czech Republic
E-mAlL: lakoma@prfnw.upol.cz jukl@aix.upol.cz

[^0]: 2000 Mathematics Subject Classification: 53C15, 53D15.
 Key words and phrases: decomposition of tensor spaces, almost complex structure, F-decomposition.
 *Supported by grant No. 201/02/0616 of the Grant Agency of Czech Republic.
 The paper is in final form and no version of it will be submitted elsewhere.

