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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 75 (2005), pp. 89-108 

PROLONGATIONS OF LINEAR OVERDETERMINED SYSTEMS 
ON AFFINE AND RIEMANNIAN MANIFOLDS 

MICHAEL EASTWOOD 

According to folklore (a precise criterion in the language of exterior differential 
systems may be found in [2]), a generic overdetermined partial differential equation 
may be rewritten as a first order 'closed system* in which all first partial derivatives 
of the dependent variables are expressed in terms of the variables themselves. To do 
this, one must introduce extra dependent variables for unknown derivatives until all 
derivatives of the original and extra variables can be determined as consequences of 
the original equation. This is the well-known procedure of 'prolongation'. Particular 
prolongations, however, are usually derived ad hoc. 

Recent joint work with Thomas Branson, Andreas Cap, and Rod Gover [1] shows 
how to implement this prolongation procedure for a wide class of geometrically defined 
equations on manifolds with a suitable differential geometric structure. This article 
presents a special case of our results. Specifically, we consider only linear equations on 
affine or Riemannian manifolds. By restricting to these special cases, the proofs are 
considerably simplified. Several further examples are given to complement [1]. 

This material was the subject of a series of lectures at the 24th Czech Winter School 
on Geometry and Physics held in Srni in January 2004. I would like to thank Vladimir 
Soucek, who organised the School, for the invitation to speak and kind hospitality 

The ingredients for this work are now known informally as the Bernstein-Gelfand-
Gelfand (BGG) machinery This machinery is obtained by interpreting suitable Lie 
algebra cohomology as providing geometric constructions on manifolds. It has been a 
common theme at previous Czech Winter Schools. 

The advantages of a closed system are considerable. In the linear case, one obtains a 
bound on the dimension of the solution space (namely the final number of dependent 
variables) whilst, in the semilinear case, constraints on solutions may be derived by 
cross 'differentiation and back substitution. 

1. EXAMPLES ON AN AFFINE MANIFOLD 

In this section we shall suppose that we are working on a smooth manifold equipped 
with a torsion-free connection. We shall adopt Penrose's abstract index notation [7] 

Support from the Australian Research Council, the American Institute of Mathematics, and the 
Erwin Schrodinger Institute is gratefully acknowledged. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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and write Va for this connection. In general, indices act as markers to specify the type 
of a tensor and to record symmetries and contractions. Round brackets, as in V(ao6), 
mean that the indices they enclose have been symmetrised, square brackets (j>[ajb]c take 
the skew part, and a repeated index <j)a

ab denotes contraction. The curvature tensor 
Rab

cd of Va is defined by 

(VaV6 - V6Va)Vc = Rab

c

dV
d. 

In particular, 

V6VaV
6 = VaV6V

6 + i?a6V6, 

where Rab = Rcacb is the Ricci tensor. 

1.1. Example. By setting fj,b = Vba, the differential equation 

(1) VaVba = 0 

is manifestly equivalent to 

Vaa = :?} -T7 — n ( <* closed system. 

It is worth noting that, in this particular case, VaVba is already symmetric so (1) 
can, alternatively, be written as V(0Vt)a = 0. We can express the closed system as 
VE = 0 where V is a connection:-

^=4; ИХ;*) 
1.2. Example. By setting fiab = Vaa&, is it manifest that the differential equation 

(2) V ( aa6 ) = 0 

is equivalent to requiring that fiab be skew. To obtain a closed system we should try 
to express Va/J,bc in terms of aa and iiab. By exploiting differential consequences of (2), 
this is possible. Specifically, by noting that V[a/i&c] = 0, we find 

Va/i6c = Vcju6a - Vbfica = VcVbaa - V6Vcaa = Rbc

d

aad. 

Therefore, the differential equation (2) is equivalent to 

o b — A%6 I a c i o s e ( j system. 
VaVbc = Jtfcc aad J 

Again, we can regard this closed system as covariant constancy under a connection 

V f °h ] = f VAa*~"/^ 1 
a [ V>bc J [ Vafibc-Rbc

d

aad J 

on an appropriate vector bundle. 
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1.3. Example. Even for relatively simple equations, the corresponding prolongations 
can be quite complicated. The detailed derivation of the following example is confined 
to an appendix, wherein two other examples can be found. Here, it is useful merely 
to note the form that the prolongation takes. It is shown in §A.2 that 

(3) V(aV6ac) = 0 

may be prolonged with the aid of further independent variables pab and pabc, subject 
to symmetries pabc = p(o&)c and p^c) = 0, to obtain a connection of the form 

' ° 1 f W"" ^ 
(4) V \x = Vn-p + Rtxa 

[ P J [Vp + Rt<fi + (Vfl) Ma J 

where S IXI 0 stands for some linear combination of contractions of tensors S and <j>. At 
this point, it is worthwhile to introduce a notation for various bundles on our manifold. 
It will be further explained in §3 that irreducible tensor bundles can be denoted by 
Young tableau. In particular D = A1 = the bundle of 1-forms, 

B « > Vab S.t. fiab = P[ab] , m i •> fiab S.t. 11^ = /i (a6) , 

and 

(5) EP <—> p a b c s.t. p a b c = p(ab)c a n d p(abc) = 0 . 

Hence, our prolonged equations read VE = 0 for a connection V : V -> A1 <g> V on the 
vector bundle 

• 
(6) V= m © B . 

LP 

2. EXAMPLES ON A RIEMANNIAN MANIFOLD 

On a Riemannian manifold, indices may be raised or lowered with the metric in the 
usual way. For example (j>a

c = gab(j>
bc> where gab denotes the metric. We shall take Va 

to be the metric connection and suppose that our manifold has dimension n > 3. 

2.1. Example. Consider the differential equation 

VaV6a = ^ o 6 V c V c a . 

Manifestly this is equivalent to the system 

V0o" = Pa 
Va^6 = gabP 

but this is not yet closed since we do not know the derivatives of p. To find them, we 
may substitute the second equation into the Ricci identity 

V6 Va/z
6 = Va V6/x

6 + Rabp
b =--> Vap = nVap + Rabfi

b 

to conclude that 

VaP=-~rf laV& 
and now the system has closed. 
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2.2. Examples. Consider the differential equations 

trace free part of V(acr&c) = 0 or trace free part of V(aV&crc) = 0, 

where, in the first case, atc is supposed symmetric and trace-free. Explicitly to prolong 
these relatively simple equations is already a fearsome task but we shall see that each 
is equivalent to having a parallel section with respect to a certain connection on a 
bundle V having the form 

CDo D 

© © 
L 5 © D m 0 ©B©R 

© © 
fflo©CDo©R©B Or ffi©D©D 

© © 
ffi©n m 0 ©B©R 

© © 
CDo • 

respectively, where R denotes the trivial bundle and V means to take tensors with the 
specified symmetry that are, in addition, totally trace-free. Without knowing anything 
about the connection, we can immediately deduce that the dimension of the solution 
spaces are bounded by 

( n - l ) ( n + 2)(n + 3)(n + 4) n(n + 2)(n + 4) 

12 ° r 3 ' 
respectively. 

3. FORMULATION OF THE RESULTS 

3.1. The afrlne case. Firstly, we must say to which equations our prolongation al­
gorithm will apply. Let us work on a smooth manifold M equipped with a torsion-free 
affine connection V0. We shall regard the bundle of 1-forms on M as the vector bun­
dle tautologically induced from the co-frame bundle by the defining representation of 

, GL(n,R). 

Definition. An irreducible tensor bundle on M is one induced from the co-frame 
bundle by an irreducible representation of GL(n,R). 

The irreducible representations corresponding to covariant tensors may be specified by 
Young tableau in the usual way (see [7] for a discussion of Young tableau well suited 
to this article and [4] for proofs). There is a choice of realisation for these tensors and 
it is convenient to take the one in which symmetry is visible and skewing is hidden. 
We shall use (5), for example, rather than the tensors 

{Фabc = Фa[bc] S.t. ф[abc] = 0} , ІSOГПOГpҺІC Ьy 
f Фabc = Pa[bc] 

l Pabc = ţФ{ab)< 

further typical examples, 

E F ^ < > Pabcde S.t. Pabcde = P{abcd)e aлcj P{abcde) = 0 , 

a < > Pabcde S.t. pabcde = P{abc)[dé] aлd P{abcd)e = 0 . 
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For reasons that will soon become clear, let us denote by 0i the defining representation 
of GL(n,R). The corresponding tensor bundle is A1. The symmetric tensor power 
©*gi is irreducible and the corresponding vector bundle is the symmetric covariant 
tensors of valence k. Suppose E is an irreducible representation of GL(n,R) and 
denote by E the corresponding irreducible tensor bundle on M. The tensor product 
©*.gi ® E decomposes into irreducibles under action of GL(n,R) amongst which the 
one whose highest weight is simply the sum of the highest weights for @kQi and E 
occurs with multiplicity one. It is called the Cartan product [3] of QkQi and E and 
will be denoted © & ® E. Since it occurs without multiplicity there is a well-defined 
projection QkQi <8>E -> ©*gi ® E, which we shall also denote by ®. If (/> e QkQi and 
ip e E, we shall also denote by 0® I/J G QkQi ® E, the image of 0® tp under ®. Similar 
abuses of notation occur for the symmetric product of symmetric tensors, which is a 
special case of Cartan product. These constructions have an immediate interpretation 
on M. Thus, there is a canonical homomorphism of vector bundles 

0*A1<g>F;->0*A1®£, 

which, of course, we shall denote by ®. At this point, there is a slight conflict with our 
previous agreement always to write irreducible tensors with symmetry visible. If we 
resolve this conflict with suitable Young projectors, then the Cartan product is much 
more easily expressed. For example, it is more convenient to write 

O ^ 1 ® B = m® B3 eab®acd 1—* 6{abac)d eLP 
rather than what is literally true:-

Qab ® acd H-1-> I (9{abac)d - 0(abad)c). 

From now on we shall suppress this conflict and it is clear that all the affine examples 
considered above are concerned with differential equations of the form Da = 0, where 
E is an irreducible tensor bundle and D : E —•> F is a differential operator obtained 
as a composition 

E - ^ > QkA1 ® f i i ) ©^A1 ®E = F. 

In fact, it is only the symbol of D : E —•> F that is important in order that our 
prolongation method succeed. Let us see this by revisiting Example 1.2 with the 
addition of a general linear term, namely 

(7) V(a<76) - IV<7C = 0 

where Tab
c is a tensor that is symmetric in ab. By setting fiab = Vaab — Tab

cac and 
following exactly the same steps as in Example 1.2, 

Va/i6c = Wcfiba - Vbfica = VcVbaa - VbVcaa - Vc(Tba
dad) + Vb(Tca

dad) 

= Rbc
da°d + 2(v [ 6r c ]aVd - 2ra[o

dVc]ad 

= Rbc a&d + 2(V[6rc]a
d)ad - 2ra[6

drcj/cre - 2Ta[b
dfic]d 

we obtain the closed system 

Vao& = /io6 + Tab
cac where /iab is skew 

Va/Xfte = Rbc a°d + 2 (V[6Fc]a - ra[0Tc]e
d) ad — 2Ta[b

dll{ џ) 
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Of course, in this particular case, further confirmation is provided by noting that this 
new closed system may be also be obtained by regarding (7) as a general change of 
torsion-free affine connection. However, we shall see that adding lower order linear 
terms is always permissible in our prolongation procedure. 

We are almost in a position to formulate the main result in the affine case. It 
remains only to recall some basic notions on linear differential operators as detailed, 
for example, in [8]. To every smooth vector bundle E on a smooth manifold M there 
are the canonically associated jet bundles JkE on M and short exact sequences of 
homomorphisms of vector bundles 

0 -> O^A1 ®E -> JkE -> J*"1^ -> 0. 

A kth order linear differential operator D : E —> F between vector bundles E and F 
is equivalent to a homomorphism of vector bundles JkE -> F and the symbol o(D) 
of D is defined as the composition 

QkAl®E<->JkE-+F. 

Theorem 1. Suppose E is an irreducible tensor bundle on a smooth manifold M. Fix 
k>l and let F = Q A1 ® E. Then there are canonical constructions 

• from E and k, a graded vector bundle 

(8) V = V0eVieV2©---evN 

on M with V0 = E; 
• from any torsion-free affine connection V on M, a connection VonV and an 

Nth order linear differential operator L : E -> V such that, if we denote by Eo 
the component in VQ O / E G r(V), then (LO)Q = o for any o G r(.E'); 

and they have the following property. For every kth order linear differential operator 
D : E -> F whose symbol 

o(D) : QkAl ® E -> F = QkAx ® E 

is the Cartan product, there is a canonically constructed homomorphism of vector 
bundles $ : V -> A1 ® V such that 

(9) {oeT(E) s.t. Do = 0} =" {E e T(V) s.t. VE + $ ( E ) = 0 } , 

the isomorphism being given byH = Lo and, conversely, o = E0. 

Of course, the isomorphism (9) gives the prolongation we desire: the homomorphism $ 
may be incorporated into a new connection V = V + $ :V -t Al®V whose covariant 
constant sections correspond to solutions of Do = 0. 

The bundle V is constructed from E and k as follows. Recall that E is induced from 
an irreducible representation E of GL(n, R) and so corresponds to a Young tableau, 
typically 

I I I 1 1 

I I I 

U 
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Let us embed GL(n,R) «-> GL(n + 1,R) by 

Л н 4 

and consider the representation of GL(n 4-1, R) 

( 1 0 ••• 0 Ì 

0 

, 0 
A 

1 ! I I ! 1 I I 
IJ^ --• 

^— ' k l 

u 
obtained by adding another row of boxes overhanging by k - 1 to the right, as shown. 
This defines, by restriction, a (reducible) representation V of GL(n, R) whence an 
induced vector bundle on M, which is V. This vector bundle is naturally graded as 
follows. Let us write fl for the Lie algebra of GL(n + 1, R). It is graded:-

fl = fl-i flo fli, 

where 

S- i 

í í ° o .•• 0 ï ì 

1 * 

0 
) 4 

flo = < 

f í * 0 ••• 0 ï 
0 

i . 0 
* 

0 1 = < 

í ° * • •• * 
0 

0 
l o 

In particular, fl_i and fli are fl0-modules. Furthermore, they are canonically dual by 
means of the pairing X ® Z H-> trace(K.Z). The Lie algebra of GL(n,R) is identified 
as the subalgebra tf0 of flo consisting of elements with 0 as their top left-hand entry. 
As presaged above, we shall regard fli as the defining representation of flj,. Let 

(10) н = 

( 1 o ••• o î 
0 

> 0 
0 ÉflO-

Then flj is the j-eigenspace of H under the adjoint action. The action of H decomposes 
V into eigenspaces and it follows that distinct eigenspaces are flo-modules and that 
the action of fli (respectively fl_i) provides fl0-module homomorphisms between these 
eigenspaces raising (respectively lowering) the eigenvalue by 1. If we write V0 for the 
eigenspace with lowest eigenvalue and V^ for the one with highest eigenvalue, then it 
is easily verified that V0 = E and that 1V is the number of boxes added to the Young 
tableau for E to obtain the Young tableau for V. The grading (8) of the vector bundle 
V is, of course, induced by this grading of V as a fl(,-module or, more precisely, as a 
GL(n, R)-module. It is a general feature that algebraic constructions such as this have 
immediate geometric consequences on M. We shall see several further instances in 
§5 but here let us observe just one more, namely that the 'lowering* homomorphisms 
fl-i ® Vj -> Vj-i give rise to a canonical series of vector bundle homomorphisms 

( Ц ) V i -+Л l ®V j . . i ł for J - . 1 . 2 , ,N. 

The construction of V from V and $ from D will be given in §5. 
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3.2. The Riemannian case. The discussion of the affine case needs only minor 
modification to be valid in the Riemannian case. Firstly, GL(n, R) should be replaced 
by O(n) or by SO(n) in the case of an oriented manifold. If the manifold has a spin 
structure, then we can use Spin(n) and include spin bundles in addition to tensor 
bundles (as is done in [1]). For simplicity, let us stick with tensor bundles on an 
oriented Riemannian manifold M. 

Definition. An irreducible tensor bundle on M is one induced from the co-frame 
bundle by an irreducible representation of SO(n). 

Most such irreducible representations can be specified by Young tableau, namely they 
have the symmetries of an irreducible GL(n,R) representation but, in addition, are 
totally trace-free. As we did already in §2.2, we shall adorn such tableau with an 
additional 'o'. In this case, the construction of V from E and k is exactly parallel to 
the affine case:-

E--K v = 
ттттттт r n 

k 1 
Ll 

where V is now induced from a representation of SO(n + 1,1) restricted to SO(n) 
under the embedding 

AH-

( 1 0 ••• 0 o Ì 

0 

0 
A 

0 

0 
l o 0 ••• 0 1 J 

where SO(n + 1,1) is realised as preserving the quadratic form 2xox„+i + Y^=i x%2-
Occasionally, the representations specified in this way decompose into two irreducibles. 
The following theorem is still valid in these cases but a more precise construction of 
irreducible V from irreducible E is given in [1]. 

Theorem 2. Let E be an irreducible tensor bundle on a Riemannian manifold M. 
Fix k>l and let F = O* A1 © E. Then there are canonical constructions 

• from E and k, a graded vector bundle 

v = v0 © Vi © V2 © • • • © vN 

on M with V0 = E; 
• a connection V on V and an Nth order linear differential operator L : E —» V 

such that, if we denote by E0 the component in V0 O/E E T(V), then (La)Q = a 
for any a € T(E); 

and they have the following property. For every kth order linear differential operator 
D : E -> F whose symbol 

o(D) : O^A1 <g> E -> F = Q^A1 © E 

is the Cartan product, there is a canonically constructed homomorphism of vector 
bundles $ : V -» A1 ® V such that 

{oer(E) s.t. Do = 0} =• {£ <= r(V) s.t. VE + $(E) = O}, 
the isomorphism being given by E = La and, conversely, a = EQ. 
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Here, the 'Cartan product' is with respect to representations of SO(n) and O^A1 

denotes the trace-free part of 0*A\ in other words the k-fold Cartan product. There 
is no longer any freedom in torsion-free affine connection V: the connection should 
be compatible with the metric and the Levi-Civita connection is the only possibility. 
(A more closely aligned statement is obtained by starting with a conformal manifold 
rather than Riemannian.) Finally, the grading on V is induced by the element 

я = 

( 1 0 ••• 0 0 Ì 

0 

0 
0 

0 

0 
l o 0 ••• 0 - 1 J 

and g = so(n + 1,1) itself is |l|-graded by this element as follows: 

в-i Э 

í ° 0 ••• 0 0 1 

00 Э 

í * 0 ••• 0 0 ï 

ЯiЭ 

r 0 —Z\ • • • — Zn 0 ì 
-X\ 

0 
0 

0 
00 Э 

0 

0 
* 

0 

0 
ЯiЭ 

0 

0 
0 

Z\ 

zn 

l o X\ ••• xn o J 

00 Э 

l o 0 ••• 0 * J 

ЯiЭ 

l o 0 ••• 0 o J 
Again, g_i and gx are canonically dual under the pairing X <g> Z i-> trace(XZ). 

4. ALGEBRAIC INTERLUDE 

Suppose a is an Abelian Lie algebra and V is an a-module. The action of a on V 
defines linear transformations 

V A Hom(a, V) A Hom(Л2o, V) (12) 

by (dv)(X) = Xv and (d(/>)(X AY) = \(X(j>(Y) - Y(/>(X)), respectively. Then d2 = 0 
and so we may define the Lie algebra cohomology:-

H°(a, V) = kerS : V -> Hom(a, V) 

and 
i r ^ __ kerd : Hom(q, V) -> Hom(A2q,V) 

[a' ] ~ imS:V->Hom(a,V) 

In the particular case that V is the finite-dimensional representation of the |l|-graded 
Lie algebra g = gl(n + 1,R) or g = so(n + 1,1) constructed from E and A; as in §3 
but regarded as a representation of the Abelian subalgebra g_i, it is easily verified 
that the linear transformations d are homomorphisms of g0-modules and a theorem of 
Kostant [5] (see also [6]) identifies the cohomology as gQ-modules:-

(13) H°(g_!, V) = E H^g-i, V) = F = ® * f l l © E. 

The canonical duality between g_i and gi allows us rewrite (12) as 

(14) v A g ^ v A A ^ ^ V 

and there are go-module homomorphisms in the other direction:-

(15) 
б l®v-ŕ-л2

a i®v 
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defined by d*(Z 0 v) = Zv and d*(Z A W 0 v) = Z 0 VVv - W 0 Zu, respectively. 
Kostant's theorem includes an algebraic 'Hodge decomposition':-

(16) V = E©im3* and gi 0 V = im9©F©imd*, 

as ^Q-modules. (Of course, the results in [5] are for higher cohomology too and for any 
|^|-graded semisimple Lie algebra.) 

5. PROOF OF THE RESULTS 

Roughly speaking, the proof is but a diagram chase once a suitable diagram has been 
constructed. The diagram and its properties are obtained as geometric consequences 
of the algebraic discussion of §3 and especially the Lie algebra cohomology of §4. 
Specifically, let us consider the complex (14). It gives rise to a complex of vector 
bundles and vector bundle homomorphisms on M\-

(17) V - £ > A 1 ® V A A 2 ® V . 

It is easily verified that these homomorphisms d have degree 1 with respect to the 
grading (8) on V. (From now on we shall consider only the affine case, Theorem 1. 
The proof of Theorem 2 is word-for-word identical except that, in this Riemannian 
case, there is no need to choose a torsion-free connection V since there is only one.) 
In other words, the series of homomorphisms (11) is extended to 

(18) 0 -> Vj - A A1 0 Vj.i A A2 0 Vj.2 • 

The geometric interpretation of (13) is that this complex is exact except for 

,iqx kerd : A1 0 Vk-i -> A2 0 Vk-2 „ 
1 j jmd:Vk->Al®Vk-i 

where we have used the grading element (10) to locate F C gi 0 V as residing within 
Si ® Vfc-i. It is also useful to know that, as a go-module, F occurs with multiplicity 
one in gi 0 V whence there is a go-invariant projection n : gi 0 V -> F with geometric 
import a canonical surjection of vector bundles n : A1 0 V -> F. 

In addition to algebraic input as above, the diagram we seek needs some differential 
input in the form of a torsion-free affine connection V. Such a connection gives rise to 
an induced connection on all tensor bundles and, in particular, on V. Let us inspect 
the resulting diagram in a typical case, as arising from equation (3) introduced in §1.3 
and completed in §A.2. 

V A AL0V A A20V 
II II II 
D A m 0 B A P e l 

(20) © yS* © S* © 

m©B A Lxn©F©F©@ A LPefflerferf©I 
© ^ © / © 
P A LP©ffl©[F A rff©fT©P©f 

In this diagram, the first column is the vector bundle V as previously identified (6). 
It is graded: V = VQ © Vi © V2. The subsequent columns are obtained by decomposing 
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A' ® Vj into irreducible tensor bundles, easily accomplished by Littlewood-Richardson 
rules [4]. The horizontal arrows denote the action of connections induced from a 
chosen torsion-free affine connection. The sloping arrows denote the vector bundle 
homomorphisms d as in (18). Kostant's Theorem (13) looks very reasonable in the 
context of this diagram: the geometric interpretations (18) and (19) say that 

Vl A A1®^ 

(21) II II 
meB —• meB 

is an isomorphism, that the first homomorphism of the complex 

72 A Al®Vi A A2®V0 

(22) || || || 

EP —> dneFeF©§ —> F©§ 
is injective and the complex has F = rxD as its middle cohomology, and that 

A 1 ® ^ A A2®VX 

II II 
ff^efflerf —> B^©ffl©f?©r?©§ 

is injective. 
Another key feature of the diagram 

V Al®V A2®V 

II II II 
Vo A A1®^ A A2®V0 

e J~ e J^ © 
(23) V! A Al®Vx A A2®Vi 

e JU e J^ © 
V2 A A 1 ® ^ A A2®V2 

in general is the following:-

Proposition 1. As operators V -> A2 ® V, we ftave V3 = —9V. 

Proof The formulae for 9 in (12) easily imply that the composition 

on M coincides with —d. Being induced from a homomorphism of GL(n, R)-modules, 
the vector bundle homomorphism d : V —> A1 ® V is certainly compatible with V. 
This means that the diagram 

V A Al®V 
(24) vj, vj, 

Ai®V Jl®£> A 1 ® ^ ® ^ 
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commutes. As V is torsion-free, the operator A1 ® V —> A2 ® V is unambiguously 
defined either as the composition 

or, as is more usually done, by the formula V(u; <S> £) = duj®JE — u A VE. Our result 
is now obtained by following the commutative diagram (24) with the homomorphism 

A l ® A 1 ® V - - - ^ > A 2 ® V - • 

We may now define the connection V that appears in Theorem 1:-

V = V - S : V — • A 1 ® V . 

Our chosen torsion-free connection acts on all tensor bundles and therefore has an 
associated curvature on each. We shall abuse notation and write K for any of these 
curvatures. In particular, the homomorphism K : V —> A2 ® V respects the grading of 
V but each component Vj -> A2 ® Vj will also be denoted K. NOW, with reference to 
diagram (23), Proposition 1 implies that 

(25) (V - d) (V - d) = V2 = K : V -> A1 ® V. 

In effect, this says that the curvature of V is the same as that of V on V. 
We are now is a position to present a proof of Theorem 1 as it applies to linear 

operators with symbol as in (3). Specifically, by chasing the diagram (20) we will be 
able to find the form of the closed system (A.2) and prove that it is equivalent to the 
overdetermined equation (3), without performing any calculation. Having done this, 
we will be able to manufacture, from lower order linear terms, the homomorphism 
$ : V -> A1 ® V predicted in Theorem 1. The proof of the general case is similar 
except for a few technical details, which we shall discuss later. 

Recall (21) that d : Vi -> A1 ® V0 is an isomorphism. Let 5 denote its inverse. 
Then V<5V : Vo —• A1 ® Vj. is canonically identified with a »-> V(Va) as a differential 
operator E —> A1 ® A1 ®E. (In [1] these identifications are carefully distinguished but 
here, and from now on, canonical identifications will be written as equality.) Recall 
that 7T: A1 ® V\ -> F is the canonical projection. We conclude that 

(26) TTVCSV = D:E->F 

where D is the differential operator aa H-> V(0V6(7C) occurring in (3). 
To proceed further we must choose splitting homomorphisms 

(27) Vj f 4- A1 ® V;_i < i - A2 ® Vj-2, for j>2. 

The flo-module homomorphisms 9* as in (15) are easily modified for this purpose. 
Though d* is not necessarily a left inverse to the injection 

V; A f l i S V , - - ! , for j > l , 

the Hodge decomposition (16) implies that ker3* provides an invariant complement to 
imd and so we can define an algebraic splitting 5 with the same kernel. The geometric 
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consequence of these considerations is a canonical construction of complexes (27) of 
vector bundle homomorphisms so that we have a 'Hodge decomposition* 

=ker<* 

V = E®im5 and A1 ® V = im3© F©im<J 
=ker# 

as before but, in addition, d = dSd and 6 = SdS. We are now in a position to define 
the differential operator L : E -> V of Theorem 1 in complete generality:-

Lo - E -> VQ is the identity and Lj : E -> Vj is given by Lj = (c5V)J. 

Having added the splitting homomorphisms S to the diagram (20), we may proceed 
by a series of simple steps, as follows. Firstly, we observe that 

(28) {a e T{E) s.t. Da = 0} =" {E e T(V) s.t. VE e imJ} , 

the isomorphism being given by E = Lcr and, conversely, a = E0. This is just pure 
thought and diagram chasing. The second step is to rewrite the right hand side of 
this isomorphism to move towards the right hand side of (9). To this end, let us write 
VE = ^ e imS and apply V - d to this equality. By (25), we conclude that 

d% = Vtf - /cE and # e im 5 

whence 

tf = 6d$ = <5V# - <kE. 

This allows us inductively to deduce that 

^o = 0 
* ! = J W o - SKEQ = - SKZQ 

V2 = S V*i - (J/cEi = - JVJ/cEo - J/cEi. 

Recycling this information, we have shown that VE € im S if and only if 

VE0 = flEi 

VEi = <9E2 - SKZQ 

VE2 = -<J«Ei - JVcJ/cEo. 

This is just one step away from the closed system we seek. The only problem with 
the right hand side of this system is the term SVSKEQ, which contains a derivative. 
It may be rewritten as follows. Because S is compatible with V (cf. (24)), we have 
SVSKHQ = O^V/CEQ where S^ is the composition 

Furthermore, by the Leibnitz rule, V/cE0 = (Id ® «)(VE0) + (V/c)E0. But VE0 is 
already determined earlier in the system: it is 3Ei. If we make this replacement, then 
we have eliminated all derivatives of E from the right hand side:-

VE0 = 3EL 

(29) VEX = 5E2 - SKXQ 

VE2 = - foEi - J(2)(Id ® /c)0Ei - <J<2>(V«)E0, 



102 MICHAEL EASTWOOD 

In other words, the system has closed! Referring back to Theorem 1, we see that (9) 
is established for D the differential operator aa i-> V(aVtac) as in (3). More precisely, 
we should take $ : V -> A1 ® V given by 

(30) Ф 
S2 

0 
ÍKEQ 

[ SKZI + 5®(Id 0 K)9ZI + ÓM(VK)ZQ J 

The construction of $ is completely canonical, as asserted in Theorem 1. Notice that 
very little detail was used concerning the operator D. Exactly the same argument 
goes through for any operator 

acd.~e ^ V(a Vfc<7c),i...e , where Ocd^ = <T[cd~.e) 

simply because it's a second order operator with 1V = 2, whence the form of the 
corresponding diagram is unchanged. Though the detailed meaning of d, 5, and «, 
therefore of $, will change a lot, the form (4) of the final connection V = V + $ 
will also be unchanged—it can be seen in (29). In any particular case, the tensorial 
meaning of 5> for example, can be quite complicated. This is already beginning to 
show itself in §A.2 below. 

The case of first order operators D : E —> F of the form 

(31) E A Л ^ Ě Л A 1 ^ ^ 
having N = 2 is also covered by exactly the same calculations as above. The formula 
D = 7rV replaces (26) but the first observation (28) is still valid and from then on the 
argument is unchanged. The E for which N = 2 have the shape 

ШЧ. 

?f 
any non-zero height 

any height. 

As a variation on argument above, let us consider the inhomogeneous equation 

V(0 V6c/C) = 6abc, where 0^ = 0 ( a 6 c ). 

So, 6 is a given section of F and we consider the equation Da = 0. Since F occurs 
with multiplicity one as an irreducible tensor subbundle of A1 ® V, we may consider 9 
as a section of A1 ® V. Its only component is in A1 ® V\. If we follow the same steps 
as above, then the first observation is that 

{a E T(E) s.t. Da = 0} £ {E 6 r(V) s.t. VE - 0 G im 5} . 

In the second step, as before, we write VE - 0 = \I> and find, bearing in mind that 
80 = 0 (since F c k e r d ) , 

# = (,W-<teE-f-<5V0. 

Inductively, we deduce that 

#o = 0 

* ! = (JV*0 ~ 5KEQ + 5V0Q = -J/cEo 

# 2 = <$v$i - SKEI + (SV0i = -SVSKEQ - tocEi + <SV0. 
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The only change to previous calculations is the extra terms 9 and SV9. The final 
outcome is that a i-> La defines an isomorphism 

{a e r(E) s.t. Da = 0} <= {E e V(V) s.t. VE + f (E) = 0 } , 

where $ : V —> A1 ® V is exactly as before and 9 is the section 

0 
9 

, <>V0 . 

of A1 ® V. If, instead, we had started with D being a first order operator (31) with 
N = 2, then we would conclude that the inhomogeneous equation Da = 9 can be 
prolonged to the equivalent closed system VE = G where V = V + $ with $ given 
by exactly the same formula (30) but 

r e 
9= sve 

{ (SV)29 ) 

To finish with the case of operators with symbol as in (3) we must consider the 
effect of lower order terms in the diagram chases presented above. Having fixed a 
torsion-free connection, the general operator under consideration has the form 

oa^V{aVbac)+Yabc
deVdae+Yabc

dGd where Yabc
de = T(a6c)

de and Tabc
d = T(a6c)

d. 

In other words, the general equation has the form 

(32) -Da + r tVa + rVx = 0, 

where r i : A1 ® E —> F and r 0 : E -> F are given homomorphisms. Let us pause to 
note that the isomorphisms VQ = E and d : Vi -> A1 <g> E allow us to identify Fj as 
homomorphisms r̂ - : Vj -> F <-> Vi. Now let us reconsider the result just obtained for 
the prolongation of the inhomogeneous equation Da = 0. In detail, we obtained the 
closed system 

VE0 = 9EX 

VEi = 9E2 - J/cEo + 0 

VE2 = -5/cEi - cJ^(Id ® K)aLx - <S(2)(VAC)E0 + 5V0 4 

This system is equivalent to (32) if we take 0 = -riVcr-Tor/. The first equation, since 
it does not involve 9, allows us to write 0 = -V iEi - r0E0 in the second equation:-

VEi = 9E2 - .TiEi - <fcE0 - r0E0 • 

This, in turn, allows us compute 

V0 = -rx A VEi - (vro A EX - r0 A VE0 - (vr0) A E0 

= - r ! A (5E2 - .TiEi - 5/cE0 - r0E0) 
- (vro A Ei - r0 A SEi - (vr0) A E0 

= -V! A 9E2 + Ti A TiEi - (VVi) A Ei - r0 A dZi 
+ Ti A cJ/cEo + Ti A r0E0 - (Vr0) A E0, 
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where Tj A _ is interpreted as a homomorphism A1 ® Vj -> A2 ® Vi and VTj A _ as 
a homomorphism Vj -» A2 (8) Vi. When substituted into the third equation, this gives 
a closed system as predicted by Theorem 1. More specifically, we have established 
Theorem 1 for second order linear differential operators with symbol 

so that, having chosen a torsion-free afrme connection V and having written the equa­
tion Da = 0 in the form (32), we have constructed the required $ : V —•> A1 (g> V by 
means of the formula 

Ф 

E2 

0 

riEi + r 0 E 0 + ^ E 0 

<$(ri A SE 2 ) - <*(ri A TiEi) + (?((vri) A EX) + <y(r0 A 5E X ) 
+ (5/cEi + (J(2)(Id(2)/c)9Ei 

- <s(ri A <kE0) - j(ri A r0E0) + <s((vr0) A E 0 ) + ^ 2 ) ( V « ) E 0 

as a generalisation of (30). Though this looks a little complicated, it is simply a result 
of following a well-defined series of simple steps and one's nose. The entire rewriting 
procedure is canonical, once V has been chosen. 

Save for one technical point, the general case is only notationally more complicated. 
There are always three steps to be taken:-

• express the equation to be prolonged in terms of V and an unknown ^ G imo"; 
• apply V — d and formula (25) inductively to determine \I/; 
• pass down the resulting system, using the Leibnitz rule inductively to eliminate 

any derivatives from the right hand side. 

The technical point is concerned with making sure that any derivatives on the right 
hand side can, indeed, be eliminated. We shall conclude this article by explaining this 
technicality. Incorporating it into a formal proof with careful inductions is done in [1] 
(which also covers the somewhat more awkward semilinear case and also some more 
general G-structures (which necessarily involve using affine connections with torsion, 
again increasing the level of awkwardness)). 

Let us recall the complex (18). Knowing its cohomology immediately yields:-

Proposition 2. If k > 2} then d : Vi -» A1 ® VJ, is an isomorphism. If k > 3, then 

0 -> Vj A A1 ®Vj-X A A2 ®Vj_2 

is exact for2<j<k-l. 

We used the first of these statements when k = 2 to identify D as 7rVc$V in (26). To 
generalise this identification we can employ the second statement as follows. 

Proposition 3. For j < k — 1 there is a canonical identification Vj = Q3 A1 ® E. 

Proof The case j = 0 is true by choice of V. The case j = 1 is the first statement 
in Proposition 2. Higher j are proved by induction from the second statement of 
Proposition 2, which now proclaims the exactness of 

0 _> Vj; -A A1 ® O 5 ' " ^ 1 ^ A A 2 ® O ' " 2 ^ 1 ® E. 
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As in the proof of Proposition 1, the second d-operator is (save for sign) given by 
skewing over the first two tensor indices with E simply going along for the ride. Its 
kernel is clearly ©'A1 ® E, as required. • 

Having introduced the splitting homomorphisms 5:-

Vj +£_ A 1 ® ^ f i - A2® I/,-., 

II II II 
QjAl®E ^ - A1 ® © ' ^ A 1 ® £ ^- A2®Qj-2Al®E if 2 < j < A; - 1, 

it is tempting to believe that the differential operator 

{6V)j :E-+Vj = ©'A 1 ® E 

coincides with the composition 

E - Z % 0 ' A 1 ® E -22±> ©'A1 ® E 

for j = 2,3, • • • , A; - 1, as it does when j = 1. Were this to be true, then (26) would 
be generalised, namely D = nV(SV)k~l would be the composition 

E - ^ Q 'A 1 ®E A Q 'A 1 ®E 

and we would able to proceed just as before. Unfortunately, this is not true. In 
general, it is only true that the symbol of the operator D = 7rV((5V)*-1 is the Cartan 
product. The problem is that the splitting operators S determined by d* as in (15) do 
not necessarily coincide with the 'naive* splittings 

0'A1 A A1®©''"^1 <i- A 2 ® © ^ 1 

s s 
V{ab-c) < ' Vab-c ^o(t-c) < ' Wab-c = V[ab]c-d 

tensored with E. That there is a choice in S) simply as a splitting of 9, can be 
seen already in (22) because the bundle LP occurs with multiplicity two. There are 
two possible workarounds. One is to choose the naive splittings for 2 < j < k - 1 
and perhaps stick with those constructed from d* for j > k (though, in fact, any go-
invariant splittings of the representation complexes will do). The other possibility (the 
one adopted in [1]) is to use the naive splittings to conclude that any operators D = 
7rV(5V)A:-1 and, in particular, those constructed from 9*, have the Cartan product as 
symbol but that this is good enough in the prolongation procedure because the final 
pass down the system with the Leibnitz rule will, in any case, eliminate any derivatives 
frorrr the right hand side. With regard to this final pass, Proposition 3 is crucial: the 
zeroth component of the equation 

V£ = ( V - 9 ) £ = #<Eimo" 

says that Ei = <S(VE0 - #0) = <$V£0 = ^Va, which Proposition 3 allows us simply 
to view as saying that £1 = Va. Hence, (£0 ,£i) records the first jet of ex. The first 
component of such an equation is similarly viewed using Proposition 3 as saying that 

£2 = J(V£i - tf 1) = <5V£i = 6V<SV£0 = VOV o 4- K txi <r, 

the 'curvature correction terms' being absent when the naive splittings are used. In 
any case, (£0 ,£i,£2) records the second jet of o. By induction, we reach the entire 
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(A; - l) s t jet of a as recorded by (E0, £ 1 , . . . , £jb-i). But this is exactly what is needed 
to prolong an arbitrary linear (or even semilinear) kth order operator. 

APPENDIX A. FURTHER EXAMPLES ON AN AFFINE MANIFOLD 

A.l. Example. Suppose ObC is skew and consider the overdetermined differential 
equation 

(33) V(aa6)c = 0. 

We can rewrite it as 
Vao7,c = fiabc where //a6c is skew. 

Consider the tensors /ia0Cd = ^aP>bcd and aabcd = A-{a6]cd- It is an algebraic consequence 
of being skew in bed that pabCd is determined by aabcd'-

3<70[6cd] "" 2&[abcd\ = 2ria6cd ~ ^{Pbacd + P>cadb + P>dabc) ~ 2^[a6cd] 

= P>abcd - 2 (P'bacd + Vcadb + P>dabc ~ P'bacd + P>cabd ~ P>dabc) 

= A-a6cd • 

However, 

0~a6cd = V[a/i6]cd = ^[a^b)^cd = Rab[c^die 

and so 
Vaflbcd = ^Ra[bec°d[e • 

Therefore, the differential equation (33) is equivalent to the closed system 

^aVbc = A*a6c 1 

Va/i&Ca* = 3i?a[6C
cad]e 

This system of equations may be written as VE = 0 where 

A2 

E = | Ubc | is a section of the vector bundle V = © 
A3 

= í a* } is 
t Џш ) 

and V : V -> A1 ® V is the connection 

V í aЬc Ì = í ^ a ( 7 б c " Џabc 1 
G [ A*6cd J [ VaЏbЫ-ЗRa[b

C

cOd\e J 

A.2. Example. Consider the overdetermined second order differential equation (3). 
If we set /ia& = Vaa&, then 

Vfa/% = V[aV6]<7c = -\Rab
d

cGd • 

Hence, we can rewrite (3) as 

Vaa& = n^ 

Va//6c = - ^ a 6 d c 0 ' d + Pa6c where pa6c = P(ab)c and P(abc) = 0 . 

Consider the tensors pabCd = V0p6cd and f̂l6cd = P[ab]cd- It is an algebraic consequence 
of its symmetries that pa6cd is determined by fiabcd'-

Pabcd = 4/Za-(a6c) + sP>a(bc)d • 
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However, 

Pabcd = V[aPb]cd = V [ oV6]/icd + \V[a(Rb]c
edae) 

= ~~2 a& c/^ed ~~ 2 °^ dP'ct 

+ l{VlaRt]c
e
d)ae + ±iVdV0ae - \R^tV^r. 

= —2^06 cP>td ~~ 2-^06 d/^ce 

+ 2(^[<-^]ced)0e + lRbcedPat — ^Rac dPbt • 

Therefore, the differential equation (3) is equivalent to the closed system 

Vacr6 = /xa6 

V a / i 6 c = Ai6c - ~;-Ra6 c<~d 

Va /?6 cd = ~~2.Ra-(a
e

6/Z|e|c) ~ 3-Ro(6ec)^ed ~~ 3Rd{a6bP>c)c ~~ #a(6e|d|/Jc> 

+ (V(a-R6|d|Cc)K + ^ V ^ a ' d K 

where p^d = P(6c)d and p(bcd) = 0. 

A.3. Example. Consider the overdetermined second order differential equation 

(34) the trace-free part of V(0V6)<7C = 0. 

If we set p,a = Va<T6, then 

V[a/i6]
c = V [aV6]a

c=iIJa6
c

fl.a
d. 

Hence, we can rewrite (34) as 

Vaa
b = pa

b 

V a / i 6
c =^ a 6

c da~ + p ( A) c , 

where Sa
b is the Kronecker delta. Consider the tensors 

Pa6 = V a p 6 and fab/ = \p[ab]5c
d - \$[adPb]c • 

Then p^ is determined by /ia6c
d:-

P* = 3(n+lKn-l) ( ( n "" - ) ^ C + ( 2 n + l ^ ^ ° + ( n + 2)^ca°) • 

However, 

/ia6c" = V [ a V 6 ] / i c
d - | V [ a ( f l 6 ] c V ) 

= ~2^a6ec/^e + 2-^06 eA-cC 

~~ \(V[aRb]cdc)0e - | I 2 6 c
d

e V a c / e + | - R a c
d

c V 6 a e 

= — 2^a6ecMe + 2^06 e/̂ cC 

~~ 2{V[aRb]c e)<?e ~~ 4-#6c e,-V + 4-ftac c l V -
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Therefore, the differential equation (34) is equivalent to the closed system 

Va(J
b = Hab 

VaM6C = P{aSb)C + \R<*dPd 

VaA> = (n+lKn-1) i ^ + W ^ " (2n + ^ ^ ~ (n + 2)R^a 

- (Vflflte)ac - n (V 6 # a c )a c ) . 
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