
WSGP 24

Rod A. Gover
Conformal de Rham Hodge theory and operators generalising the Q-curvature

In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 24th Winter School "Geometry and
Physics". Circolo Matematico di Palermo, Palermo, 2005. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 75. pp. [109]--137.

Persistent URL: http://dml.cz/dmlcz/701745

Terms of use:
© Circolo Matematico di Palermo, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701745
http://project.dml.cz


RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 75 (2005), pp. 109-137 

CONFORMAL DE RHAM HODGE THEORY AND OPERATORS 

GENERALISING THE Q-CURVATURE 

A. ROD GOVER 

ABSTRACT. We look at several problems in even dimensional conformal geometry 
based around the de Rham complex. A leading and motivating problem is to find a 
conformally invariant replacement for the usual de Rham harmonics. An obviously 
related problem is to find, for each order of differential form bundle, a "gauge" 
operator which completes the exterior derivative to a system which is both elliptically 
coercive and conformally invariant. Treating these issues involves constructing a 
family of new operators which, on the one hand, generalise Branson's celebrated 
Q-curvature and, on the other hand, compose with the exterior derivative and its 
formal adjoint to give operators on differential forms which generalise the critical 
conformal power of the Laplacian of Graham-Jenne-Mason-Sparling. We prove here 
that, like the critical conformal Laplacians, these conformally invariant operators 
are not strongly invariant. The construction draws heavily on the ambient metric 
of Fefferman-Graham and its relationship to the conformal tractor connection and 
exploring this relationship will be a central theme of the lectures. 

These notes draw on recent collaborative work with Tom Branson. There is also 
significant input from recent joint work with Andi Cap and Larry Peterson. Among 
the results that are completely new here is Proposition 1.1 which proves that the 
conformally invariant differential operators between forms, that we construct here, 
have the curious property that thay are not strongly invariant. Also it is shown, 
in the final section, that the "Q-operators", which were first developed in [6], can 
be recovered by a polynomial continuation argument that parallels and generalises 
Branson's original construction of the Q-curvature. These notes were presented as a 
series of three lectures at the 24th Winter School on Geometry and Physics, Srnf Czech 
Republic, January 2004. 

1. LECTURE 1 - SOME PROBLEMS RELATED TO THE DE RHAM COMPLEX 

The de Rham complex and its cohomology are among the most fundamental of 
tools for relating local differential geometric information to global topology. Over 
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these lectures we shall explore the de Rham complex and related issues in the setting 
of conformal geometry. 

On a smooth n-manifold M, let us write £ or £° for C7°°(M) and £k for the space 
of k-forms, i.e., the smooth sections of the kth exterior power of the cotangent bundle 
AkT*M. Recall that the exterior derivative on functions takes values in T*M and is 
defined by df(v) = vf where we view the smooth tangent vector field v as a derivation 
(so in terms of local coordinates x{ we have vf = 5^f*9//9x*). This is extended to a 
differential operator d : £k -> £*+1 by requiring d2f := d(df) = 0, for f e£, and the 
Leibniz rule dfw = df A w + fdw, w e £k. It follows that d2 vanishes on k-forms and 
so we obtain the de Rham complex, 

£ 0 4 ^ 4 . . . 4 £ » . 

We are interested in the additional operators between the form bundles that arise 
when M is equipped with a conformal structure. Recall that a conformal structure is 
an equivalence class of metrics [g] where two metrics are equivalent if they are related 
by multiplication by a smooth positive function, i.e., g ~ g means there is u e £ such 
that g = e2ujg. We may equivalently view the conformal class as being given by a 
smooth ray subbundle Q C S2T*M, whose fibre at x is formed by the values of gx for 
all metrics g in the conformal class. By construction, Q has fibre R+ and the metrics 
in the conformal class axe in bijective correspondence with smooth sections of Q. 

The bundle 7r : Q -> M is a principal bundle with structure group R+, and we 
denote by E[w] the line bundle induced from the representation of R+ on R given by 
s i-> s~wl2. Sections of E[w] are called a conformal densities of weight w and may be 
identified with functions on Q that are homogeneous of degree w, i.e., f(s2gx,x) = 
swf(gXix) for any s € R+. We write £[w] for the space of sections of the bundle and, 
for example, £k[w] is the space of sections of (AkT*M) <g> E[w]. (Here and elsewhere 
all sections are taken to be smooth.) 

There is a tautological function g on Q taking values in £(a6) := S2T*M. It is the 
function which assigns to the point (gx, x) € Q the metric gx at x. This is homogeneous 
of degree 2 since g(s2gX)x) = s2gx. If o is any positive function on Q homogeneous 
of degree 1 then o~2g is independent of the action of Rf on the fibres of Q, and so 
o~2g descends to give a metric from the conformal class. Thus g determines and is 
equivalent to a canonical section of £a6[2] (called the conformal metric) that we also 
denote g (or g^). Then, for o G £+[1], o~2g is a metric from the conformal class 
and we term o a conformal scale. We will use the conformal metric to raise and lower 
indices. 

Recall that the Levi Civita connection is the unique torsion free connection on 
tensor bundles which preserves a given metric. So on a conformal manifold a choice 
of conformal scale o determines a Levi Civita connection that we will denote V. The 
scale o also determines a connection (that we also denote V and term the Levi Civita 
connection) on densities by the formula V/i = owdo~w\i, for \i e £[w]. (Note that 
owdo~w\x means ow(d(o~w\i)). The default is that in such expressions all symbols, 
except the one at the extreme right, are to be interpreted as operators and parentheses 
are usually omitted.) For g = o~2g the conformal rescaling gt->g = e^g corresponds 
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to a K> a = e~w<7 and so it follows at once that 

(1) Vlz = V/z + wTfi, 

where V is the connection for a and T := du. It is similarly easy to show that, for 
example on 1-forms, the Levi Civita connection transforms conformally according to 

(2) Vaub = Vaub - Taub - Tbua -f g^Uc, 

where abstract indices are used in an obvious way and the inverse of g is used to raise 
the index on Tc. 

To simplify our subsequent discussion let us assume that M is connected, compact 
and orientable, and that the conformal structure is Riemannian (i.e., g ~ [g] has 
Riemannian signature). Via the conformal metric, the bundle of volume densities can 
be canonically identified with E[—n] and so the Hodge star operator (for each metric 
from the conformal class) induces a conformally invariant isomorphism that we shall 
also term the Hodge star operator: • : £fc = £n~k[n — 2k]. Let us write £„_* as an 
alternative notation for the image space here, so we have * : £k = £n_* and more 
generally £k[u)] := £k[w + 2k — n]. This notation is suggested by the duality between 
the section spaces £k and £*• For <p ~£k and ^ _ £*, there is the natural conformally 
invariant global pairing 

<p,^i-> (v?,^) := / <p^d\ig= \ <pM*l>, 
JM JM 

where <p-tp e £[—n] denotes a complete contraction between <p and ip. 
In even dimensions £nl2 = £n/2 and the de Rham complex may be written in the 

more symmetric form 

s ° 4 . . • 4 £nt2'2 4 £ "Z2-14 £ni2 4 ^ 2 . ! 4 £n/2.2 4 . . • 4 £0, 

where 5 is the composition *„•. (Or one could alternatively replace the —> £n/2 --4 with 
_4 £n/2 -».) Of course these operators are all conformally invariant since the exterior 
derivative is well defined on any smooth manifold and the conformal structure is used 
here only to give the isomorphisms •:£*—> £,-,_* and • : £* -* £n~k> Since • maps 
£nf2 to itself we also have the conformally invariant operator 5 : £nl2 -> £nj2-i- This 
does not annihilate the exact forms; in fact in terms of the global pairing introduced 
above we have (<p, 5d<p) = (d<p, d<p) and so, in the compact setting, 5d<p = 0 implies 
d<p = 0. Rather the composition 5d : £n/2 _ 1 —> £n/2_i is the well known conformally 
invariant Maxwell operator. (In dimension 4 and Lorentzian signature this gives the 
equations of electromagnet ism.) Thus we have the Maxwell detour complex, 

e o 4 • • • 4 £"!2-2 A e "l2-1 -4 snn., A sn/2.2 A • • • 4 s0. 
This really is symmetric since, for each k, the operator 5 : £k+i -> £k is (up to a 
sign) the formal adjoint of d : £k -> £*+1. It is convenient to absorb this sign and 
redefine 5 to be exactly the formal adjoint, i.e., so that (^,5^) = (d<p,ip) for <p ~ £k 

and ip G £jb+i- The Maxwell operator and this detour complex are a feature of even 
dimensional conformal geometry that we wish to study and generalise. There are not 
analogues in odd dimensions and so, for the remainder of this lecture (except where 
otherwise indicated), let us suppose n > 4 is even. 
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As a point on notation. We will use L(>) and e(-) as the notation for interior and 
exterior multiplication by 1-forms on differential forms. For a 1-form u and a k-form 
v the conventions are 

(e(ti)u)ao...oA = (k + l)uaoVai...afc, and (t(u)v)a2...ak = uaivaia2...ak. 

Here, and below, sequentially labelled indices are implicitly skewed over. 

1.1. The problems. We are now set to state and consider a series of fundamental 
problems concerning the de Rham complex on conformal manifolds. 

Problem 1: Conformal Hodge theory. Let us write Hk(M) for the kth cohomology 
space of the de Rham complex. If M is equipped with a Riemannian metric <?, then 
de Rham Hodge theory exhibits an isomorphism between Hk(M) and the space of 
harmonics Hk(M). The latter is the null space of the form Laplacian fi = 5d + d5 on 
fc-forms or, alternatively, it is recovered by 

Uk(M) = M(d : £k -> £M) nM(5 : £k -> £k^). 

Here 5 is not, in general, the conformally invariant operator described above but 
rather just the Riemannian formal adjoint of d. For u = uai_ak a /c-form we have 

(du)ao.„ak = (k+ l)Vootiai. . .o f c i 

since the Levi Civita connection is torsion free. Thus S is given by 

^ao...afc l—^ — V VaQ.„ak . 

This agrees with the conformally invariant 5 only if v G £*; since only then is the 
integration by parts a conformally invariant operation. (A point on notation: we will 
write du to mean (k +1)Vaowai...0jk and Sv to mean -Vaovao..Mk even when the density 
weights of u and v are such that these are not conformally invariant.) Note that 
£k = £k ® £[n — 2k]. Thus from the Leibniz rule for V and (1) one immediately has 
that, on £k, 

S = 5-(n- 2*)t(T). 

Thus this is conformally invariant if k = n/2 and also if k = 0 (since both sides then 
act trivially) but not otherwise. So K°, which is just the space C° of constant functions, 
is conformally invariant and so also is Hn/2. Otherwise the harmonics Hk move in £k 

depending on the choice of metric. The problem is to find a replacement space which 
is both isomorphic to Hk(M) and stable under conformal transformations. 

Without drawing on the details of Hodge theory we can see at the outset that the 
Riemannian system (d, S) has a finite dimensional null space, since it is an elliptically 
coercive system. The notion of (graded) ellipticity we are using here, and below, is 
that the operator concerned is a right factor of an operator with leading term a power 
of the Laplacian. In this case the power is one: 

(M) ( J J=-A + LOT, 

where A denotes the Bochner Laplacian VaVa and LOT indicates lower order terms. 
This analysis suggests another problem. 
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FIGURE 1. The conformal de Rham diagram in even dimensions 

£ o 4 • • • 4 5nl2-2 4 en'2-14 e «l2 *4 en,2^ 4 sn,2.2 4 • • • 4 e0, 
I | Ln/2-\ =Sd | 1 

r I Ln/2-2  
LO 

Problem 2: Gauge companion operators. For each k attempt to find a differen
tial operator Gk satisfying the following: 
1. Gk is conformally invariant on the null space Ck := M{d : £k -> £*+1). 
2. (In a choice of scale) the system (d, Gk) is elliptic. 

On even dimensional manifolds there is another family of conformally invariant 
operators between differential forms. These are operators: 

Lk:£
k-*£k Lk = {Sd)n/2~k + LOT k e {0,1, . . . ,n/2} 

which we will term the long operators since they complete the de Rham complex to 
the picture in figure 1. While for k > 1 the existence of operators between the bundles 
concerned can be concluded from the general results of Eastwood and Slovak in [16], 
these are not unique and it turns out that our problems above are related to the 
possibility of a special class of such operators. 

Problem 3: A preferred class of long operators. The problem here is to attempt 
to establish existence of, or even better give a construction for, conformally invariant 
operators Lk: £k -> £k which factor through S and d in the sense, 

(3) Lk = 5Mk+ld. 

Such operators exist in the conformally flat case and we want the Lk to generalise these 
flat case operators. The operators sought should also be natural, that is in a choice of 
scale they should be given by a formula polynomial in the Levi Civita connection V 
and its curvature R. 

For k = n/2 — 1 the solution to this problem is the Maxwell operator Sd mentioned 
above. Somewhat more compelling evidence that there could be a positive solution to 
this problem, in general, dates back to Branson's [2] which provides direct construc
tions of such operators at orders 4 and 6 (i.e. on, respectively, £n/2~2 and £n/2~z). 
At the other extreme of order Graham et al (G JMS) [24] give an order n conformally 
invariant differential operator Pn : £° -> £Q which has the desired form (3). 

A powerful, and well understood, tool for generating conformally invariant opera
tors from other appropriate conformally invariant operators is the curved translation 
principle of Eastwood and Rice [13, 12]. However this does not predict the operators 
Pn. The existence of these is subtle and the construction of GJMS uses the ambient 
metric of Fefferman-Graham. We will see below that the curved translation principle 
cannot in general yield operators of the form (3). Before we discuss these difficulties, 
we draw in the final main problem which is linked to the GJMS operators. 

For each even integer n0 > 4, the construction of GJMS gives, not just an operator of 
order n0 in dimension n0, but an order n0 conformally invariant differential operator 
Pno = An°/2 -f LOT for all odd dimensions and for even dimensions n > n0. It is 
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an observation of Branson [3, 4] that, in any choice of scale, these take the form 
6Mid+ \(n - n0)Q(n,n0), also that there exists a universal expression for the order 
zero part Q(n,n0) which is rational in n (without singularity at n0) and that setting 
n = no in this yields a remarkable curvature quantity Q := Q(n0,no). This has the 
conformal transformation 

(I) Q* = Qg + Pnou where g:=e*"g. 

In dimension no, Pno = SM\d and so H(Pno) C 11(5). Thus Q gives a conformally 
invariant operator 

(II) Q:C°-^H0(M)^Hn(M)i 

by c i-> [cQ]. Also Q has density weight -no and so, since Ti(Pno) C 71(5) and Q 
transforms conformally as in (I), it follows that f Q is a conformal invariant. In the 
conformally flat case f Q recovers a non-zero multiple of the Euler characteristic and 
so the map (II) is in general non-trivial. In fact the operators Pno are (formally) 
self-adjoint so more generally we have, 

(III) c£C° and u 6 N(Pn^) =>- / uQc is conformally invariant. 

It turns out that the Q-curvature has a serious role in geometric analysis and low 
dimensional topology [10, 11]. There are also connections with the AdS/CFT cor
respondence of quantum gravity [18] and scattering theory [25]. There have been 
recent alternative direct constructions of Q via tractor calculus [22], and the ambi
ent construction [19], which avoid dimensional continuation. However there are still 
many mysteries. In particular an important question is whether there are other similar 
quantities. 

Problem 4: Understand/generalise Branson's Q-curvature. Broadly the prob
lem here is to find an analogue or "closest relative" of the Q-curvature for forms. Aside 
from shedding light on the Q-curvature itself, the idea is to investigate the existence 
of other objects which are not conformally invariant locally and yet, by some analogy 
with (I), (II) and (III) above, yield new global conformal invariants. 

1.2. Earlier work. The 4th order GJMS operator P2 is first due to Paneitz [27]. In 
dimension 4 this acts on functions and (given a choice of metric g) has the formula 

<5(<W + 2J -4Pjt)d. 

Here P is the Schouten (or Rho) tensor, viewed as weighted section of End (T*M), J its 
trace and ft is the obvious tensorial action. Recall these are related to the Ricci tensor 
for # by Ric(#) = (n-2)P+J^. Thus, in dimension 4, the operator G = |U"(GW+2J-4PJ|) 

is conformally invariant on exact 1-forms. It is easily verified by direct calculation that 
G is also conformally invariant on the space of closed 1-forms and hence also on the 
null space of the Maxwell operator. Eastwood and Singer made this observation and 
proposed G as a gauge operator for the Maxwell operator [14]. Note that 

^ r f ) ( ш + L O т ) = Л 2 + L O T -

and so (d, G) gives a solution to problem 2 for d on 1-forms in dimension 4. 
It was observed by the author and Branson [5] that this gauge operator can be 

recovered from an adaption of the curved translation principle. This idea also provides 
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a conceptual framework and practical approach to constructing gauge operators for 
many other conformally invariant operators. First we need the basic idea of the tractor 
connection and its associated calculus. 

Any conformal n-manifold, such that n > 3, admits a unique normal tractor bundle 
and connection. The tractor connection is a connection on a vector bundle that we 
term the standard conformal tractor bundle T. We write T for the space of sections 
of T. For a choice of metric g from the conformal class this bundle can be identified 
with the direct sum [T]g = £[1] © El[l] © .E[-l], where El[l] means T*M <g> E[l]. 
Assigning abstract indices we could instead write [TA]g = E[l] © Ea[l] © 25[-l]. Thus 
a section V € T then corresponds to a triple (a, /x, p) of sections from the direct sum 
according to VA = YAa + ZAbp,b + XAp (where this defines the "projectors" X, Z and 
Y). Under a conformal rescaling g i-> g = e^g, this triple transforms according to 

(4) [V],= ( w ) - > [ T t St o)[l)=[V}-9 

\p J \ -iT«Ta -T- 1 J \ p J 
where T := du. It is easily verified that this determines an equivalence relation on the 
triples over the equivalence relation on metrics and hence the quotient gives T as a well 
defined vector bundle on (M, [g]) with a composition series T = £[1] G-i^l] 8-.E[-l] 
(meaning that E[— 1] is a subbundle of T and Ex[l] is a subbundle of the quotient 
T/El-l}). 

In terms of this splitting for g the conformally invariant tractor metric is given by 
h(V} V) = <7aVa/4> + 2ap. The tractor connection [1] is given by 

( V a C * - JJLa 

V ap-P a 6 /46 

In terms of this formula, the conformal invariance of the connection is recognised 
by the fact that the components on the right-hand-side transform, under conformal 
rescaling, according to (4). In subsequent calculations we will often omit the []g which 
emphasises the choice of splitting, since, in any case, this should be clear by the 
context. For the purposes of calculations it is often more convenient (see [22]) to use 
that the connection is determined by 

(6) VaXA = ZAa, VaZAh = -?abXA-YAgab, V a ^ = P a 6 Z / , 

and the Leibniz rule. The tractor bundle and connection are induced by, and are 
equivalent to, the normal conformal Cartan connection, see [9]. 

The bundle of k-form tractors Tk is the A;— exterior power of the bundle of standard 
tractors. This has a composition series which, in terms of section spaces, is given by 

(7) Tk = A*T =* £k"l[k] 6- [Sk[k] © Ek~2[k - 2]) ^£k~l[k - 2]. 

Given a choice of metric g from the conformal class there is a splitting of this compo
sition series corresponding to the splitting of T as mentioned above. Relative to this, 
a typical fc-form tractor field F corresponds to a 4-tuple (a, /x, (p, p) of sections of the 
direct sum (obtained by replacing each 9- with © in (7)) and we write 

F = Y*-a + Z*-/x + W*.<p + X*-p, 
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where '•' is the usual point wise form inner product in the tensor arguments, 

yip = ~-(pai'"apipai...ap for p-forms, 

and for k > 1, if A denotes the wedge product in the tractor arguments, then we have 

(8) Zk = ZAZk-\ Xk=XAZk-\ Yk = YAZk-\ W* = XAYKZk~2. 

By convention, Z° = 1 and Z"1 = 0. The connection on T gives a (conformally 
invariant) connection on Tk by the Leibniz rule. Under a change of scaled = e^g, it 
follows from the transformation law for the standard tractor bundle (4), that 

X = X , 
JZ = Z + e(T)X, 
W = W - * ( T ) X , 
Y = Y - A(T)Z - e(T)W+ |(e(T)t(T) - *(T)e(T))X, 

where again T = du and the interior and exterior multiplication apply to the tensor 
indices of the X, Z, W and Y projectors. 

We are now ready to investigate gauge operators for the Maxwell operator on £nl2~l. 
By (7) the forms £k turn up at the Zk slot of Tk[-k]. It is straightforward to verify, 
using the formulae above, that 

(9) /z»-» [ џ , k = l a n d / z i - W џ 0 , k > 2 

are conformally invariant differential splitting operators 5* : £k —• Tk[-k]. 
Now recall the Yamabe operator (or conformal Laplacian) 

D = - V a V a - ( l - n / 2 ) J 

is conformally invariant on the densities £[1 — n/2]. In fact this same formula also 
gives an invariant operator on the sections of £[1 - n/2] ® U, where U is any vector 
bundle with connection, provided we view V as the coupled Levi Civita vector bundle 
connection. Operators with this property are said to be strongly invariant. (This is 
just a slight variation of the notion introduced in [12].) To see this one can simply 
observe that the direct calculation, using (1) and (2), which verifies the invariance of 
D does not require the commutation of covariant derivatives. In particular we may 
couple with the tractor bundle. As an immediate application, note that Sn/2-i takes 
values in Tnf2-l[l-n/2] and so the composition D5n /2-i : £n/2~l -> T ^ - ^ - l - n / ^ 
is conformally invariant. 

In dimension 4, for example, /J, is a 1-form and we should (following [5]) calculate 
( -V a V a + J)(Z-/ti + K|o» using (6). This yields 

( ° w ° 
SdjjL J = Sd/JL 

\ iJ(cM/i + 2J-4P| | )Ai/ V G/x 
We have recovered exactly the Maxwell operator and Eastwood-Singer gauge pair. 
Since this construction is conformally invariant it is immediate from this final formula 
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that G is invariant on the null space of the Maxwell operator 5d. This construction 
is in the spirit of the curved translation principle of Eastwood et al. [13, 12]; we have 
obtained the (operator, gauge) pair by translating from the Yamabe operator. 

Buoyed by this success we are drawn to immediately try the same idea to obtain 
a gauge operator for the Maxwell operator in higher even dimensions. However this 
time we find that, for /i € £n/2--y we get 

• f /i 0 J = f (W + C(ttt)/i 0 J , 
V (n - 2k)-1(S/z / V \SdSp + <J(J/i) - 2Pflo> - 25(P)t/i) + \CW» J 

where C is the Weyl curvature of the conformal structure (recall the Weyl curvature is 
conformally invariant) and in the Cjtjt action we view this as a (weighted) section of the 
tensor square of End(T*M). We see here that, unfortunately, the Maxwell operator 
does not automatically turn up as the leading slot. We did not encounter this in 
dimension 4 because when /i is a 1-form Cjljt/i vanishes (since C is trace-free). Of 
course Cj))t/i is conformally invariant but we cannot simply subtract this and maintain 
conformal invariance without also adjusting the X-slot. The existence of a correction, 
in such circumstances, is a delicate matter. It turns out that in this instance there 
is a fix. The output above decomposes into a sum of conformally invariant tractors 
according to 

(10) ( Sdp 0 J + f CJtt/i 0 
V \5d5ix + 5(J/i) -2<5(Ptf/x) J \Y.fi + \CMH 

where Y = Yab
c := VaP6

c - V*Pa
c and Y • /i means - £* = 2 yai6

a-/iai...6...afc. 
So Gn/2-1 -= \6d5 + 5(S) - 25(Pjt) is a gauge operator for the Maxwell operator 

(and so also for d) in all even dimensions. By construction it is conformally invariant 
on M(d) C M(5d) (in fact this is an equality in the compact Riemannian setting) and 
from our earlier observations it combines with d to give an elliptic system. Finally 
note that if we apply the Maxwell operator plus gauge system to an exact \x = dv we 
obtain 

0 
0 0 

Gn/2-ldv 

since Sd annihilates exact forms. In the alternative notation this is 

XGn/2-idv = xfydSp + 5(JJJL) - 25(?^)du). 

Since this is conformally invariant by construction, X = X, and the coefficients in the 
other slots are all zero, it follows that 

(11) {Gn/2-id = l-5(d5 + 2J - 4Pjt)d) : £n^2 -> £n/2_2 

is a conformally invariant long operator of the form proposed in problem 3. 
Although we have succeeded in pushing this calculation through there are are two 

main problems which suggest that this approach would be difficult, if not impossible, 
to generalise sufficiently to deal with our problems 2 and 3 in general. One is that 
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even at the low order of example treated, the calculations leading to the results pre
sented were non-trivial and involved, for example, the Bianchi identity V[aRtc]de = 0. 
More seriously the decomposition in (10) involved inspecting the explicit formulae and 
solving equations to extend the CJijJ/i term to a conformally invariant tractor operator. 
Ab initio one does not know that this will succeed. The weight of CJjl/i is exactly such 
that the standard tools using Lie algebra cohomology [7] or central character as in the 
theory of Verma modules [16] fail to indicate the existence of this extension. 

As a final point, in this lecture, let us note that the operator (11), and the proposed 
higher order analogues, are not strongly invariant. We can easily see this directly for 
(11). Let us write G := Gn/2-i and note first that, from the transformation formula 
Z = Z + e(T)X and the invariant splitting (10), it follows that G = G - i(T)Sd. 
This is also readily verified by direct calculation using the conformal transformation 
formulae (1) and (2) for the Levi Civita connection. Now consider a coupled variant of 
G acting on a vector bundle valued (n/2 - l)-form /i. Suppose that the vector bundle 
has a connection A, with curvature F, and GA is given by the formula above for G, 
except that d and 5 are replaced by their connection coupled variants dA and 6A. Now 
the direct computation of the conformal transform of this, GA/JL, is the same as for 
the case of forms except that now vector bundle curvature terms may enter from the 
commutation of derivatives. Given that GA is just a 3rd order operator one easily sees 
that 

GAn = GA[i - L(T)5AdAii + T-F./i, 

where T-F-/2 indicates a sum of terms linear in T, F and \x. Now let us suppose that 
H = dAv where the vector bundle valued (n/2-2)-form v satisfies dAv(p) = 0 for some 
point p € M. Note that dA is conformally invariant on v. Then, at p, \x vanishes and 
we have 

GAdAv = GAdAv - L(T)5AdAdAv = GAdAv - L(T)6AF A v, 

where F A v includes an implicit curvature action on v. It is an elementary matter to 
verify by example that the term L(T)5AF A v does not vanish in general. Thus GAdA 

is not conformally invariant, and so (11) is not strongly invariant. 
The operator (11) is not unique. For example we could add to it the conformally 

invariant term SC^d. It is natural to wonder if there is some modification which still 
has the form 6Md but which is strongly invariant. One needs to be careful considering 
such arguments since strong invariance is really a property of the formulae for operators 
rather the operators themselves. Nevertheless we will show that in fact, apart from 
the 2nd-order Maxwell operators 6d, none of the operators sought in problem 3 can 
be strongly invariant. (That is there are not strongly invariant formulae for these 
operators which have the form 5Md.) This means that they cannot be obtained by the 
usual use of the curved translation principle since that procedure involves composing 
strongly invariant operators to obtain new strongly invariant operators. This is an 
important feature of the desired operators, so we state the result as a proposition. (In 
fact we give a stronger result.) In proving this we will use, what is now a well known 
result (which can be deduced from the results in [16]) as follows. On the conformally 

flat sphere one has the invariant operators £nl2'1 --4 £n/2 and £n/2 -4 £„/2-i. These 
with the operators indicated in figure 1, give, up to linear combinations, all of the 
conformally invariant operators between the differential form bundles in figure 1. It 
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follows, for example, that the composition of operators from the figure always yields 
a trivial operator. 

Proposition 1.1. Suppose that for k G {0,1 , . . . ,n/2 - 2}, the composition 

Sd:£k-+ £k 

is a strongly invariant natural conformally invariant operator. Then this operator 
vanishes on conformally flat structures. 

Proof. Suppose first that k > 1. Let V be a trivial bundle, with fibre V. Let us 
equip this with a family of connections which differ from the trivial connection by tA, 
where t is a real parameter and A is any field of End(V)-valued 1-forms. Since Sd is 
strongly invariant we can couple to the connection corresponding to tA> for each t} to 
obtain the conformally invariant operator StAdtA on V-valued A;-forms. Since also the 
exterior derivative is strongly invariant it follows that the composition StA<PAd!'A is 
also conformally invariant on V-valued (k - l)-forms. But this is a non-zero multiple 
of 

qtA jptA 

where FtA is the curvature of the connection tA. Of course the FtA acts by the 
exterior product, via its form indices, as well as the usual End(V)-actio"n of a curvature. 
Viewing t as a parameter, it is clear that the displayed operator can be expressed by a 
formula polynomial in t and so its derivatives, with respect to t} are also conformally 
invariant. In particular if we write Fo •= dFtA/dt\t=0 then, by differentiating and 
evaluating at 0, we obtain that 

SF0 

is conformally invariant on V-valued (k - l)-forms. Now F0 is an End(V)-valued 2-
form. Since End(V) is canonically isomorphic to its dual, we may view F0 instead as 
map from End(V) —J> £2. It is easily verified that, by suitable choice of V and the 
field A, one can arrange that this map is surjective. So let us assume this. We have 
stated that if H is any V-valued (k - l)-form then SF0H is conformally invariant. 
Now suppose W is a section of V* that is parallel for the trivial connection on V*. 
Then W-SFQH = S(FQH)-W} where the '•' indicates that the section W is contracted 
into the free V-index of (F0H). Thus S is conformally invariant on the (A; + 1)-
form (FQH)W. Since S is linear, it is also conformally invariant on sums of (k + 1)-
forms constructed this way and so, by the surjectivity of F0, we can conclude that 
S : £*+1 -> £k is conformally invariant. But then it follows that this is trivial in the 
flat case because, for k in the range assumed (from the classification described above), 
there are no non-trivial conformally invariant operators, on the conformal sphere, of 
the form £*+1 -> £k. This does the cases k 7- 0. 

Now suppose, with a view to contradiction that L : £° -> £0 is natural, strongly 
invariant, and is non-trivial on the conformal sphere. Then the leading term is An/2, 
at least up to a constant non-zero multiple. Coupling to the standard tractor bundle 
and connection we may conclude the existence of a conformally invariant operator 

HB
A :TA->TB 

with principal part An/2 (where now A is the tractor-coupled Laplacian). Now there 
is the so-called tractor-D operator [1] which is (strongly) conformally invariant and 
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given by the formula 

DAf := (n + 2w - 2)wYAf + (n + 2w - 2)ZAaVaf - XA(A + ud ) / 

for / any weight K; tractor or density field. Composing first with this on the right it 
is easily verified (or see [20] or [22]) that, in the conformally flat case, we have 

HB
ADBf = -XBAn^lf 

for / any weight 1 density field. From this it follows easily that, in the general curved 
setting, the conformally invariant composition 

DBHB
ADA : £[1] -> £[-l - n]. 

has leading term a non-zero constant multiple of An/2+1. However this is a contradic
tion as there is no such operator [21]. • 
Notice that we have proved a little more than what is claimed in the proposition. We 
have shown that there is no strongly conformally invariant curved analogue of the 
operator Pn : £° -> £0 on the sphere, regardless of its form. 

2. LECTURE 2 - OPERATORS LIKE Q AND THE AMBIENT CONNECTION 

In the first half of this lecture we show that the 4 problems are solved simultane
ously (with some mild qualifications) by a sequence of remarkable operators which 
include and generalise the Q-curvature. The construction of these operators uses the 
Fefferman-Graham ambient metric construction and its relationship to the tractor 
calculus. In the second half of the lecture we set up the background for this. 

2.L The solution. We collect the main points into a theorem which includes some 
of the central results in [6]: 

Theorem 2.1. In each even dimension n there exist natural Riemannian differential 
operators 

Qk : £h -> £k, non-zero for k = 0 , 1 , . . . , n/2, 
(and for other k we take these to be zero) with the following properties: 
(i) QQ\ is the Branson Q-curvature. 
(ii) As an operator on closed k-forms Qk has the conformal transformation law 

Qk = Qk + SQk+idu 

where g = e^g, for a smooth function u, and on the right-hand-side we view u as a 
multiplication operator. 
(iii) 

SQk+id : £k - • £k k = 0 , 1 , . . . , n/2 - 1 
is conformally invariant (from (ii)), formally self-adjoint and has leading term a non
zero multiple of (8d)n/2~k. 
(iv) The system (SQk+id> SQk) is elliptic (k e {0,1, . . . ,n/2 - 1}) and, for each k, 
SQk has the conformal transformation 

SQk = SQk + a(du)SQk+id, 

where g = e2iJg and c is a constant. In particular SQk is conformally invariant on 
M(SQk+id). 
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By part (iii), our problem 3 is solved by taking Lk = SQk+id. It follows immediately 
that in each dimension there is a family of conformally invariant detour complexes, 

(12) £o 4 . . . 4 5*-i 4 su b\ sk -4 £k-i -4 •. • 4 £o, 

which generalise the Maxwell detour complex. Since Lk has leading term (5d)n/2~k 

these are elliptic (i.e. exact at the symbol level). 
Clearly N(d) C J\f(SQk+id) and so SQk is conformally invariant on M(d). Since 

SQk+id has leading term (Sd)n/2~k, it follows that the ellipticity of the system 
(SQk+\d, SQk), as asserted in (iv), implies that (d, SQk) is elliptic. So setting Gk := SQk 

gives a solution to problem 2. Thus, writing Ck for the space of closed k-forms, we 
propose 

Uk
G:=M(Gk:Ck->£k-i) 

as the space of conformal harmonics, for k = 0 , 1 , . . . ,n/2. Since Gk is conformally 
invariant on Ck it follows that this space is conformally invariant. 

Of course property (ii) generalises the transformation formula (I) of the Q-curvature 
(where we view Q as a multiplication operator on the constant functions). Then note 
that if c € Ck, and u e £k then 

/ (u,Q9
kc)dfig= / (u,Q9

kc + Lkuc)dfig= / (u,Q9
kc)d/j,g-\- / (Lku,c)dfig 

JM JM JM JM 

as Lk is formally self-adjoint. Here we are using (•, •) for the complete contraction, via 
g~l, of forms. So if u € Af(Lk) then the last term vanishes and we have 

c'Ck and u G N(Lk) => / (u, Qkc)d/J,g is conformally invariant. 

which generalises property (III) of the Q-curvature. 
The transformation law in (i) implies that Qk gives a conformally invariant map 

Qk : Ck —• £k/Tl(S). Hue %G, then u is both closed and in the null space of G*, and 
so SQkU = 0 since Gk = SQk. Thus Qk fives a conformally invariant map 

(13) Qk:U
k
G-> Hk(M) = Af{6 : £k -> £k-i)/K(5 : £k+i -» £k) =* Hk(M). 

Note that since Q0 takes values in densities, G0 = SQQ is trivial and HG = C° and so 
the result displayed generalises to the Qk property (II) of the Q-curvature. Examples 
where the maps (13) are non-trivial are given in [6]. 

It remains to check to how accurately the defined conformal harmonics reflect the de 
Rham cohomology. We have already observed that HG = C° = H°(M). It turns out 
that Qn/2 is a non-vanishing constant (as a multiplication operator) and so at middle 
forms we recover the usual harmonics, TiG

2 = %n/2 = Hnl2(M). Between these 
extremes, it is easy to obtain an estimate on the size of the space WG. Note there is 
a map HG -» Hk(M) given by mapping closed forms to their class in cohomology. If 
w € 7iG is mapped to the class of 0 in Hk(M) then w is exact. Say w = d(p. Since, in 
addition, SQkW = 0, it follows that SQkdtp = 0, that is Lk-\<p = 0. Now Ljfc-i = SQkd, 
so Ck~l C JV(Lfc_i) and it follows that there is an exact sequence 

0 '-+ Ck~l -> ^(Ljk-i) 4 Hk
G-> Hk(M). 
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Now Hk~l(M) is the image of Ck~l under the composition Ck~l -» JV(Ljt-i) -> 
HL~l(M), so finally we obtain 

0 -> Hk-l(M) -> Hk'l(M) ->Uk
G-> Hk(M) for k = 1 , . . . , n/2 - 1, 

and so 
&mUk

G <bk + dim(Hk
L-1(M)/Hk-1(M)) 

where dim Hk(M) is the cohomology at £k of the sequence (12) and bk is the A;th-Betti 
number, i.e. 6* = dimHk(M). Obtaining a lower bound is not so straightforward. 
Nevertheless, using Hodge theory and the map (13) it can be shown [6] that b* < 
dim Wk. Thus to have dim HG = bk it is sufficient for the conformal regularity condition 
Hk

L~l(M) = Hk~l(M) (or equivalently ^ ( L ^ O = Ck~l) to be satisfied. For n = 4 and 
k = 1 this is the notion of strong regularity proposed by [15]. Although, for each k, the 
regularity should hold generically, in some appropriate sense, for compact conformal 
Riemannian manifolds there are counter-examples to strong regularity on 4-manifolds 
[28]. In [6] it is shown that there is a condition weaker than Hk~l(M) = Hk~l(M) 
which is necessary and sufficient for dim 7 ^ = bk. 

2.2. The FefFerman-Graham ambient construction. Recall that IT : Q -» M is 
the conformal bundle of metrics. Let us use p to denote the R+ action on Q given 
by p(s)(x,gx) = (x,s2gx). An ambient manifold is a smooth (n + 2)-manifold M 
endowed with a free R+-action p and an R+-equivariant embedding i : Q -» M. 
We write X e X(M) for the fundamental field generating the R+-action, that is for 
/ <E C°°(M) and u e M we have Xf(u) = (d/dt)f(p(et)u)\t=0- If i : Q -> M is 
an ambient manifold, then an ambient metric is a pseudo-Riemannian metric h of 
signature (n + 1,1) on M such that the following conditions hold: 
(i) The metric h is homogeneous of degree 2 with respect to the R+-action, i.e. if Cx 

denotes the Lie derivative by X, then we have Cxh = 2/i. (I.e. X is a homothetic 
vector field for h.) 
(ii) For u = (x, gx) € Q and £, n 6 TUQ, we have h(i*£, urj) = ^(TT*^, TT* )̂- Henceforth 

we will identify Q with its image in M and suppress the embedding map i. 

In [17] Fefferman and Graham treat the problem of constructing a formal power 
series solution along Q for the Goursat problem of finding an ambient metric h sat
isfying (i) and (ii) and the condition that it be Ricci flat, i.e. Ric(/i) = 0. From their 
results and some minor subsequent observations [22, 24] we have the following: there 
is a formal solution for h satisfying (i), (ii) and with 

to all orders if n is odd, 

(iii) Ric(Л) = 0 { up to the addition of terms vanishing 
to order n/2 - 1 if n is even, 

with Q := h(X, X) a defining function for Q and h(X, •) = \dQ to all orders in both 
dimension parities. We will use the term ambient metric to mean an ambient manifold 
with metric satisfying all these conditions. Note that if M is locally conformally flat 
then the flat ambient metric is a (canonical) solution to the ambient metric problem. 
It is straightforward to check [6] that this is forced in odd dimensions while in even 
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dimensions this extends the solution. When discussing the conformally flat case we 
assume this solution. 

We should point out that Fefferman and Graham give uniqueness statements for 
their metric, but we do not need these here. The uniqueness of the operators we will 
construct is a consequence of the fact that they can be uniquely expressed in terms of 
the underlying conformal structure as we shall explain later. 

We write V for the ambient Levi-Civita connection determined by h and use upper 
case abstract indices AyBy... for tensors on M. For example, if vB is a vector field 
on M, then the ambient Riemann tensor will be denoted RABCD and defined by 
[V>i, ~7B]VC = RABCDVD. In this notation the ambient metric is denoted / I^B and 
with its inverse this is used to raise and lower indices in the usual way. Most often 
we will use an index free notation and will not distinguish tensors related in this way. 
Thus for example we shall use X to mean both the Euler vector field XA and the 
1-form XA = hABXB. 

The condition £xh = 2h is equivalent to the statement that the symmetric part of 
\7X is h. On the other hand, since X is exact, \7X is symmetric. Thus 

(14) \7X = h, 

which in turn implies 

(15) XJR = 0. 

Equalities without qualification, as here, indicate that the results hold either to all 
orders or identically on the ambient manifold. 

Let £(w) denote the space of functions on M which are homogeneous of degree w E R 
with respect to the action p. Recall that densities in £[w] are equivalent to functions in 
£(W)\Q. More generally (weighted) tractor fields correspond to the restriction (to Q) 
of homogeneous tensor fields on M. A tensor field F on M is said to be homogeneous 
of degree w if p(s)*F = swF, or equivalently CXF = wF. The relationship between 
the Fefferman-Graham ambient metric construction and the tractor connection was 
established in [8]. Following this treatment we will sketch how the conformal tractor 
bundle, metric and connection are related to the ambient metric. 

On the ambient tangent bundle TM we define an action of R+ by s-f := s~lp(s)*£. 
The sections of TM which are fixed by this action are those which are homogeneous of 
degree — 1. Let us denote by T the space of such sections and write T(w) for sections 
in T ® £ (w)y where the ® here indicates a tensor product over £(0). Along Q the 
R+ action on TM agrees with the R+ action on Q, and so the quotient (TM\Q)/R+, 
yields a rank n 4- 2 vector bundle T over Q/R+ = M. By construction, sections of 
p : T -> M are equivalent to sections from T | Q . We write T to denote the space of 
such sections. 

Since the ambient metric h is homogeneous of degree 2 it follows that for vector 
fields f and 77 on M which are homogeneous of degree —1, the function h(^rj) is 
homogeneous of degree 0 and thus descends to a smooth function on M. Hence h 
descends to a smooth bundle metric h of signature (n + 1,1) on T. 

Next we show that the space T has a filtration reflecting the geometry of M. First 
observe that for ip ~ £ (r-0, <fX € T Restricting to Q this determines a canonical 
inclusion E[-l] <--> f with image denoted by V. Since .X" generates the fibres of 
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7r : Q -> M the smooth distinguished line subbundle V C T reflects the inclusion of 
the vertical bundle in T M | Q . We write X for the canonical section in T[l] giving this 
inclusion. We define F to be the orthogonal complement of V with respect to h. Since 
Q = h(X,X) is a defining function for Q it follows that X is null and so V C F. 
Clearly F is a smooth rank n -f 1 subbundle of T. Thus T/F is a line bundle and it is 
immediate from the definition of F that there is a canonical isomorphism E[l] = T/F 
arising from the map f -> E[l] given by V i-> h(X,V). Now recall 2ft(X,«) = dQ, 
so the sections of T\Q which correspond to sections of F are exactly those that take 
values in TQ C TM|Q . Finally we note that if | and <f are two lifts to Q of f G X(M) 
then they are sections of TQ which are homogeneous of degree 0 and with difference 
f - £' taking values in the vertical subbundle. Since n : Q -> M is a submersion it 
follows immediately that F[l]/V[l] ^ TM =• T*M[2] (where recall by our conventions 
F[l] means F® E[l] etc.). Tensoring this with E[-l] and combining this observation 
with our earlier results we can summarise the filtration of T by the composition series 

(16) f = E[l] 6-T*M[l] e-E[-l]. 

Next we show that the Levi-Civita connection V of h determines a linear connection 
on T. Since V preserves h it follows easily that if U G T(w) and V G T(w') then 
Vr/V G T(w + w'-l). The connection V is torsion free so VXU-VVX-[X, U] = 0 
for any tangent vector field U. Now V ^ X = U, so this simplifies to VXU = [.X", U] + 
U. Thus if U G T, or equivalent^ [X,U] = -U, then VXU = 0. The converse is 
clear and it follows that sections of T may be characterised as those sections of TM 
which are covariantly parallel along the integral curves of .X" (which on Q are exactly 
the fibres of n). These two results imply that V determines a connection V on f. 
For U G T, let U be the corresponding section of T\Q. Similarly a tangent vector 
field £ on M has a lift to a field £ G T( l ) , on Q, which is everywhere tangent to Q. 
This is unique up to adding fX, where / G 5(0). We extend U and f smoothly and 
homogeneously to fields on M. Then we can form V^U; this is clearly independent of 
the extensions. Since VXU = 0, the section V^U is also independent of the choice of 
£ as a lift of £. Finally, V^U is a section of T(0) and so determines a section V^U 

of T which only depends on U and £. It is easily verified that this defines a covariant 
derivative on T which, by construction, is compatible with the bundle metric h. 

The ambient metric is conformally invariant; no choice of metric from the conformal 
class on M is involved in solving the ambient metric problem. Thus the bundle, 
metric and connection (T, h, V) are by construction conformally invariant. On the 
other hand the ambient metric is not unique (there is some diffeomorphism freedom 
and, even allowing for this, recall that in even dimensions the construction is only 
determined by the underlying conformal manifold to finite order). Nevertheless it 
is straightforward to verify that V satisfies the required non-degeneracy condition 
and curvature normalisation condition [9] that show that the bundle and connection 
pair ( t , V), induced by ft, is a normal standard (tractor bundle, connection) pair. 
So although the ambient metric is not unique the induced tractor bundle structure 
(f, h, V) is equivalent to a normal Cartan connection, and so is unique up to bundle 
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isomorphisms preserving the filtration structure of T, and preserving h and V. Hence 
we may drop the tildes and identify T with T and T with T 

Since T corresponds to the ambient space T\Q and £[w] corresponds to £(W)\Q 

it follows, by taking tensor powers, that homogeneous ambient tensors along Q are 
equivalent to weighted tractor fields in the corresponding tensor power of T In partic
ular this is true for exterior powers. The subspace of T(AkT*M) consisting of ambient 
k-forms F satisfying VxF = wF for a given w G K will be denoted Tk(w). We say 
such forms are (homogeneous) of weight w. Then we have that each section V € Tk[w], 
is equivalent to a section V € Tk(w)\Q. 

2.3. Exterior calculus on the ambient manifold. We need to identify which op
erators on the ambient manifold correspond to, or determine, conformal differential 
operators on M. In particular for our problems it turns out that operators on ambient 
differential forms have a primary role. 

We will use t(-) and £(•) as the notation for interior and exterior multiplication by 1-
forms on ambient forms, i.e. the same notation as on M and with the same conventions. 
Thus for example on differential forms, the Lie derivative with respect to X is given 
by Cx = L(X)d + dL(X) and so its formal adjoint is ££- = Se(X) + e(X)S. Note that 
Q := h(X,X) may be alternatively expressed 

Q = L(X)S(X)+S(X)L(X). 

It is useful for our calculations to extend the notation for interior and exterior multipli
cation, in an obvious way, to operators which increase the rank by one. For example, 
writing d and S for respectively the ambient exterior and its formal adjoint, we have 
d(p = e(V)(p and S(p = -L(V)<P, since the ambient connection is symmetric. Later 
on these notations and conventions for the use of L(-) and e(-) are also used for form 
tractors, and related objects. 

We write ^ for the ambient form Laplacian Sd + dS. Using this with ambient form 
operators just introduced generates a closed system of anti-commutators and commu
tators as given in Tables 1 and 2. (In fact the graded system is isomorphically the 
Lie superalgebra sl(2|l) and extends the $[(2) which played a role in [24]. Some of 
the results below could be rephrased as identities of s.(2|l) representation theory, but 
we have not taken that point of view. We also note that in [26], which concerns pow
ers of the ambient Dirac operator, the authors recover a 5-dimensional superalgebra 
isomorphic to the orthosymplectic algebra 0£p(2|l). This may be realised as a sub-
algebra of s[(2|l).) Note that the relations in Table 1 are essentially just definitions 
and standard identities. The relations in the table of commutators follow from the 
anticommutator results, dQ = 2X, (14), and the usual identities of exterior calculus 
on pseudo-Riemannian manifolds. In particular, they hold in all dimensions and to all 
orders. 

Now since each section V G Tk[w] is equivalent to V € Tk(w)\Q, it follows that 
operators along Q that correspond directly to operators on Tk[w] should not depend 
on how V is extended off Q. We say a differential operator acts tangentially along Q, 
if PQ = QP' (or [P,Q] = Q(P' - P)) for some operator P;, since then 

P(V + QU) = PV + QP'U 
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{•>•} d S є(X) 
t(X) 

d 0 4 0 Cx 

S 4 0 c* 
-*JC 

0 

e(X) 0 £* 0 

i(X) Cx 0 0 

TABLE 1. Anticommutators {gi,0i} 

[v] d S Є (X) t (X) 4 Cx 
c* 
^x 

4 0 0 -2d 28 0 24 -24 -2KX 

Cx 0 -2S 2e(X) 0 -24 0 0 2 

£x 
2d 0 0 - 2 Í . ( X ) 24 0 0 -2 

-2e(X) 2t(X) 0 0 2KX -n n 0 

TABLE 2. Commutators [go,5i] ^ d [.30,80], where Kx := -Cx - Cx 

and so Pt7|c is independent of how V is extended off Q. Note that compositions of 
tangential operators are tangential. If tangential operators are suitably homogeneous 
then they descend to operators on M and, since the ambient manifold does not depend 
on any choice of metric from the conformal class, the resulting operators are confor-
mally invariant. Of course they may depend on choices involved in the ambient metric, 
in which case they would fail to be natural. We will return to this point shortly. 

Consider the form Laplacian. From the commutator table we have [-&$] = — 2KX 

where Kx is a shorthand for Cx - Cx. Thus in general _^is not tangential. However 
via a standard pseudo-Riemannian identity and (14) one has 

Kx = Cx-Cx=n + 2Vx + 2, 

and so Kx acts as the zero operator on ambient forms homogeneous of weight — 1—n/2. 
If U is homogeneous of weight - 1 - n/2 then QU is homogeneous of weight 1 - n/2, 
and so £ does act tangentially on T*(l - n/2). The form Laplacian is homogeneous 
of weight —2 in the sense that [£x,-$ = -2-£L and so L̂ determines a well-defined 
operator 

4 : T*(l-n/2)|s-• T * ( - l - n / 2 ) | Q , 

which is clearly equivalent to an operator between tractor bundles, that we shall denote 
p: 

0 : Tfc[l - n/2] -> T*[-l - n/2]. 



C0NF0RMAL DE RHAM HODGE THEORY AND OPERATORS GENERALISING THE Q-CURVATURE 127 

This example generalises. On any ambient form field one has 

m - l m—1 

p=0 p=0 

Prom the homogeneity of 4> -t follows that, acting on Tk(w)7 the p-̂ - term on the 
right acts as -2[2(iu - 2p) + n + 2]4m"~1- Summing terms we get that [_£m, Q] acts as 
-2m(2w - 2m + n + 4)4 m _ 1 on T*(w) and so 

(17) -£m : Tk(m - n/2) -> Tk(-m - n/2) is tangential. 

We write -£m for the corresponding conformally invariant operator on M: fim : Tk[m— 
n/2] -> Tk[-m - n/2]. Note that because of the weights involved the formal adjoint 
operator maps between the same spaces, fim : T*[m-n/2] -> T*[ -m-n /2 ] . It seems 
likely that these operators agree. (For example they do if k = 0 [25, 18].) However we 
do not need to investigate this since we can simply work with the formally self-adjoint 
average of these 

±(£m + £ m ) =: 0 m : Tk[m - n/2] -> Tk[-m - n/2] m € {0,1,2,. . .} . 

It is straightforward to verify that these have leading term ( - l ) m A m . 
The above conformally invariant powers of the Laplacian arise from ambient opera

tors which are tangential only for a specific weight. There are also ambient operators 
which act tangentially on forms without any assumptions of homogeneity. From the 
tables we have [KXiQ] = [Cx - £X,Q] = 4 $ and so (Kx - A)Q = QKX. Then 
[5,Q] = -2L(X). On the other hand [L(X)4,Q] = L(X)[4,Q] = -2L(X)KX. SO 

L(Ip) := -S(CX - Cx - 4) + i(X)4L 

satisfies 

[M,Q] = -W, 
which shows that L(I/>) acts tangentially on any ambient form. Similarly for e(IJf) := 
d(Cx -Cx-A)+e(X)4- These are each homogeneous of weight - 1 so for each w GR 
we have tangential operators 

e(lp): Tk(w) -> TM(w - 1), L(I/>) : Tk(w) -> Tk~l(w - 1). 

Via the identities of the tables and the others discussed, there are many alternative 
ways to write these operators. For example we have 

(18) e(Ip) = (Cx - Cx)d + 4e(X) = (n + 2VX + 2)d + 4e(X). 

The corresponding conformally invariant operators on form tractors are denoted re
spectively e(Ip) and t(_p), 

e(j>) : Tk[w] -> TM[w - 1], i(p) : Tk[w] -> Tk~l[w - 1]. 

Using the tables it is straightforward to show that these satisfy many surprising and 
useful useful identities, for example 

i{p)v{Ip) = 0, e{p)e{lp) = 0, i(f>)e{9) + e{p)i{p) = 0. 
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The main key to our constructions in the next lecture is the result that, as an 
operators o n T * [ l + ^ - n/2], we have the remarkable identity 

(19) \jUeW)=e(XWM, 

which generalises significantly earlier known identities for low order and the confor-
mally flat case [20]. Even at low orders, verifying this using explicit formulae for the 
operators on M would be a daunting task. At the ambient level this an almost trivial 
consequence of the fact that the form Laplacian 4 commutes with both d and S. The 
relevant result there is worthy of some emphasis so we write it as a proposition. 

Proposition 2.2. IfV <E Tk(t-n/2+l) and U E Tk+l(t-n/2) then fort = 0 , 1 , . . . 
we have 

4le(Ip)V = e(X)4e+1V, L(Ip)4tU = 4ML(X)U . 
Here $° means 1. 

Proof. We will prove the first identity; the proof of the other is similar. First observe 
that acting on any ambient form field, we have 

4e(2td + e(X)4) = 2t4ed + 4ls(X)4 = 2t4ld + [4l, e(X))4L+ e(X)4M . 

Now recall from the Tables 1 and 2 that [^e(X)] = -2d, and that _£ and d commute. 
Thus [4*,e(X)]4= -2t4ld, giving 

4<(2td + e(X)4)=e(X)4l+1. 

On the other hand, from the definition of e(I/>), we have that e(Ip)V = (2td+e(X)4)V 
forVeTk"l(t-n/2 + l). D 

Interpreting the proposition down on the underlying conformal manifold M, the 
second display of the proposition gives L(p)/^e = fa+\i(X) on TM[t — n/2]. The 
formal adjoint of this is 4^ee(P) = £(^)^/-i-i o n Tk[l+t—n/2], while the other display 
of the proposition gives fiee(P) = £(-̂ 0-/-v+i o n the same space. Thus combining these 
gives (19). 

2.4. Naturality. The construction of the ambient manifold does not depend on choos
ing a particular metric from the conformal class. So it is conformally invariant. How
ever the manifold is not unique. For our purposes we have fixed some choice of ambient 
metric and we must check that operators finally obtained on M via the ambient con
struction do not depend on the choices made in arriving at our particular ambient 
manifold. It clearly suffices to show that the operators are natural for the underlying 
conformal structure on M i.e., given by universal formulae polynomial in the metric 
g and its inverse, the Levi connection, its curvature and covariant derivatives. In fact 
there is an algorithm [22, 6] for expressing the operators we require here (and in fact a 
significantly larger class [23]) in terms of such a formula. Here we sketch some of the 
ingredients. 

One basic idea behind this algorithm is to understand how certain tractor fields and 
operators, the explicit formulae for which are already known, turn up on the ambient 
manifold. Closely related to e(I/>) and L(I/>) is the operator D := V(n + 2Vx - 2) + 
XA. This acts tangentially on any ambient tensor field and since it is homogeneous 
determines an operator between tractor bundles. It is straightforward to verify that 
this resulting operator on M is exactly the tractor-D operator which we met earlier 
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in the proof of proposition 1.1. Recall that for a metric from the conformal class, is 
given by 

DAV := (n + 2w - 2)wYAV + (n + 2w - 2)ZA
aVaV - XA(VPVPV + wW), 

where V is a section of any tractor bundle of weight w. In these formulae V means 
the coupled tractor-Levi-Civita connection. 

Next consider the tractor curvature K, which is defined by [V0, VbjV'4 = Kab
A

BVB 

for V e T. In terms of a choice of metric from the conformal class, this has the formula 

KabCE = ZC
CZEeCabce ~ 4X[CZE]€V[aPb]e • 

This may be inserted invariantly into the space T 3 ® T1 by K »-> X^K = e(X)Z2-K, 
where for taking the inner product implicit in the '•' we view If as a 2-form (taking 
values in T2). Let us write Q. for Z2-K. Then from the relationship of the tractor 
connection to the ambient connection, as we outlined earlier, it follows easily that 
the conformally invariant field e(X)Q, is exactly the tractor field corresponding to 
e(X)R. Using this and the ambient Bianchi identity one finds that, in dimensions 
other 4, the tractor field on M exactly corresponding to to the ambient curvature R 
is W := (n_2vn-4) t(D)e(X)Q which is readily expanded to give an explicit formula for 
R in terms of the underlying conformal structure. 

The difference between the ambient Bochner and form Laplacians is given by 

(where A := V^V^.) It follows immediately that, as operators on k-forms, 

e(Ip) = e(D) - e(X)Rn, L(I/>) = L(D) - L(X)BU , 
and so for the corresponding operators on M we have 

e(p) = e(D) - e(X)an , *(#) = i(D) - t(X)m • 
So from the formulae for D and K we have naturality and explicit formulae for these 
operators. 

For higher order operators the first step is to express the relevant ambient operator 
as a composition of low order tangential operators that we already understand in 
terms of natural operators on M. Let us consider, for example, the operator l/b : 
Tk[2 - n/2] -» 7~*[-2 - n/2]. This arises from £/? on the ambient manifold. Since 4-2 

acts tangentially on V G Tk(2 - n/2), we are free to chose an extension of V off Q 
that simplifies our calculations without affecting $?V\Q. For example, given V\Q, it 
is easily verified that we can arrange that AV = 0(Q) (where 0(0) in meant in the 
sense of formal power series). Then using that . £ = — A — .RjJjJ we have 

4?V = (A + fl)W)(A + fl8J)V 

= A2V+(AR)nv+2(vlAlR)nv^v+mt(mv)+om, 
where the bars around indices indicate that they are to be ignored for the purposes of 
expanding the (t's. Prom the Bianchi identity and the Ricci flatness of the ambient met
ric (for simplicity we assume that n <£ {4,6}) it follows that (AR)$$V = -±R$$(RMV) 
and so this combines with the last term. Similarly, since XAVAV = VxV = 
(2 - n/2)V and DAR = (n - 6 ) V A R - XAAR we can replace V\A\R with j^DAR 
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provided we further adjust the coefficient of the last term. On the other hand if 
we write V E T*[2 — n/2] for the tractor field equivalent to V\Q then it is clear 
that RU(RUV)\Q is equivalent to WJlKWJttV). We have an explicit formula for W 
and so we can deal with these terms. Next note that since A y = 0(0) it follows 
that 2V^V = 2V^V - XAAV + 0(0) = DAV + 0(0). Thus, modulo terms of 
the form RU(RUV), and modulo 0(0), the term 2(V\A\R)U^lAlV is a multiple of 
(D\A\R)$WlAlV. The restriction of this to Q is equivalent to (D\A\W)$0Aty which 
is a combination of standard tractor objects for which we have explicit formulae. 

Finally there is the term A2V. From the relationship between D and D it follows 
easily that A acts tangentially on ambient tensors homogeneous of weight (1 - n/2) 
and in this case descends to the conformally invariant • on tractor fields of weight 
(1 - n/2) on M. The operator D lowers homogeneous weight by 1 and so AD acts 
tangentially on V and A.DV|Q is equivalent to DDV. Once again DD is a composition 
of operators for which we have explicit formulae. This deals with A2t7 since ADV = 
A(2V - XA)V = -XA2V + 2[A, V]V and expanding the commutator here yields 
ambient curvature terms each of which is either 0(0) due to the conditions on the 
ambient Ricci curvature or can be dealt with by a minor variation of the ideas discussed 
above. 

More generally for the powers -£m (as in (17)) that we require it is straightforward to 
show inductively [23] that there is an algorithm for re-expressing each of these, modulo 
0(0), as an operator polynomial X,D, R, the ambient metric h, and its inverse h~l. 
A formula for the corresponding operator on M is then given by a tractor expression 
which is the same formula except with X,D, R, h, and h~l formally replaced by, 
respectively, X, DW,h and A"1. 

3. LECTURE 3 - PROVING THE THEOREM - A SKETCH 

Henceforth we restrict ourselves to the setting where the underlying conformal man
ifold is even dimensional. 

Recall that the conformal gauge operator that we constructed for the Maxwell op
erator arose from a single tractor operator, taking values in a subbundle of the tractor 
bundle T 1 / 2 " ^ - ! - n/2] consisting of elements of the form 

/ o \ 
* 0 

V * J 
Since the tractor-projectors X and Y are null and i(X)Y = 1 it follows at once from 
(8) that this subbundle may alternatively be characterised as the elements of the form 
L(X)F. Let us write G* (with section space denoted Qk) to denote the subbundle 
of T*[k - n] consisting of elements of the form L(X)F and write G* (with section 
space Qk) for the quotient bundle which pairs with this in conformal integrals. That is 
G* := T*[-k]/V*[-ik] where V*[-A] = Ker(e(X): Tk[-k] -> T*+1[l-fc]) (equivalent^ 
V*[-fc] is the subbundle of T*[-A] consisting of elements of the form e(X)U). Note 
that from the composition series (10) for T* we see that the section spaces have 
composition series 
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£k~l £k 

0* = * and Gk = * . 

We will write qk : £
k -> Gk for the canonical conformally invariant injection which, 

in a choice of conformal scale, is given by Zk-. Similarly we write qk : Gk -> £k for 
the conformal map to the quotient which, in a conformal scale, is given by Z#, where 
the bullet indicates the inner product on the form tractor indices. Note that the 
composition t(X)qk vanishes, and so also the dual operator qke(X). 

In this language the (Maxwell operator, gauge) pair appearing as the first term in 
the sura (10) is really a single conformally invariant operator £n/2_1 -> £n/2-i- To 
generalise this we should obviously find an operator, £k -> Gk- However the symmetry 
of Maxwell detour complex suggests that there might be a more general operator 
taking Qk to Gk- Given our observations above this is easily constructed. First observe 
that e(X) gives a conformally invariant bundle injection e(X) : G* -> T*+1[l - k]. 
The conformally invariant adjoint operation is t(X) : Tfc+1[k — 1 — n] -> Gk. Thus 
composing p/+i fore and aft with these gives the required operator, 

(L(X)pl+le(X):=Ki):G
k->Gk, 

where £ := n/2 - k. Note that this is manifestly formally self-adjoint since p*+i is 
formally self-adjoint. The non-triviality is an easy consequence of the ellipticity of PM-I 
and the classification of operators on the conformal sphere (as discussed in lecture 2). 
Finally by the algorithm for constructing a formula for these operators one finds they 
are natural for k e {0 ,1 , . . . , n/2}. 

This at once gives candidates for the required long operators, viz. the full composi
tion Lk = qkKtqk as in the diagram 

£k-i 

, Qk ^ , EQ qk 

£k _a £k J?L £k JU £kt 

£*-i 

By construction the Lk are formally self-adjoint and once again the non-triviality fol
lows from the non-triviality of the 1Q and the classification of the operators between 
forms in the conformally flat setting. The candidates for extensions of the Lk to con
formally invariant elliptic operators (as in part (iv) of the Theorem) are the operators 
obtained by simply omitting the final projection, that is he -= Keqk. 

Toward establishing that these operators have the desired properties it is useful to 
make an observation related to the geometry of the underlying constructions. This is 
that, since 2X = dQ, and Q is a defining function for Q in M, it follows that & may 
be naturally identified with AkT*Q/ ~ where Up ~ Vq if Up = pt(Vq) for some s 6 R + . 
This is an easy consequence of our recovery of the tractor bundles from a similar 
quotient of TM = T*M. The exterior derivative on Q preserves the subspace of forms 
homogeneous with respect to the canonical R+ action p(s) and so this determines an 
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operator (for each k) 

d:Gk -> £*+1 with formal adjoint 6 : Gk+i -+ Gk • 

Under the described geometric interpretation of Gk = £k~lQ-£k the £*-part of the 
composition series arises from n*£k. Since exterior differentiation commutes with the 
pull-back it follows that 

dqk = qk+id on £k and qk5 = 6qk+l onffc+i, 

where the second result follows by taking the formal adjoint of the first. 
More generally we get an operator d : Gk[w] —> C7*+1[iy] given by 

¥*•<* + Z V = ( a | * ( Wfl-£Wa ) =Yk+1{wn-e(\7)a)+Zk+l.e(V)fi, 
\fij \ e(V)/i J 

and a formal adjoint 6 for this. This generalisation of d still arises from the exte
rior derivative on Q, except now restricted to appropriately homogeneous sections of 
AkT*Q. From these origins, or alternatively the explicit formula displayed, it is clear 
that d2 = 0 (and hence also 62 = 0). Also, the operator d satisfies the anti-derivation 
rule d(e(U)V) = e(dU)V + (-l)ke(U)dV for U in Gk[w] and V in any Gk'[w']. 

These operators turn up as factors in the components of K/. Consider e(X)Kt. As 
a map on Gk we have 

£k £k+i 
(20) e(X) : * -> <P by 

£k-i £k 

Now e(X)Kt = e(X)i(X)\f]t+ie(X). Since X is null, e{X) and t(K) anticommute. 
Then by (19) we have e(X)^M = fiie(lp). Thus e(X)Kt = -i{X)\pie{p)e{X). 
But recall e(Ip)e(X) arises from the ambient composition e(IJf)e(X) and by (18) this 
is exactly (n + 2VX + 2)de(X) = -(n + 2\7X + 2)e(X)d, where finally we have 
used the anti-commutativity of e(X) and d. Thus on Gk (which is a quotient of 
Tk[-k]) e(1p)e(X) = - (n - 2Jfe + 2)e(X)d= -2(e+ l)e(X)d. Hence overall we have 
e(X)Kt = 2(e+l)i(X){f\te(X)d = 2(e+l)Kt-ld. By talcing the formal adjoint there 
is a corresponding result for IQ+i^X), and we summarise these surprising results in 
the following lemma which is central to the subsequent discussions. 

Lemma 3.1. As operators on Gk we have 

e(X)Kl=2(e+l)Kl-ld and Kt+1c(X) = 2(e + 2)SKt. 

We are now ready to construct the operators of the Theorem. We start by looking 
at ht = Ktqk- Note that L(X) and e(Y) are well defined on Gk- Recall that on Tfc, 
and therefore also on Gk, 

t(X)e(Y) + e(Y)t(X) = h(X, Y) = l. 

Using this, and since t(X)qk = 0, we have K ^ = ^^(X)e(Y)qk. Thus from the 
lemma we have 

(21) Ktqk = 2(e + l)SKt-ie(Y)qk. 
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The claim is that this single conformally invariant operator gives the conformally 
invariant elliptic system (5Qk+id, SQk) of part (iv) of the theorem. 

Ktqk takes values in Gk = £jfc&*£fc-i- AS observed above, to obtain the component 
with range £k we project with qk. Applying this to both sides of the last display we 
have Lk := qkKiqk = 2(t + l)qk6Ki.le(Y)qk. Then recall qk5 = 6qk+l so 

Lk = 2(e+l)5qMKe.ls(Y)qk 

which establishes that Lk has 5 as a left factor. Continuing on to show that it also has 
d as a right factor involves similar arguments. First observe that L(Y)S(X) +C(X)L(Y) 

is well-defined and acts as the identity on Gk+i -~d recall qk+le(X) = 0. So we may 
insert L(Y)S(X) to obtain 

Lk = 2(1 + l)5qk^L(Y)e(X)Ke.ls(Y)qk = U(l + l)5qk^L(Y)Kl.2de(Y)qk, 

where to obtain the last expression we have used the Lemma to exchange e(X)IQ_i 
with a multiple of 1Q_2d. On the other hand it is easily verified that, in a conformal 
scale a € £[1], the corresponding e(Y) agrees with e(a~lda). From the anti-derivation 
rule for d, d2 = 0, and that the log-derivative a'1 da is annihilated by d, it follows that 
d anti-commutes with e(Y). Finally we have already noted that dqk = qk+id and so by 
this general construction we obtain, for each k, long operators which factor through 5 
and d, 

Lk = -U(l + l)5qk^L(Y)Ke.2e(Y)qk+id. 
This completes part (Hi) since from their non-triviality it follows easily that each Lk 

has leading term (Sd)n^2~k (at least up to a constant multiple). 
This result for the Lk suggests 

(22) Mk:=qkL(Y)Ki.le(Y)qk 

(or some multiple thereof) is a candidate for Qk. 
Next we examine the £fc_i-component of (21). In terms of the projectors from lecture 

1 this is the coefficient of Xfc = s(X)Zk~l. Since qk~l is given, in a choice of conformal 
scale, by Zk~l9 it follows that qk~li(Y)Kiqk is the £fc_i-component of Ktqk. Composing 
qk~h(Y) with the right-hand-side of (21) brings us to 2(1 + l)qk~lL(Y)5Ki.1£(Y)qk. 
That {L(Y), 5} vanishes on Gk+i is just the formal adjoint of the result for {d,e(Y)} 
on Gk~l. We have already that qk~l5 = 5qk and so 

qk~1L(Y)Keqk = -2(1+ l)5qkL(Y)Ke-le(Y)qk = -2(t+l)SMk . 

Summarising then, we have that in a choice of conformal scale 

£k ( SMk+idu \ 
Ktqk : £fc -> ^ is given by u 4 , k = 1,...n/2 - 1, 

£*-i y 5Mku J 
where Mk is defined by (22) above and we have ignored the details of non-zero con
stants. Note that by construction Keqk is conformally invariant. Therefore SMk is 
conformally invariant on the null space of 5Mk+\d. This is more fundamental than 
the transformation formula. Nevertheless, observe that the transformation formula 
claimed in part (iv) is now immediate from the invariance of K^qk and the conformal 
transformation formula Z = Z + e(T)X. Thus part (iv) is proved. 
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For Part (ii) of the Theorem we should examine the conformal transformation law 
of Mk = qkL(Y)Ki-ie(Y)qk. This looks potentially complicated as neither L(Y) nor 
e(Y) is conformally invariant. Let us simplify initially and consider just part of this 
viz. Kt-ie(Y)qk. Although K ^ maps Qk+l -> Gk+i we will show that the image of 
Ki_ie(Y)qk : Ck -> Qk+\ lies entirely in the £k part of 

£k+i 
Gk+i=<* . 

£k 

Suppose then that <p is a closed k-form and consider e(X)Kt-ie(Y)qk<p. By the 
lemma, and the commutation rules observed above, this gives (a constant multiple of) 

Kl.2de(Y)qk<p = - K ^ 2 e ( F ) < W = -Kl.2e(Y)qkd<p = 0. 

From (20) this exactly proves that in a choice of scale we have Ki^ie(Y)qk<p = 
X*+1-(Mjfe), or in the matrix notation, 

[Ki.ls(Y)qk<p]g = f _° 
\ Mk<P 

for some operator Mk : Ck -> £k. Recall one recovers the coefficient of X*+1 by left 
composing with qkL(Y) and so Mk<p = qkL(Y)Kj_ie(Y)qk<p = Mk<p. How does this 
formula transform conformally? For the purposes of this calculation we may take Y 
to be the metric dependent section in Gl[l] given by Y = a~lda where a e £[l] is the 
conformal scale, that is g = a~2g. Then conformal rescaling 

g »-> g = e^g, corresponds to a *-¥ a = e~ua, 

whence 

From this we have 

Ke-ie(Y)qk<p H> Kl^e(Y)qk<p = Kf-ie(y)ftv - IFQ_i^(T)g^ 

where, as usual T := du. Now observe that, by the anti-derivation rule, dqku<p = 
duqk<p = £(T)<7fĉ , since dtft = qk+id and d</? = 0. Thus the conformal variational term 
in the display may be written as the composition IQ_idqku<p. Using the Lemma we 
have 2(£ + l)K/_id = e(X)Kt and so the conformal variation term is e(X)Kiqku<p -
at least if we ignore the division by 2(^+1). Clearly this is also annihilated by the 
left action of e(X) and so is of the form Xk^l'Lkuj<p, or 

for some operator Lk : Sk -> £k. Once again we recover the coefficient by composing on 
the left with qki(Y) to obtain qkL(Y)e(X)Kiqku<p = qkKtqku<p (since {i(Y)> e(X)} = 1 
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and qke(X) = 0) which we recognise as Lkw<p (i.e. Lk = Lk). So in summary we have 
shown the conformal transformation 

[Kl.le(Y)qk(p]9=l ° ) ^ [Ke.^q^], = I ° 
\ MM J \Mh- 2iftr)Lku<p 

Thus we exactly recover the result claimed in part (n) if we take 

Qk = (n + 2)n. . . (n - 2k + 2)114*. 

Recovering Branson's Q-curvature. So far in our construction of the operators 
Kj, we have only used £fi on Tn^2'i(£-n/2) whereas as we have observed already this 
operator is tangential on Tk(£ — n/2) for any A;. The upshot of the latter observation 
is that for each £, K_ generalises to give an operator 

KnOh[w]->gk[-w], 
where w = £ — n/2 + k. Thus we get order 2£ conformally invariant operators between 
weighted forms 

•(^:-=9*lQflfc) :f*H->-i[H-
These are natural for £ < n/2 - 1, and also for £ = n/2 if k = 0. In this generalised 
setting Lemma 3.1 still holds in the sense that for example on Qk[w] we have 

e(X)Ki=2(£+l)Kl.ld. 

Thus for Lk = qkKtqk = qki(Y)e(X)Kiqk we obtain the alternative formula 

Lk = 2(£+l)qkL(Y)Ki_ldqk. 

Now for /i e £k
y and a e £[1] a conformal scale, we have awfi e £k[w]. We will apply 

Lk to this. First note that in terms of the splittings for the conformal scale we have 

qko"li = Zkiav>n). 

So, from the explicit formula for J, we have 

dqka
w[x = wawYM-» + awZM-e(V)ii 

= wawe(Y)Zk-ti + awZM^ 

= wawe(Y)qkn + awqk+idn, 

where we used that the Levi Civita connection for a annihilates a. Using this again 
we obtain 

L\aw\i = 2w(£ + l)awqki(Y)Kl-le(Y)qkii + 2(£ + l ) a V * ( W - i f t + i ^ • 

If fji is closed then the second term vanishes and taking the coefficient of w and setting, 
in this, £ = n/2 (i.e., w = 0) yields, up to a multiple, the Qk operator on \x. In 
particular if k = 0 and we take \i = 1 we obtain Q0l. But in this case this construction 
is exactly recovering the Q-curvature according to Branson's original definition by 
dimensional continuation, since by construction the operators LQ

t agree with the G JMS 
operators [24] on densities. 

We have not only shown that Q0l is the usual Q-curvature but also that the Qk 

operators, defined earlier without the use of dimensional continuation, also arise from 



1 3 6 A. RODGOVER 

the analogous dimensional continuation argument but now applied to the operators 
L\ between form densities. Implicitly we are using that the operators IQ are given by 
universal formulae, polynomial in the dimension, and with coefficients in terms of a 
stable basis of Riemannian invariants. This is an immediate consequence of the tractor 
formulae for the operators \fii since the basic tractor objects (such as the tractor-D 
operator and the W tractor are given by formulae in this form). 

It is easily shown too [6] that defining the Q-curvature to be Q0l with Q0 defined 
by (22) is equivalent to the definitions of both [19] and [22]. 
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