WSGP 24

Seoung Val Jung
 Lower bounds for the eigenvalues of the basic Dirac operator

In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 24th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2005. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 75. pp. [241]--250.

Persistent URL: http://dml.cz/dmlcz/701750

Terms of use:

© Circolo Matematico di Palermo, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

LOWER BOUNDS FOR THE EIGENVALUES OF THE BASIC DIRAC OPERATOR

SEOUNG DAL JUNG

Abstract

This talk is a survay on the eigenvalue estimates of the basic Dirac operator on the Riemannian manifold with the transverse spin foliation, which is based on the works of the author $[9,10,11]$.

1. Introduction

In 1963, A. Lichnerowicz [18] proved that on a Riemannian spin manifold the square of the Dirac operator D is given by

$$
\begin{equation*}
D^{2}=\Delta+\frac{\sigma}{4} \tag{1.1}
\end{equation*}
$$

where Δ is the positive spinor Laplacian and σ the scalar curvature. In 1980, Th. Friedrich [5] gave a lower bound for the square for the eigenvalues of the Dirac operator D. In fact, by using a suitable Riemannian spin connection, he proved the inequality

$$
\begin{equation*}
\lambda^{2} \geq \frac{n}{4(n-1)} \inf _{M} \sigma \tag{1.2}
\end{equation*}
$$

on manifolds $\left(M^{n}, g\right)$ with positive scalar curvature $\sigma>0$. He also proved, in the limiting case, that the manifold is an Einstein. The inequality (1.2) has been improved in several directions by many authors $[2,3,7,8,14,15,16]$.

In this talk, we estimate the lower bound of the eigenvalues for the basic Dirac operator D_{b} on the foliated Riemannian manifold, which are defined by J. Brüning and F. W. Kamber [4, 6]. They obtained the Lichnerowicz type formula on the transverse spin foliation with the basic-harmonic mean curvature form κ;

$$
\begin{equation*}
D_{b}^{2}=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}}+\frac{1}{4} K_{\sigma} \tag{1.3}
\end{equation*}
$$

[^0]where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}, \sigma^{\nabla}$ the transversal scalar curvature of \mathcal{F} and κ the mean curvature form of \mathcal{F}. By using the similar method to ordinary case, we obtain the following theorem which is corresponding to (1.2).
Theorem $1.1([9]) . \operatorname{Let}\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with the transverse spin foliation \mathcal{F} of codimension $q>1$ and bundle-like metric g_{M} such that κ is basic-harmonic. Assume $K_{\sigma} \geq 0$. Then the eigenvalue λ of the basic Dirac operator D_{b} satisfies
\[

$$
\begin{equation*}
\lambda^{2} \geq \frac{1}{4} \frac{q}{q-1} K_{\sigma}^{0} \tag{1.4}
\end{equation*}
$$

\]

where $K_{\sigma}^{0}=\inf _{M} K_{\sigma}$.
By transversally conformal change of the metric g_{M}, we have the following sharp estimation, which is corresponding to the result of Hijazi [7] in ordinary manifold.

Theorem 1.2 ([11]). Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension $q \geq 3$ and bundle-like metric g_{M} such that κ is basic-harmonic. If the transversal scalar curvature satisfies $\sigma^{\nabla} \geq 0$, then we have

$$
\begin{equation*}
\lambda^{2} \geq \frac{q}{4(q-1)}\left(\mu_{1}+\inf _{M}|\kappa|^{2}\right) \tag{1.5}
\end{equation*}
$$

On the Kähler spin foliation, if we use the basic Kähler form Ω acting on the basic spinor field, we have the following theorem (see [14] for ordinary case).
Theorem $1.3([10]) . \operatorname{Let}\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler spin foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} such that κ is basic-harmonic and transversally holomorphic. If $K_{\sigma} \geq 0$, then the eigenvalue λ of D_{b} satisfies

$$
\begin{equation*}
\lambda^{2} \geq \frac{q+2}{4 q} K_{\sigma}^{0} \tag{1.6}
\end{equation*}
$$

where $K_{\sigma}^{0}=\inf _{M} K_{\sigma}$.
In the limiting case, the foliation is minimal, transversally Einsteinian with positive constant transversal scalar curvature σ^{∇}. In particular, the limiting foliation in (1.6) is minimal, transversally Einsteinian with odd complex codimension. This implies that when complex codimension of \mathcal{F} is even, there exists a shaper estimate than (1.6).

2. Preliminaries and known facts

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a $(p+q)$-dimensional Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_{M} with respect to \mathcal{F}. We recall the exact sequence

$$
0 \rightarrow L \rightarrow T M \xrightarrow{\pi} Q \rightarrow 0
$$

determined by the tangent bundle L and the normal bundle $Q=T M / L$ of \mathcal{F}. The assumption of g_{M} to be a bundle-like metric means that the induced metric g_{Q} on the normal bundle $Q \cong L^{\perp}$ satisfies the holonomy invariance condition $\stackrel{\circ}{\nabla} g_{Q}=0$, where $\stackrel{\circ}{\nabla}$ is the Bott connection in Q ([12]).

For a distinguished chart $\mathcal{U} \subset M$ the leaves of \mathcal{F} in \mathcal{U} are given as the fibers of a Riemannian submersion $f: \mathcal{U} \rightarrow \mathcal{V} \subset N$ onto an open subset \mathcal{V} of a model Riemannian manifold N.

For overlapping charts $U_{\alpha} \cap U_{\beta}$, the corresponding local transition functions $\gamma_{\alpha \beta}=$ $f_{\alpha} \circ f_{\beta}^{-1}$ on N are isometries.

Further, we denote by ∇ the canonical connection of the normal bundle $Q=T M / L$ of \mathcal{F}. It is defined by

$$
\begin{cases}\nabla_{X} s=\pi\left(\left[X, Y_{s}\right]\right) & \text { for } \quad X \in \Gamma L \tag{2.1}\\ \nabla_{X} s=\pi\left(\nabla_{X}^{M} Y_{s}\right) & \text { for } \quad X \in \Gamma L^{\perp}\end{cases}
$$

where $s \in \Gamma Q$, and $Y_{s} \in \Gamma L^{\perp}$ corresponding to s under the canonical isomorphism $L^{\perp} \cong Q$. The connection ∇ is metric and torsion free. It corresponds to the Riemannian connection of the model space $N^{q},[12]$. The curvature R^{∇} of ∇ is defined by

$$
R_{X Y}^{\nabla}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} \text { for } \quad X, Y \in T M
$$

Since $i(X) R^{\nabla}=0$ for any $X \in \Gamma L([12,13,20])$, we can define the (transversal) Ricci curvature $\rho^{\nabla}: \Gamma Q \rightarrow \Gamma Q$ and the (transversal) scalar curvature σ^{∇} of \mathcal{F} by

$$
\rho^{\nabla}(s)=\sum_{a} R_{s E_{a}}^{\nabla} E_{a}, \quad \sigma^{\nabla}=\sum_{\alpha} g_{Q}\left(\rho^{\nabla}\left(E_{a}\right), E_{a}\right)
$$

where $\left\{E_{a}\right\}_{a=1, \ldots, q}$ is an orthonormal basis for Q. The foliation \mathcal{F} is said to be (transversally) Einsteinian if the model space N is Einsteinian, that is,

$$
\begin{equation*}
\rho^{\nabla}=\frac{1}{q} \sigma^{\nabla} \cdot \mathrm{id} \tag{2.2}
\end{equation*}
$$

with constant transversal scalar curvature σ^{∇}.
The mean curvature vector field of \mathcal{F} is then defined by

$$
\begin{equation*}
\tau=\sum_{i} \pi\left(\nabla_{E_{i}}^{M} E_{i}\right) \tag{2.3}
\end{equation*}
$$

where $\left\{E_{i}\right\}_{i=1, \cdots, p}$ is an orthonormal basis of L. The dual form κ, the mean curvature form for L, is then given by

$$
\begin{equation*}
\kappa(X)=g_{Q}(\tau, X) \quad \text { for } \quad X \in \Gamma Q \tag{2.4}
\end{equation*}
$$

The foliation \mathcal{F} is said to be minimal (or harmonic) if $\kappa=0$.
Let $\Omega_{B}^{r}(\mathcal{F})$ be the space of all basic r-forms, i.e.,

$$
\Omega_{B}^{r}(\mathcal{F})=\left\{\phi \in \Omega^{r}(M) \mid i(X) \phi=0, \theta(X) \phi=0, \text { for } X \in \Gamma L\right\}
$$

Since the exterior derivative preserves the basic forms (that is, $\theta(X) d \phi=0$ and $i(X) d \phi=0$ for $\left.\phi \in \Omega_{B}^{r}(\mathcal{F})\right)$, the restriction $d_{B}=\left.d\right|_{\Omega_{B}^{*}(\mathcal{F})}$ is well defined. Let δ_{B} the adjoint operator of d_{B}. Then it is well-known ([1,9]) that

$$
\begin{equation*}
d_{B}=\sum_{a} \theta_{a} \wedge \nabla_{E_{a}}, \quad \delta_{B}=-\sum_{a} i\left(E_{a}\right) \nabla_{E_{a}}+i\left(\kappa_{B}\right) \tag{2.5}
\end{equation*}
$$

where κ_{B} is the basic component of $\kappa,\left\{E_{a}\right\}$ is a local orthonormal basic frame in Q and $\left\{\theta_{a}\right\}$ its g_{Q}-dual 1-form.

The basic Laplacian acting on $\Omega_{B}^{*}(\mathcal{F})$ is defined by

$$
\begin{equation*}
\Delta_{B}=d_{B} \delta_{B}+\delta_{B} d_{B} \tag{2.6}
\end{equation*}
$$

If \mathcal{F} is the foliation by points of M, the basic Laplacian is the ordinary Laplacian.

3. The basic Dirac operator

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a Riemannian manifold with a transversally oriented Riemannian foliation \mathcal{F} of codimension q and a bundle-like metric g_{M} with respect to \mathcal{F}. Let $S O(q) \rightarrow P \rightarrow M$ be the principal bundle of (oriented) transverse orthonormal framings. Then a transverse spin structure is a principal $\operatorname{Spin}(q)$-bundle \tilde{P} together with two sheeted covering $\xi: \tilde{P} \rightarrow P$ such that $\xi(p \cdot g)=\xi(p) \xi_{0}(g)$ for all $p \in \tilde{P}, g \in \operatorname{Spin}(q)$, where $\xi_{0}: \operatorname{Spin}(q) \rightarrow S O(q)$ is a covering. In this case, the foliation \mathcal{F} is called a transverse spin foliation. We then define the vector bundle S associated with \tilde{P} by

$$
\begin{equation*}
S(\mathcal{F})=\tilde{P} \times_{\operatorname{Spin}(q)} S_{q}, \tag{3.1}
\end{equation*}
$$

where S_{q} is the irreducible spinor space associated to Q. The Hermitian metric on $S(\mathcal{F})$ is induced from g_{Q}, and the Riemannian connection ∇ on P defined by (2.1) can be lifted to one on \tilde{P}, in particular, to one on $S(\mathcal{F})$, which will be denoted by the same letter. $S(\mathcal{F})$ is called the foliated spinor bundle. It is well known that the curvature transform $R^{S}([17])$ is given as

$$
\begin{equation*}
R_{X Y}^{S} \Phi=\frac{1}{4} \sum_{a, b} g_{Q}\left(R_{X Y}^{\nabla} E_{a}, E_{b}\right) E_{a} \cdot E_{b} \cdot \Phi \quad \text { for } X, Y \in T M \tag{3.2}
\end{equation*}
$$

On the foliated spinor bundle $S(\mathcal{F})$, we have

$$
\begin{align*}
\sum_{a} E_{a} \cdot R_{X E_{a}}^{S} \Phi & =-\frac{1}{2} \rho^{\nabla}(\pi(X)) \cdot \Phi, \tag{3.3}\\
\sum_{a<b} E_{a} \cdot E_{b} \cdot R_{E_{a} E_{b}}^{S} \Phi & =\frac{1}{4} \sigma^{\nabla} \Phi \tag{3.4}
\end{align*}
$$

for $X \in T M,[9,11]$. Taking $\hat{\pi}$ to denote the projection

$$
\hat{\pi}: C^{\infty}\left(T^{*} M \otimes S(\mathcal{F})\right) \rightarrow C^{\infty}\left(Q^{*} \otimes S(\mathcal{F})\right) \cong C^{\infty}(Q \otimes S(\mathcal{F}))
$$

we define the transversal Dirac operator $D_{\mathrm{tr}}^{\prime}([4,6])$ by

$$
D_{\mathrm{tr}}^{\prime}=\cdot \circ \hat{\pi} \circ \nabla
$$

If $\left\{E_{a}\right\}_{a=1, \cdots, q}$ is taken to be a local orthonormal basic frame in Q, then

$$
D_{\mathrm{tr}}^{\prime}=\sum_{a} E_{a} \cdot \nabla_{E_{a}}
$$

In $[4,6]$ it was shown that the formal adjoint $D_{\mathrm{tr}}^{\prime *}$ is given by $D_{\mathrm{tr}}^{\prime *}=D_{\mathrm{tr}}^{\prime}-\kappa$. and that therefore

$$
\begin{equation*}
D_{\mathrm{tr}}=D_{\mathrm{tr}}^{\prime}-\frac{1}{2} \kappa \tag{3.5}
\end{equation*}
$$

is a symmetric, transversally elliptic differential operator, with symbol $\sigma_{D_{\mathrm{tr}}}$ satisfying $\sigma_{D_{\mathrm{tr}}}(x, \xi)=\xi$ for $\xi \in Q_{x}^{*}$ and $\sigma_{D_{\mathrm{tr}}}(x, \xi)=0$ for $\xi \in L_{x}^{*}$. We define the subspce $\Gamma_{B} S(\mathcal{F})$ of basic or holonomy invariant sections of $S(\mathcal{F})$ by

$$
\begin{equation*}
\Gamma_{B} S(\mathcal{F})=\left\{\Phi \in \Gamma S(\mathcal{F}) \mid \nabla_{X} \Phi=0 \text { for } X \in \Gamma L\right\} \tag{3.6}
\end{equation*}
$$

From (3.5), we see that $D_{\text {tr }}$ leaves $\Gamma_{B} S(\mathcal{F})$ invariant if and only if the foliation \mathcal{F} is isoparametric, i.e., $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Let $D_{b}=\left.D_{\text {tr }}\right|_{\Gamma_{B} S(\mathcal{F})}: \Gamma_{B} S(\mathcal{F}) \rightarrow \Gamma_{B} S(\mathcal{F})$. This operator D_{b} is called the basic Dirac operator on (smooth) basic sections $\Gamma_{B} S(\mathcal{F})$. We now define $\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}}: \Gamma S(\mathcal{F}) \rightarrow \Gamma S(\mathcal{F})$ as

$$
\begin{equation*}
\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \Phi=-\sum_{a} \nabla_{E_{a}, E_{a}}^{2} \Phi+\nabla_{\kappa} \Phi \tag{3.7}
\end{equation*}
$$

where $\nabla_{V, W}^{2}=\nabla_{V} \nabla_{W}-\nabla_{\nabla_{V} W}$ for any $V, W \in T M$.
Proposition $3.1([9])$. Let $\left(M, g_{M}, \mathcal{F}, S(\mathcal{F})\right)$ be a compact Riemannian manifold with the transverse spin foliation \mathcal{F} and a bundle-like metric g_{M} with respect to \mathcal{F}. Then

$$
\left\langle\left\langle\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \Phi, \Psi\right\rangle\right\rangle=\left\langle\left\langle\nabla_{\mathrm{tr}} \Phi, \nabla_{\mathrm{tr}} \Psi\right\rangle\right\rangle
$$

for all $\Phi, \Psi \in \Gamma E$, where $\langle\langle\Phi, \Psi\rangle\rangle=\int_{M}\langle\Phi, \Psi\rangle$ is the inner product on $S(\mathcal{F})$.
Proposition $3.2([9])$. Let $\left(M, g_{M}, \mathcal{F}, S(\mathcal{F})\right)$ be the same as in Proposition 3.1. Assume that κ is basic-harmonic. Then the basic Dirac operator D_{b} satisfies

$$
\begin{equation*}
D_{b}^{2}=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}}+\frac{1}{4} K_{\sigma} \tag{3.8}
\end{equation*}
$$

where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$.

4. An estimation of the eigenvalues on Riemannian spin foliation

Let $\left(M, g_{M}, \mathcal{F}, S(\mathcal{F})\right)$ be a compact Riemannian manifold with the transverse spin foliation \mathcal{F} of codimension q, a bundle-like metric g_{M} with respect to \mathcal{F} and a foliated spinor bundle $S(\mathcal{F})$. Now, we introduce a new connection $\stackrel{f}{\nabla}$ on $S(\mathcal{F})$ as

$$
\begin{equation*}
\stackrel{f}{\nabla}_{X} \Phi=\nabla_{X} \Phi+f \pi(X) \cdot \Phi \quad \text { for } X \in T M \tag{4.1}
\end{equation*}
$$

where f is a real valued basic function on M. Trivially, this connection $\stackrel{f}{\nabla}$ is a metric connection on Q. By similar calculation to proposition 3.1, we have

$$
\begin{equation*}
\left\langle\left\langle\nabla_{\mathrm{tr}}^{f} \nabla_{\mathrm{tr}}^{f} \Phi, \Psi\right\rangle\right\rangle=\langle\langle\stackrel{f}{\mathrm{tr}} \Phi, \stackrel{f}{\nabla} \mathrm{tr} \Psi\rangle\rangle \tag{4.2}
\end{equation*}
$$

for all $\Phi, \Psi \in \Gamma S(\mathcal{F})$. Let $D_{b} \Phi=\lambda \Phi$. From (3.8), (4.1) and (4.2) we have

$$
\begin{equation*}
\left\|\stackrel{f}{\nabla}_{\mathrm{tr}} \Phi\right\|^{2}=\int_{M}\left(\left(\frac{q-1}{q} \lambda^{2}-\frac{1}{4} K_{\sigma}\right)|\Phi|^{2},\right. \tag{4.3}
\end{equation*}
$$

where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$. From (4.3), we have the following theorem.
Theorem 4.1 ([9]). Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension $q>1$ and bundle-like metric g_{M} such that κ is
basic-harmonic. Assume $K_{\sigma} \geq 0$. Then the eigenvalue λ of the basic Dirac operator D_{b} satisfies

$$
\begin{equation*}
\lambda^{2} \geq \frac{1}{4} \frac{q}{q-1} \inf _{M} K_{\sigma} \tag{4.4}
\end{equation*}
$$

where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$.

Remark. If \mathcal{F} is a point foliation, then the transversal (basic) Dirac operator is just a Dirac operator on an ordinary manifold. Therefore Theorem 4.1 is a generalization of the result on an ordinary manifold (cf.[5]).

Theorem $4.2([9]) . \operatorname{Let}\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension $q>1$ and a bundle-like metric g_{M} such that κ is basic-harmonic. Assume $K_{\sigma}>0$. If there exists an eigenspinor field Ψ_{1} of the basic Dirac operator D_{b} for the eigenvalue $\lambda_{1}^{2}=\frac{q}{4(q-1)} K_{\sigma}^{0}$, then \mathcal{F} is a minimal, transversally Einsteinian with constant transversal scalar curvature.

Remark. Theorem 4.2 implies that if the foliation \mathcal{F} is not minimal, then $\lambda^{2}>$ $\frac{q}{4(q-1)} K_{\sigma}^{0}$. So when \mathcal{F} is not minimal, there exists a sharper estimate than (4.4).

5. An estimation of the eigenvalues by the conformal change

Now, we consider, for any real basic function u on M, the transversally conformal metric $\bar{g}_{Q}=e^{2 u} g_{Q}$. Let $\bar{P}_{s o}(\mathcal{F})$ be the principal bundle of \bar{g}_{Q}-orthogonal frames. Locally, the section \bar{s} of $\bar{P}_{s o}(\mathcal{F})$ corresponding a section $s=\left(E_{1}, \cdots, E_{q}\right)$ of $P_{s o}(\mathcal{F})$ is $\bar{s}=\left(\bar{E}_{1}, \cdots, \bar{E}_{q}\right)$, where $\bar{E}_{a}=e^{-u} E_{a}(a=1, \cdots, q)$. This isometry will be denoted by I_{u}. Thanks to the isomorphism I_{u} one can define a transverse spin structure $\bar{P}_{\text {spin }}(\mathcal{F})$ on \mathcal{F} in such a way that the diagram

commutes. Let $\bar{S}(\mathcal{F})$ be the foliated spinor bundle associated with $\bar{P}_{\text {spin }}(\mathcal{F})$. For any section Ψ of $S(\mathcal{F})$, we write $\bar{\Psi} \equiv I_{u} \Psi$. If $\langle,\rangle_{g_{Q}}$ and $\langle,\rangle_{\bar{g}_{Q}}$ denote respectively the natural Hermitian metrics on $S(\mathcal{F})$ and $\bar{S}(\mathcal{F})$, then for any $\Phi, \Psi \in \Gamma S(\mathcal{F})$

$$
\begin{equation*}
\langle\Phi, \Psi\rangle_{g_{Q}}=\langle\bar{\Phi}, \bar{\Psi}\rangle_{\bar{g}_{Q}} \tag{5.1}
\end{equation*}
$$

and the Clifford multiplication in $\bar{S}(\mathcal{F})$ is given by

$$
\begin{equation*}
\bar{X} \cdot \bar{\Psi}=\overline{X \cdot \Psi} \quad \text { for } X \in \Gamma Q \tag{5.2}
\end{equation*}
$$

Let $\bar{\nabla}$ be the metric and torsion free connection corresponding to \bar{g}_{Q}. Then we have for $X, Y \in \Gamma T M$,

$$
\begin{equation*}
\bar{\nabla}_{X} \pi(Y)=\nabla_{X} \pi(Y)+X(u) \pi(Y)+Y(u) \pi(X)-g_{Q}(\pi(X), \pi(Y)) \operatorname{grad}_{\nabla}(u) \tag{5.3}
\end{equation*}
$$

where $\operatorname{grad}_{\nabla}(u)=\sum_{a} E_{a}(u) E_{a}$ is a transversal gradient of u and $X(u)$ is the Lie derivative of the function u in the direction of X. The formula (5.3) follows from that $\bar{\nabla}$ is the metric and torsion free connection with respect to \bar{g}_{Q}. The connection ∇ and
$\bar{\nabla}$ acting repectively on the sections of $S(\mathcal{F})$ and $\bar{S}(\mathcal{F})$, are related, for any vector field X and any spinor field Ψ by

$$
\begin{equation*}
\bar{\nabla}_{X} \bar{\Psi}=\overline{\nabla_{X} \Psi}-\frac{1}{2} \overline{\pi(X) \cdot \operatorname{grad}_{\nabla}(u) \cdot \Psi}-\frac{1}{2} g_{Q}\left(\operatorname{grad}_{\nabla}(u), \pi(X)\right) \bar{\Psi} . \tag{5.4}
\end{equation*}
$$

Now, we introduce a new connection $\frac{f}{\nabla}$ on $\bar{S}(\mathcal{F})$ as

$$
\begin{equation*}
\stackrel{f}{\nabla}_{X} \bar{\Psi}=\bar{\nabla}_{X} \bar{\Psi}+f \pi(X): \bar{\Psi} \quad \text { for } X \in T M \tag{5.5}
\end{equation*}
$$

where f is a real-valued basic function on M. Trivially, this connection $\stackrel{f}{\nabla}$ is a metric connection.

Lemma 5.1. On the foliated spinor bundle $\bar{S}(\mathcal{F})$, we have

$$
\left\langle\left\langle\bar{\nabla}_{\mathrm{tr}}^{*}{\stackrel{f}{\nabla_{\mathrm{tr}}}}^{\bar{\Psi}}, \bar{\Phi}\right\rangle\right\rangle_{\overline{g_{Q}}}=\left\langle\left\langle\stackrel{f}{\bar{\nabla}_{\mathrm{tr}}} \bar{\Psi},{\stackrel{f}{\nabla_{\mathrm{tr}}}}^{\bar{\Phi}}\right\rangle_{\bar{g}_{Q}}\right.
$$

for all $\Psi, \Phi \in \Gamma S(\mathcal{F})$, where $\left\langle\stackrel{f}{\nabla}_{\mathrm{tr}} \bar{\Psi}, \stackrel{f}{\nabla}_{\mathrm{tr}} \bar{\Phi}\right\rangle_{\bar{g}_{Q}}=\sum_{a}\left\langle\left\langle_{\overline{\nabla_{E}}}^{\bar{E}_{a}} \bar{\Psi}, \stackrel{f}{\nabla}_{\bar{E}_{a}} \bar{\Phi}_{\bar{g}_{Q}}\right.\right.$.
On the other hand, from (3.7) and (5.5) we have

$$
\begin{equation*}
\stackrel{f}{\nabla}^{*} \stackrel{f}{\mathrm{tr}}_{\mathrm{tr}} \bar{\Psi}=\bar{\nabla}_{\mathrm{tr}}^{*} \bar{\nabla}_{\mathrm{tr}} \bar{\Psi}-2 f \bar{D}_{\mathrm{tr}} \bar{\Psi}+q f^{2} \bar{\Psi}-e^{-u} \overline{\operatorname{grad}_{\nabla}(f) \cdot \Psi} \tag{5.6}
\end{equation*}
$$

Let $D_{b} \Phi=\lambda \Phi(\Phi \neq 0)$. If we put $f=\frac{\lambda}{q} e^{-u}$, then we have

$$
\begin{equation*}
\int\left|\stackrel{f}{\nabla}_{\mathrm{tr}} \bar{\Psi}\right|_{\bar{g}_{Q}}^{2}=\frac{q-1}{q} \int e^{-2 u}\left(\lambda^{2}-\frac{q}{4(q-1)} e^{2 u} K_{\sigma}^{\bar{\nabla}}\right)|\bar{\Psi}|_{\overline{9} Q}^{2} \tag{5.7}
\end{equation*}
$$

where $K_{\sigma}^{\bar{\nabla}}=h^{-1} Y_{b} h+|\kappa|^{2}, Y_{b}$ is a basic Yamabe operator of \mathcal{F}, which is defined by

$$
\begin{equation*}
Y_{b}=4 \frac{q-1}{q-2} \Delta_{B}+\sigma^{\nabla} \tag{5.8}
\end{equation*}
$$

From (5.7), we have the following theorem ([11]).
Theorem 5.2. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension $q \geq 3$ and bundle-like metric g_{M} such that $\kappa \in \Omega_{B}^{1}(\mathcal{F})$ and $\delta \kappa=0$. If the transversal scalar curvature is non-negative, then we have

$$
\begin{equation*}
\lambda^{2} \geq \frac{q}{4(q-1)}\left(\mu_{1}+\inf |\kappa|^{2}\right) \tag{5.9}
\end{equation*}
$$

where μ_{1} is the smallest eigenvalue of the basic Yamabe operator.
Remark. Since $\mu_{1} \geq \inf \sigma^{\nabla}$, the inequality (5.9) is a sharper estimate than (4.4).

6. An estimation of the eigenvalues on Kähler spin foliation

Let \mathcal{F} be a Kähler foliation. Namely, by a Kähler foliation $\mathcal{F}([19])$ we mean a foliation satisfying the following conditions; (i) \mathcal{F} is Riemannian, with a bundle-like metric g_{M} on M inducing the holonomy invariant metric g_{Q} on $Q \equiv L^{\perp}$, (ii) there is a holonomy invariant almost complex structure $J: Q \rightarrow Q$, where $\operatorname{dim} Q=q(=2 n)$ (real dimension), with respect to which g_{Q} is Hermitian, i.e.,

$$
\begin{equation*}
g_{Q}(J X, J Y)=g_{Q}(X, Y) \tag{6.1}
\end{equation*}
$$

for $X, Y \in \Gamma Q$, and (iii) if ∇ is almost complex, i.e., $\nabla J=0$. Note that

$$
\begin{equation*}
\Omega(X, Y)=g_{Q}(X, J Y) \tag{6.2}
\end{equation*}
$$

defines a basic 2-form Ω, which is closed as a consequence of $\nabla g_{Q}=0$ and $\nabla J=0$. Then we can express the basic 2 -form Ω by

$$
\begin{equation*}
\Omega=\sum_{k=1}^{n} \theta^{2 k-1} \wedge \theta^{2 k} \tag{6.3}
\end{equation*}
$$

where $\left\{\theta^{a}\right\}$ is a g_{Q}-dual 1-form on M. For a Kähler foliation, we have the following identities ([19]):

$$
\begin{equation*}
R_{X Y}^{\nabla} J=J R_{X Y}^{\nabla}, \quad R_{J X J Y}^{\nabla}=R_{X Y}^{\nabla}, \quad R_{X Y}^{\nabla} Z+R_{Y Z}^{\nabla} X+R_{Z X}^{\nabla} Y=0 \tag{6.4}
\end{equation*}
$$

where X, Y and Z are elements of ΓQ.
Let \mathcal{F} be a Kähler spin foliation on a compact oriented Riemannian manifold M. From (6.3), we know that

$$
\begin{equation*}
\Omega=-\frac{1}{2} \sum_{a} E_{a} \cdot J E_{a}=\frac{1}{2} \sum_{a} J E_{a} \cdot E_{a} \tag{6.5}
\end{equation*}
$$

where $\left\{E_{a}\right\}$ is a local orthonormal basic frame in Q.
Note that the foliated spinor bundle $S(\mathcal{F})$ of a Kähler spin foliation \mathcal{F} splits into the orthogonal direct sum

$$
\begin{equation*}
S(\mathcal{F})=S_{0} \oplus S_{1} \oplus \cdots \oplus S_{n} \tag{6.6}
\end{equation*}
$$

where the fiber $\left(S_{r}\right)_{x}$ of the subbundle S_{r} is just defined as the eigenspace corresponding to the eigenvalue $i(n-2 r)(r=0, \cdots, n)$ of $\Omega_{x}: S_{x}(\mathcal{F}) \rightarrow S_{x}(\mathcal{F})$. If $p_{r}: S(\mathcal{F}) \rightarrow S_{r}$ is the projection, then we have

$$
\begin{equation*}
\Omega=\sum_{r=0}^{n} i \mu_{r} p_{r}, \quad \mu_{r}=n-2 r \tag{6.7}
\end{equation*}
$$

The decomposition (6.6) is compatible with ∇, i.e., if Ψ is a section of S_{r}, then $\nabla_{X} \Psi$ is also a section of S_{r} for any vector field X.

Let $\tilde{D}_{\text {tr }}$ be the operator which is locally defined by

$$
\begin{equation*}
\tilde{D}_{\mathrm{tr}} \Phi=\sum_{a} J E_{a} \cdot \nabla_{E_{a}} \Phi-\frac{1}{2} J \kappa \cdot \Phi \quad \text { for } \quad \Phi \in \Gamma S(\mathcal{F}) \tag{6.8}
\end{equation*}
$$

Using Green's theorem on the foliated Riemannian manifold ([21]), we know for any $\Phi, \Psi \in \Gamma S(\mathcal{F})$

$$
\begin{equation*}
\int_{M}\left\langle\tilde{D}_{\mathrm{tr}} \Phi, \Psi\right\rangle=\int_{M}\left\langle\Phi, \tilde{D}_{\mathrm{tr}} \Psi\right\rangle \tag{6.9}
\end{equation*}
$$

i.e., \tilde{D}_{tr} is self-adjoint transversally elliptic operator.

Proposition $6.1([10])$. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a Riemannian manifold with a Kähler spin foliation \mathcal{F} and a bundle-like metric g_{M} with $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Suppose the mean curvature of \mathcal{F} is a transversally holomorphic. Then we have

$$
D_{\mathrm{tr}}^{2}=\tilde{D}_{\mathrm{tr}}^{2}, \quad D_{\mathrm{tr}} \tilde{D}_{\mathrm{tr}}+\tilde{D}_{\mathrm{tr}} D_{t r}=0
$$

On the foliated spinor bundle $S(\mathcal{F})$, we introduce a new connection of the form

$$
\begin{equation*}
\stackrel{f g}{ }_{X} \phi=\nabla_{X} \phi+f \pi(X) \cdot \phi+i g J \pi(X) \cdot \iota^{2} \phi \quad \text { for } X \in T M \tag{6.10}
\end{equation*}
$$

where f, g are real valued basic functions on M and $\iota: S(\mathcal{F}) \rightarrow S(\mathcal{F})$ is a bundle map (see [10]). By similar method to section 5 , if we put $f=\frac{\lambda}{q+2}$ and $g=\frac{(-1)^{e} \lambda}{q+2}$, then we have takes the form

$$
\begin{equation*}
\left\|\nabla_{\mathrm{tr}}^{f g} \phi\right\|^{2}=\int_{M}\left(\frac{q}{q+2} \lambda^{2}-\frac{1}{4} K_{\sigma}\right)|\phi|^{2} \tag{6.11}
\end{equation*}
$$

where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$. From (6.11), we have the following theorem ([10]).
Theorem 6.2. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a Kähler spin foliation \mathcal{F} of codimension $q=2 n$ and a bundle-like metric g_{M} such that κ is basicharmonic and transversally holomorphic. If $K_{\sigma} \geq 0$, then the eigenvalue λ of D_{b} satisfies

$$
\begin{equation*}
\lambda^{2} \geq \frac{q+2}{4 q} \inf _{M} K_{\sigma} \tag{6.12}
\end{equation*}
$$

where $K_{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$.
Remark. The estimation of the eigenvalue of the transversal Dirac operator on a Kähler spin foliation is a shaper estimate than the one in Theorem 4.1.

Theorem 6.3 ([10]). Let $\left(M, g_{M}, \mathcal{F}\right)$ be the same as in Theorem 6.2. If there exists an eigenspinor field $\phi(\neq 0)$ of the basic Dirac operator D_{b} for the eigenvalue $\lambda^{2}=\frac{q+2}{4 q} K_{\sigma}^{0}$, then \mathcal{F} is a minimal, transversally Einsteinian of odd complex codimension n with nonnegative constant transversal scalar curvature σ^{∇}.

Question. In Theorem 6.3, the limiting foliation is odd complex codimension. This implies that if the codimension of \mathcal{F} is even, then there exists a sharper estimate than (6.12) in Theorem 6.2. What is the estimate?

References

[1] J. A. Alvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194.
[2] C. Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509-521.
[3] H. Baum, Th. Friedrich, R. Grunewald and I. Kath, Twistors and Killing spinors on Riemannian manifolds, Teubner, Leipzig/Stuttgart 1991.
[4] J. Brüning and F. W. Kamber, Vanishing theorems and index formulas for transversal Dirac operators, A.M.S Meeting 845, Special Session on operator theory and applications to Geometry, Lawrence, KA; A.M.S. Abstracts, October 1988.
[5] Th. Friedrich, Der erste Eigenwert des Dirac operators einer kompakten,Riemannschen Mannigfaltigkeit nichtnegative skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
[6] J. F. Glazebrook and F. W. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140 (1991), 217-240.
[7] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986), 151-162.
[8] O. Hijazi, Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys. 16 (1995), 27-38.
[9] S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), 253-264.
[10] S. D. Jung and T. H. Kang, Lower bounds for the eigenvalue of the transversal Dirac operator on a Kähler foliation, J. Geom. Phys. 45 (2003), 75-90.
[11] S. D. Jung, B. H. Kim and J. S. Pak, Lower bounds for the eigenvalues of the basic Dirac operator on a Riemannian foliation, to appear in J. Geom. Phys.
[12] F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, Tulane, Dec. 1980, Lecture Notes in Math. 949, Springer-Verlag, New York 1982, 87-121.
[13] F. W. Kamber and Ph. Tondeur, Foliated bundles and Characteristic classes, Lecture Notes in Math. 493, Springer-Verlag, Berlin 1975.
[14] K.-D. Kirchberg, An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom. 4 (1986), 291-326.
[15] K.-D. Kirchberg, The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys. 7 (1990), 449-468.
[16] W. Kramer, U. Semmelmann and G. Weingart, Eigenvalue estimates for Dirac operator on quaternionic Kähler manifolds, Math. Z. 230 (1999), 727-751.
[17] H. B. Lawson, Jr. and M. L. Michelsohn, Spin geometry, Princeton Univ. Press, Princeton, New Jersey 1989.
[18] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris Ser. A-B 257 (1963).
[19] S. Nishikawa and Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic Kähler foliations, Tohoku Math. J. 40 (1988), 599-611.
[20] Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New-York 1988.
[21] S. Yorozu and T. Tanemura Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar. 56 (1990), 239-245.

Department of Mathematics, Cheju National University Jeju 690-756, Korea
E-mail: sdjung@cheju.cheju.ac.kr

[^0]: 2000 Mathematics Subject Classification: 53C12, 53C27, 57R30.
 Key words and phrases: transverse spin foliation, basic Yamabe operator, transversal Dirac operator, basic Dirac operator, transversally Einsteinian, Kähler spin foliation.

 This paper was supported by grant No. R01-2003-000-10004-0 from Korea Science and Engineering Foundations (KOSEF).

 The paper is in final form and no version of it will be submitted elsewhere.

