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HORIZONTAL AND CONTACT FORMS
ON CONSTRAINT MANIFOLDS

OLGA KRUPKOVA AND MARTIN SWACZYNA

ABsTRACT. Differential forms on constraint submanifolds of jet bundles are investi-
gated. The horizontalization and contactization operators are generalized, and canon-
ical decomposition of forms, arising due to the existence of the constraint structure, is
found.

1. INTRODUCTION

Horizontal and contact forms play an essential role in many geometrical construc-
tions on jet bundles. Namely, the operators of horizontalization and contactizations,
and the arising canonical decomposition of differential forms into a sum of hori-
zontal and contact parts of different contact degree are fundamental tools in the
calculus of variations and the theory of differential systems on fibered manifolds,
as well as in numerous applications in mathematical physics. Recently, there has
been an interest in extending results to the case of non-holonomic systems which are
modelled as differential systems on submanifolds of jet manifolds. Yet, the case of
non-holonomic mechanics has been intensively studied (cf. e.g. [1]-[3], [7]-[16], [18],
and others), and the corresponding constraint structure has been discovered [7], [13].
This is the case where the underlying fibered manifold is of the form 7 : ¥ — X,
where dim X = 1, and the constraint structure is given by a fibered submanifold @
of my : J'Y — Y, endowed with a naturally arising distribution, called canonical
distribution or Chetaev bundle over Q.
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The aim of this paper is to study the structure of differential forms on constraint
submanifolds. We construct operators of horizontalization and contactizations of
different degrees, adapted to the constraint structure. As the main result we obtain
a Theorem on canonical decomposition of differential forms on constraint manifolds
into a sum of constraint-horizontal and constraint-contact parts.

2. HORIZONTAL AND CONTACT FORMS ON FIBERED MANIFOLDS

Let us recall briefly the calculus of horizontal and contact forms on fibered man-
ifolds, as developed in [4] and [5]. For an exposition we refer also to [6], [17].

In what follows, we consider a smooth fibered manifold 7 : Y — X with dim X =
1, dimY = m+ 1, and its first (resp. second) jet prolongation, J'Y (resp. J2Y).
Fibered coordinates on Y, associated coordinates on J'Y, and those on J2Y, are
denoted by (¢t,¢%), (t,¢°,4¢°), and (¢,q%,¢°,§’) respectively, where 1 < ¢ < m. We
use standard notations m; : J'Y = X, m: J'Y = Y, mp1 1 JBY — JY, etc. A
section & of 7 is called holonomic if § = Jv for a section 7 of m. A vector field ¢
on JY is called m-projectable (resp. my,o-projectable) if there exists a vector field &
on X (resp. on Y), such that T'ry - £ = §gomy (resp. T'my g+ € =€y omp). € is called
my-vertical (resp. my g-vertical) if Ty - € = 0 (resp. Ty 0+ & =0).

Denote by A9(JY’) the module of differential g-forms on J'Y over the ring of
functions. n € A(J'Y) is called my-horizontal (resp. w1 g-horizontal) if ign = 0 for
every mi-vertical (resp. my¢-vertical) vector field ¢ on J'Y. The submodule of ;-
horizontal (resp. 71 o-horizontal) g-forms on J'Y will be denoted by A% (J'Y) (resp.
AL (JY)). If n € AY(J'Y), ¢ > 1, one sets for every point y = J2y € J?Y, and
every system of vector fields &i,...,&; € TyJ?Y

2.1)  hp(I2Y) (.. &) =0(Tay) (Ted y - Try - &4, Tod y - Tz - &)

For a function f on J'Y, h is defined simply by Af(J2y) = f(J2v). The mapping
h: AY(JY) — A% (J2Y) is called horizontalization with respect to the projection
m.n € AY(JY) is called contact if J'y*n = 0 for every section +y of 7. Consequently,
every g-form for ¢ > dim X is contact. The module of contact g-forms on J'Y is
denoted by Q9(J'Y). Note that Q*(J'Y) is locally generated by the following forms,

(2.2) w’=dg° —¢°dt, 1<o<m,

called canonical contact 1-forms. Putting

(2.3) pn=m3,n— hn

one gets a mapping p : AY(J'Y) = QI(J 2Y>, assigning to every g-form n on J'Y a
contact g-form py on J2Y. p is called contactization with respect to the projection

m. For a function f, pf = 0.
The mappings h and p have the following properties:
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Proposition 2.1 [4]. Let A\,n € AY(JY),w € AP(J'Y).
(1) A(A+7n) =hA+ hy, h(AAw) = hRAA hw.
(2) p(A+1) =pA+pn, p(AAw) = pAApw + pAA hw + hA A pw.
(3) h(fn) = (f om2,1) - hn, p(fn) = (f o m2,1) - pn for a function f.
(4) n is horizontal (resp. contact) if and only if pn = 0 (resp. hn = 0).
(8) Ifq>dimX then hn =0, pn =73 7.
(6) h7 is a unique horizontal form such that for every sectiony of w the condition
JYy*n = J?y*hy is satisfied.
(7) For every section y of ® the condition J%y*pn = 0 is satisfied.
(8) Ifn is w1 0-horizontal then both hn and pn are w3 1-projectable.
(9) pn is ma,1-projectable if and only if hn is wa,1-projectable.
(10) If ¢ is an isomorphism of w then hJ'¢*n = J2¢*hn, pJi¢*n = J2¢*pn.

A contact g-form 7 is called 1-contact if for every m;-vertical vector field £ the (g—
1)-form ¢ is horizontal; 7 is called i-contact, 1 > 1, if i¢n is (¢ — 1)-contact. Denote
by Q97%#(J'Y) the module of i-contact g-forms on J'Y. We have the following
Decomposition Theorem:

Theorem 2.1 [4]. Everyn € AY(J'Y) admits a unique decomposition
(2.4) T317 = Tlg-1+ g

into a sum of a horizontal and 1-contact form on J2Y if ¢ = 1, and into a sum of
a (g — 1)-contact and g-contact form on J2Y if ¢ > 1, respectively.

Obviously, in the above formula, 19 = h#, and if ¢ = 1, 7, = pn. The operator
assigning to 7 its i-contact part 7; is denoted by p;, and called i-contactization. In
fibered coordinates, Pq-17 (resp. pgn) is expressed as a linear combination of ¢-forms

Wt Aw?? A w%-t Adt (resp. w? Aw?? A wiet Aw),
Corollary 2.1. The mappings h and p;, 1 < i < g, restricted to A (J1Y) save the
order (i.e. they map g-forms on J'Y to g-forms on JY), and

(2.5) AL (J'Y) = A} (J'Y) @ Q"1 (J'Y),
' AL(JY) = QYY) @ Q%9(JYY),  ¢>1.
3. THE NON-HOLONOMIC CONSTRAINT STRUCTURE

Let k < m be an integer. A non-holonomic constraint of codimension k in J'Y is
defined to be a fibered submanifold 7;,0|g : @ = Y of codimension & of the fibered
manifold my 0 : J'Y = Y (cf. e. g. [7), [13], [15], [18]). We denote by ¢ the canonical
embedding of @ into J'Y. Locally, Q is given by equations

o 1
(8.1) ff=0, 1<i<k, where rank( f) k,
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or, in normal form,
(32) ¢ = g'(t,¢%, ¢4 ¢ 4™ ), 1<i<E.

The submanifold @ is naturally endowed with a distribution, called the canonical
distribution [7], or Chetaev bundle [13], denoted by C. It is annihilated by a system
of k linearly independent (local) 1-forms, called canonical constraint 1-forms, as
follows:

aft

(3.3) o' =1"¢', where ¢ = fldt+ —— 5’ 1<i<k,
ie.,

) m-k i )
(3.4) o = 5% W o™ 1< <k,

I=1

The ideal in the exterior algebra of forms on @ generated by the annihilator of C
is called the constraint ideal, and denoted by Z(C°), or simply Z; its elements are
called constraint forms. The pair (Q,C) is then called a (non-holonomic) constraint
structure on the fibered manifold = [7], [8].

Let @ be the lift of Q in J2Y, i.e. the manifold of all points J2y € J2Y such that
Jly € Q. If Q is given by (3.2) then equations of Q are

m—k+i _ i 1 . o ki 09°
(3'5) qm k+‘=g'(t,qa,q1,q2,...,qm k), qm k+'= le-.

We denote by p : Q — Q the corresponding projection (i.e., p = 1r2,1|é). The
distribution C on Q, defined by

(3.6) T,p(C(y)) = C(p(v))

for every y € Q, is called the l/ift of C. We have dimQ = 3m + 1 — 2k, rankC =
3m + 1 — 3k, corank € = corankC = k. The annihilator of € is locally spanned by
the 1-forms @ = p*f, 1 < i < k, [10]. In what follows, we denote by Z the ideal on
Q, generated by C°.

A section v of 7 is called Q-admissible if J'y(z) € Q for all z € dom+. An iso-
morphism ¢ of 7 is called Q-compatible if J'¢(Q) C Q. Obviously, Q-compatible
isomorphisms transfer @-admissible sections into @-admissible sections. Similarly
the concept of a Q admissible section and a Q-compatlble isomorphism of 7 is de-
fined. By definition, every Q-admissible section is Q-admissible, every Q-compatible
isomorphism is Q-compatible, and p o J2¢ = Jl¢ o p.

If ¢ is a local diffeomorphism of @, recall that the canonical distribution C is said
to be 1)-invariant if at each point z of @, TY(C(2)) C C(¥(z)).
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Proposition 3.1. IfC is -invariant then ¥*Z C I. Moreover, if Y = J 1% where ¢
is a Q-compatible isomorphism of m then also J2¢*Z C I.

Proof. It is sufficient to prove the assertions for constraint 1-forms. By assumption,
for every constraint 1-form ¢ one has at each point z € Q for all vectors ¢ € C(2)
the following: i¢%*¢(2) = ¥*¢(2)(€) = ¢(¥(2))(T% - £) = 0. If additionally ¢ = J*¢
where ¢ is a Q-compatible isomorphism of 7 then for all the canonical constraint
1-forms, J2¢*p*¢* = (po J2¢)* ' = (J'po p)* ¢t = p*Ji¢*o* € p*T C I. Now, for
any constraint 1-form ¢ on Q one has p = a;p* ', where a; are functions on an open
set in @, hence J2¢*p = (a; 0 J2¢)J2¢*p*¢* € T. O

4. HORIZONTAL AND CONTACT FORMS ON CONSTRAINT MANIFOLDS

If Q is a constraint in JY, we denote by A%(Q) and A9(Q) the module of g-forms
on @, and Q, respectively. The concepts of a 7;-horizontal and contact form directly
transfer to forms on Q: n € A%(Q) is called my-horizontal if i¢n = 0 for every m;-
vertical vector field on Q. 7 is called contact if J'y*n = 0 for every Q-admissible
section of 7. Notice that contact 1-forms on @ are locally generated by 1-forms ¢*w?,
1<o0<m,ie dgt —¢'dt, 1 <l <m-—k,dg™* — g¢dt, 1 < i < k. We denote
by A%(Q), resp. AL(Q), resp. Q9(Q) the submodule of m;-horizontal, resp. my,0-
horizontal, resp. contact g-forms on Q. Similar definitions and notations are used for
Q. Apparently, it holds

(4.1) Ay(Q) =Ax(Q©9'(Q), AL Q) =2Q), ¢>1,

and similarly for Q. This enables one to define the mappings h and p for forms
on @ in a similar way as in the unconstrained case, making use of the projection
p:Q — Q. For n € A%(Q), hn and pn are defined on Q.

In what follows, we shall study the structure of forms on @ and Q which is
connected with the existence of the canonical constraint structure defined by the
constraint ideal Z. We denote by A?(Z) the module of constraint g-forms on @, and
by A} (Z) the submodule of m, o-horizontal constraint g-forms. Similar notations
are used if Z, the constraint ideal on Q is considered. By A%(Z), resp. A%(Z) wi
understand {0}. Note that A(Z) C Q9(Q).

We can construct quotient modules A%(Q)/A%(Z), resp. A9(Q)/A(T), the ele-
ments of which are equivalence classes [a]aq¢(z), resp. [a] Av(E) of ¢-forms modulo
constraint g-forms. The corresponding module operations, as well as the wedge prod-
uct of classes are defined as usual.

Definition 4.1. 7 € A%(Q), resp. n € AI(Q) is called constraint-horizontalifi¢n € T
for every my-vertical vector field £ € C, resp. i¢n € I for every ma-vertical vector field
£ecC.

In particular, a 1-form 7 on @ (resp. on Q) is constraint-horizontal if ign = 0 for
every m-vertical vector field £ € C (resp. for every mp-vertical vector field ¢ € C).
Note that constraint-horizontal 1-forms take the form n = 7y + ¢, where 79 is a
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horizontal form and ¢ is a constraint form. Constraint-horizontal g-forms, q > 1,
coincide with constraint forms.

If h: AQ) —» A%(Q), and p : A(Q) — Q9(Q) are the “unconstrained” hor-
izontalization and contactization mappings, we can define corresponding mappings
between quotient modules:

(4. 2)
h: AY(Q)/AYT) = (A% (Q) @ AYT)/AYT),  Rlnlaeizy = [hnlpaizy = B + ¢,

(43)  5:AYQ/AT) » W@)/AD), Blilae) = Plaegs) =1+ 0

which are defined on equivalence classes modulo constraint g-forms (above, ¢ runs
over constraint g-forms defined on Q).

Definition 4.2. The mappings & and 7 will be called constraint horizontalization
and constraint contactization.

Obviously, if p[n)a«(z) = [0]as(z) then the equivalence class [n]aq(z) is constraint-
-horizontal. We say that the equivalence class [n]aq(z) is constraint-contact if
hinlasz) = [0]ae(z). Notice that constraint forms are both horizontal and contact
with respect to these mappings.

Using the properties of the unconstraint horizontalization and contactization we
immediately get the following properties of & and 7:

Proposition 4.1. Let 9, A € AYQ), w € AP(Q), f a function on Q. Consider the
projection p: Q = Q. It holds

Blfnlaszy = (f 0 p) - hlnlas(zy »
Dlfnlacy = (fop) - Blas(z) »
h([Mas@) + [Mas@) = A as@) + Blnlasa) »
(44)  A([Naem A [wlar@y) = AlAas(zy A Rlw]ar(zy »
([Mas(zy + [Mlas(zy) = A Aaa(zy + P[M]Ac(z)
D([Mae@) A Wlar@y) = B[Mas(zy A Blw]ar ()
+ B[N as(z) A hlwlar(zy + B[Aao(z) A lwlas(z) -

Proposition 4.2.

(1) The eguivalence class [n]aq(z) is constraint-horizontal (resp. contact) if and
only if pn)as(z) = [0as(z) (resp- A[nlas(zy = [0)as(z))-

(2) Ifq>dimX then hlnlaaz) = [0lraz), Plasz) = [p*Mpre(z)-

(3) h[n] Ae(z) 18 a unique class of constraint-horizontal g-forms such that for
every Q-admissible sectiony of w the condition J'y*[n]a«(z) = J?y *h[n)ae(z)
is satisfied.

(4) For every Q-admissible section «y of m the condition J2y*p[n]ae(zy = 0 is
satisfied.
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() Ifb Eﬂ]/\g, (z) 8 m1,0-horizontal then both h[n] AL (z) and p[n]as (z) are p-project-
able.

(6) Blnlae(z) is p-projectable iff h[n]a«(z) is p-projectable.

(7) If ¢ is a Q-compatible isomorphism of w, leaving invariant the canonical
distribution then

(4.5) hJ'¢* [nlaezy = J*¢*hinlaezy, DI ¢ (as(zy = 26" Blnlaez) -

Proof. (1)-(6) follow directly from the definitions. (7) is a consequence of Proposi-
tion 3.1. and definition of A and p. Indeed, since ¢ transforms constraint forms into
constraint forms, we obtain

hJ'¢* []aszy = BT 6" Nas ) =[RI8 N raz)

(4.6) . . e
= [J2¢ h’l]/\q(f) = J2¢ [h"'I]Aq(j':) = J2¢ h["l]M(I)’

and similarly for p. ]
Now, we can see that the following decomposition theorems take place:
Theorem 4.1. Every equivalence class of 1-forms admits a unique decomposition

(4.7) p*[nlar(zy = hnlarz) + Dlnlar(z) -

Corollary 4.1. For n = df (4.7) gives a unique decomposition of df into a con-
straint-horizontal and constraint-contact part (constraint-horizontal and constraint-
contact differential), respectively:

(4.8) p*[df)arzy = hldf]ar(z) + Dldf)ar(z) -

It holds

i de )
hldf]ar(z) = dtfdt+<ﬂ, pldflarzy = BL{W'*‘ af,w + 9,

where @ runs over constraint 1-forms on @, and

def _0f  Of p af af 4
(4.9) d 3q‘ * 5= pre=c +a—q"q ’
' dcf _ of of

aq® - dq® 3q: 3qm—k+i
(above, summation overl=1,...,m—k, andi=1...,k is understood).

The operators d¢/dt and 8¢/0q" will be called constraint total derivative and con-
straint partial derivative respectively. Notice that both they are directional deriva-
tives with respect to vector fields belonging to the lift of the canonical distribution
C; in particular, de/dt = O, the Lie derivative along a semispray T' € C.

Restricting considerations to classes of m; g-horizontal 1-forms the following de-
composition of quotient modules follows:



266 OLGA KRUPKOVA - MARTIN SWACZYNA

Theorem 4.2. It holds
(4.10) AV (@Q)/ANT) = (A% (Q) ® AY())/AY (D)) @ (24(Q)/AN(D)) -

A contact form n € AY(Q) is called 1-contact if for every m;-vertical vector field ¢
on @Q the (g — 1)-form i¢7n is horizontal. Let ¢ > 1. n € A%(Q) is called i-contact if for
every mi-vertical vector field £ on Q, i¢n is (i — 1)-contact. Denote by 297%%(Q) the
submodule of i-contact g-forms on Q. Similar definitions and notations take place
for forms on Q.

If ¢ > 1and p; : AYQ) — QI%(Q) is the “unconstrained” i-contactization
mapping, we can define a corresponding mapping between quotient modules:

pi : AT(Q)/AI(T) — (@) + AY(D)) /AY(D),

(4.11)
p.[n]m(z) [Pinlrazy = Pin+ ¢,

where ¢ runs over constraint ¢-forms. Note that above, + is not a direct sum.
Definition 4.3. p; is called constraint i-contactization.
Similarly as above, we get:

Theorem 4.3. Every equivalence class of g-forms (¢ > 1) admits a unique decom-
position

(4.12) P*[Maa(zy = Pg-1[n)As(z) + Py[n]re(z) -

Obviously if p[n]as(z) = 0, then the class [1]aq(z) is constraint (g—1)-contact, and
if Pg—1[n]ae(z) = 0, then [n]aq(z) is constraint g-contact. Notice that since constraint
g-forms belong to the zero class, they are both (g — 1)-contact and g-contact with
respect to these mappings.

Theorem 4.4. The following decomposition takes place:

(4.13) AL (Q)/AY(T) = ("~H(Q)AL(D)) /A (e ((2™(Q)+AF(D)) /A5(D)) -
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