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0. Introduction 

By Kothe normed spaces one understand linear normed subspaces of measurable 
real functions ordered in a natural way and such that | |/[ | ^ \g\ if \f(t)\ ^ \g(t)\ for 
almost all t e T So those spaces are normed lattices. But there are function spaces 
of vector functions which are not ordered, e.g. the Lebesgue-Bochner spaces L£ 
which are the sets of all measurable vector functions for which 

rr ||/(0IP d/Kco, 
i.e. the functions f i-» ||/(f)|| belong to LR. Analogously we define Orlicz-Bochner 
spaces. More general, if Lis a Kothe space of real functions and X is a Banach space, 
then by L(X) we understand the family of all measurable Z-valued functions for 
which the applications t -» \f(t)\ belong to L. These spaces are always solid spaces 
i.e. spaces in which the following condition is satisfied: 

lf(t)\x^\\g(t)\x for almost all te T implies | ] / | | L ^ |]a||L . 
In the case X = U or X = C these spaces are called ideal spaces and they were 
considered mainly by Zabrejko P. P. (cf. [15]). However there have been also 
examined vector functions spaces which have not been of the type L(X), e.g. various 
generalizations of Orlicz spaces (see [7], [8], [11], [14]). This has been a motivation 
for introducing and study here some general vector function spaces, called Kothe 
spaces. This kind of Kothe space, in more particular case, was defined by C. Castaing 
and A. Kaminska in [3]. Our purpose is to consider a functional H which will 
enable the introduction of the conception of Condition A2 to the Kothe space, Next, 
we will show some applications of this condition. 

1. Preliminaries 

Let (T, T, \i) be a measure space, where T is an abstract set, I is a or-algebra of 
subsets of T and \i is a non-negative, complete, atomless and c-finite measure on I. 
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(X, I • ||) will denote a separable Banach space. By Jt(T, X) we will denote the linear 
space of all /̂ -equivalence classes of strongly measurable functions f: T -> X. Let XA 
be the characteristic function of A. By N, R, C we will denote sets of natural, real 
and complex numbers, respectively 

1.1. Definition. A Banach space (L, || • (]L) c= J((T, X) is said to be a Kothe space 
if it possesses the following properties: 

a) X^/G L f° r all Ael and fe L, 
b) if A, Be Z and A c B, then 

IMU ^ IWIL 
for all feL. 

In the next definition we introduce an important subspace of L. 

1.2. Definition. A linear subspace E of Lis called a subspace of continuous elements, 
if E contains all functions from L with continuous norm i.e. 

feE iff IXCJILIO as n->co 

for every decreasing sequence of measurable sets Cn c T (n = 1, 2,...) such that 

»(n cn) = o. 

2. Functional H 

Consider the functional defined on L by the following formula 

H(f) = inf { £ \\XAlf\\L : \XAtf\L <_ 1 (/ = 1, 2,. . . . n)} , 
1 = 1 

where the infimum is taken over all partitions into measurable subsets {Al9 A2,..., An} 
of T with n variable (cf. [2]). For givenf0 e Land r > 0, we denote 

K(f0,r) = ífєL:н(Ł-Љ<Л 

2.1. Lemma. The functional H has the following properties: 

a) H(f) = ifflL for ||f||L = 1 and H(f) = ||f||L for ||f||L > 1; 

b) H((l - a)f + ag) -= (1 - a) H(f) + a H(g) + 2H(f) H(^) for f, g e L and 
0 < a < 1; in particular, the set K(f0, r) is convex for everyf0 e Land r > 0; 

c) H is monotone with respect to multiplication by characteristic function, i.e. 

A c B (A, B e l) implies that H(XAf) ^ H(Xef) 
for every f e L; 

d) H(f +g)^ H(f) + H(g) forf g e Lwith 

K S U PP/° S U PP^) = °-
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2.2. Example. Let If(l ^ p < co) be Lebesgue-Bochner space. One can prove the 
formula 

(̂f) = Ifl(0flp + i])1/*J 

where 1/p + ljq = 1 and [c] denotes the greatest integer less than c. 

2.3. Example. Let L00 be the space of all essentialy bounded strongly measurable 
functions from Tinto X with the norm 

ll/IU = supess ||/(*)|| . 
teT 

It is obvious that 

fl(/)_fll/L * 1/l.sj 
I 0 0 lf ll/IU > x 

The explicit calculation of the functional H in other concrete Kothe spaces of 
vector-valued functions becomes much difficult. We will give a two-sides estimation 
of the functional H for Musielak-Orlicz spaces of vector-valued functions. Such 
estimation for solid Musielak-Orlicz spaces of complex-valued functions was pre
sented also in [2]. In our case, we will define Musielak-Orlicz space as follows: 

2.4. Definition. A function M:X x T-> [0, co) is said to be an N-function iff 
a) M is 38 x ^-measurable, where 3 denotes the c-algebra of Borel subsets of X, 
b) M(*,t) is even, convex, lower, semicontinuous, not identically equal to 0, 

continuous at zero and M(0, t) = 0 for a.a. t e T. 

By Musielak-Orlicz space LM we mean 

{feJt(T, X) : IM(af) = JV M(af(t), t) dpi < co for some a > 0} , 

equipped with the so called Luxemburg norm 

| f | M = inf{a>0:/M(a-1f) = l } . 

If M(x, t) = M(x, S) for every t,seT and xeX, then the space LM is called a gen
eralized Orlicz space. 

By EM we denote a subspace of finite elements i.e. 

EM = {fe Ji(T, X) : IM(af) < oo for every a > 0} . 

Obviously, EM c LM. Moreover, EM is nontrivial if the N-function M satisfies so 
called Condition (B) (cf. [8]), which for separable Banach space X can be also for
mulated in the following simple form (see [14]) 

Condition (B). There exists a set T0 of measure zero such that for every natural 
number n and for every t £ T0 

sup M(x, t) < oo . 
11*11 * » 

If the Condition (B) is satisfied, then the space EM equals to the space of allfe LM 
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possessing absolutely continuous norms (see [11] Th. 1.2). This means that EM is 
the subspace of continuous elements. 

2.5. Lemma. The inequality 

Iu(f) £ H(f) £ IM(f) + 1 
holds for every fe LM.. 

2.6. Corollary. If IM(f) is a natural number, then H(f) = IM(f). 

3. A2-Space 

In this section we will use the functional H for more precise characterization of 
Kothe spaces. From Lemma 2.5 follows that in the case of Musielak-Orlicz space 
the functional H is "nearby" to modular. Moreover, we will show that using this 
functional one can be defined some properties of the Kothe space — properties 
which in the case of the Musielak-Orlicz space are defined by modular. 

Define the ball 
B(f0, r) = {feL: \\f - f0\\L ^ r} . 

3.1. Definition. The Kothe space Lis said to be a A2-space if the functional H is 
bounded on some ball B(0, r) with radius r > 1, where 0 denotes the function iden
tically equal to zero. 

3.2. Theorem. The following statements are equivalent: 
a) Lis a A2-space; 
b) the functional H is bounded on each ball B(0, r) with radius r > 1; 
c) the functional H is of polynomial growth, i.e. it satisfies the inequality 

H(f) ^ c(l + l/l*) 

with some positive constant c and k. 
The conception of the A2-space in the case of Musielak-Orlicz spaces reduces to 

the fact that N-function M satisfies the following so-called Condition A2: 
there exist a set T0 of measure zero, a number K ^ 1 and an integrable function 

h: T-+ [0, oo) such that 
M(2x, t)^K M(x91) + h(t) 

for all x e X and t e T\ T0. 
The next theorem shows that fact. 

3.3. Theorem. Assume that M satisfies Condition (B). Then the following state
ments are equivalent: 

a) N-function M satisfies Condition A2; 
b) LM is a A2-space; 
c) EM is a A2-space. 
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4. Applications 

An introduction of the conception of A2-space for Kothe spaces makes the con
sideration of many problems possible. For example, we will investigate boundedness 
and analyticity of the superposition operator. 

4.1. Definition. Suppose the function F: T x X -> X satisfies the Caratheodory 
conditions, i.e. it is continuous mxeX for a.a. t e Tand measurable for every xeX. 
The operator F defined by the formula 

iFf](t) = F(t,f(t)), 

where f e Jf(T9 X), is called a superposition operator. 

4.2. Definition. Let A be a Kothe space. We say that the superposition operator 
F : L-> A is locally bounded at the point f0 e Liflf 

3 3 V f l / - / 0 f l t < r = > f l T / - F / 0 | | ^ < c . 
r>0 c>0 feL 

4.3. Theorem. Assume that fi(T) < co and the superposition operator F acts 
from Kothe space L into the subspace E of continuous elements of another Kothe 
space A. Then 

a) F is locally bounded for every fe L; 
b) F is bounded on any ball B(09 r) c L, provided Lis a A2-space. 
The assumption that Lis a A2-space can not be omitted. This fact in ideal spaces 

was shown by J. Appel and E. De Pascale in [1]. 
For the study analyticity properties of the superposition operator we will suppose 

that X = C. In this case Ji(Ty C) denotes the set of all complex-measurable functions 
on T. Our definition of Kothe spaces is more general then the definition of ideal 
spaces included in the paper [2] even in the case of complex-valued functions. The 
following natural example shows this fact. 

4.4. Example. Let T = (0, 1) and \i be the Lebesgue measure. Define M: C -> 
-> [0, oo) by the formula 

M(z) = x2 + j 4 , where z = x + iy . 

It is easy to verify that M is an N-function satisfying Condition A2. Letfx andf2 

be two functions defined by the following formulas: 

ft(t) = r 1 / 3 + it and f2(t) = t + i r 1 / 4 for t e(0,1) . 

We have If^f)! > \f2(t)\ for every t e(0, l).On the other hand IM(f±) = ^ and 
lu&fi) == °°> therefore ft e LM and f2 $ LM. Thus the space LM can not be an ideal 
space. Obviously, LM is a Kothe space. 
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4.5. Definition. A superposition operator F : L-* A is called analytic at a point 
f0 e Lif its increment a t / 0 can be written in the form 

F(f0 + h)-F(f0)=YJAnh", 
n = l 

where the right-hand side is convergent for small h. 

In the above definition An (n = 1, 2,.. .) are monomial operators, i.e. of the form 

Anhn = An(h, h,..., h), where A is an n-linear operator from Linto A. The series 
00 

£ Anhn is uniformly convergent in the interior of the ball B(f0, QU), where 

^(limiKin-1-
n-*oo 

4.6. Theorem. Suppose that the Kothe space L is z.)2-space a n d t r i e superposition 
operator F from L into A is analytic in some open set G c L. Then operator F is 

a polynomial. 

References 

[1] APPEL J. and DE PASCALE E., Theoremes de bornage pour Poperateur de Nemyckii dans les 
espaces ideaux, Can. J. Math., vol. 38, No. 6, (1986), p. 1338—1355. 

[2] APPEL J. and ZABREJKO P. P., On analyticity conditions for the superposition operator in 
ideal function spaces, Boll. Unione Mat. Ital. 4-C (1985), p. 279—295. 

[3] CASTAING C and KAMINSKA A., Kolmogorov and Riesz criteria of compactness in Kothe 
spaces of vector valued functions, Seminaire d'Analyse Convexe, Montpellier 1987, Expose 
No. 1 p. 1-26 . 

[4] HILLE E. and PHILIPS R., Functional analysis and semi-groups, Coll. Publ. Providence 1957. 
[5] KAMINSKA A., On some convexity properties of Musielak-Orlicz spaces, Suppelemento ai 

Rendiconti del Circolo Mat. di Palermo, Ser 2 No. 5 (1984), p. 63 — 72. 
[6] KAMINSKA A., Some convexity properties of Musielak-Orlicz spaces of Bochner type, 

ibidem, Ser 2. No. 10 (1985), p. 63-73. 
[7] KOZEK A., Orlicz spaces of functions with values in Banach spaces, Comment. Math. ,19 

(1977) 259-288. 
[8] KOZEK A., Convex integral functionals on Orlicz spaces, ibidem, 21.1 (1980), 109—135. 
[9] KRASNOSEL'SKII and RUTICKII YA., Convex functions and Orlicz spaces, Gronigen 1961. 

[10] MUSIELAK J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-
Verlag 1983. 

[11] PLUCIENNIK R., Some remarks on compactness in Musielak-Orlicz spaces of vector-valued 
functions, Fasciculi Math., 16 (1986) p. 11—17. 

[12] PLUCIENNIK R., On some properties of the superposition operator in generalized Orlicz 
spaces of vector-valued functions, Comment. Math., 25.2 (1985) p. 321 — 337. 

[13] Boundedness of the superposition operator in generalized Orlicz space of vector-valued 
functions, Bull. Pol. Ac: Math., 33 (1985) p. 531-540. 

[14] WISLA M., Some remarks on the Kozek Condition (B), ibidem, 32 (1984), p. 407—415. 
[15] ZABREJKO P. P., Ideal function spaces I, (Russian), Vestnik Jaroslavl. Univ. 8 (1974), p. 

12-52. 

142 


		webmaster@dml.cz
	2012-10-06T00:25:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




