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AN APPRCACH TO GENERALIZING BANACH SPACES: NORMED ALMOST LINEAR
SPACES

G. Godini

INTRODUCT ION

This paper is a sequel to [2] in which we have introduced the normed al-
most linear spaces, a generalization of normed linear spaces. All spaces involved
in this paper are over the real field R. Rouchly speakino, a normed almost linear
space (nals) is a set X together with two mappqus s:X x X+ X and m:R x X + X
which satisfy some of the axioms of a linear space - called an almost linear space
(als) - and on the set X there exists a functional ||.||:X + R - called a norm -
which satisfies all the axioms of an usual norm on a linear space (1s), as well as
some additional ones, which in the case of a normed linear space (nls) are conse-
quences of the axioms of the norm. Due to the fact that we have weakened the axi-
oms of a ls, but we have strenathened the axioms of the norm, some results involy-
ina only algebric structure, which are not true in an als, hold In a nals (gee
Section 1). Since the norm of a nals X does not aenerate a metric on X, in [2] we
considered the strong normed almost linear spaces, which also generalize the norm-
ed linear spaces. Roughly speakinc, a gtrong normed almost linear sbace (snals) is
a nals X together with a semi-metric on X which is related in a certain way to
the norm of X.

To support the idea that the nals is a good concent, we introduced n [2]
the concept of a dual space of a nals X, where the functionals on X are no longer
linear but "almost linear', which is also a nals. When X is a nls, then the dual
space defined by us is the usual dual space x*,

The nals and snals were not introduced for the sake of deneralization. We
have proved in [2] that they constitute the natural framework for the theory of
best simultaneous approximation, by showina that this theory is a paft1cular case
of the theory of best apnroximation in a nals (snals).

The oresent paper has a more general Interest, since here we want to ex-
tend for a nals (snals) some general results-from the theory of normed linear spa-
ces ([11). Now, In the theory of normed linear spaces an imnortant tool*ts the

Hahn-Banach theorem. A similar theorem Is no lonaer true in a nals. Conseauently,

This paper is in final form and no version of it will be submitted for publication elsewhere.
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we do not know whether the dual space of a nals X may be reduced to the orily func-
tional f=0. Though the algebric dual of an als X may be {0}, in all our examples
when X is a nals, the dual space of X is not {0}. The main objective of this paper
is to give sufficient conditions on the nals X in order that its dual space have
non-zero almost linear functionals.

We draw attention that in the definition of the norm of a nals (the same
for the semi-metric of a snals), in [2] we have considered all the axioms aiven
in this paper, as well as an additional one. Since this latter axiom is surely
of no use for solving our main problem (whether the dual space of a nals is, or
is not {0}), here we omit it. On the other hand, the dual space defined by us, as
well as all the examples of (strong) normed almost linear soaces in Section 4 sa-
tisfy all the axioms required in [2].

This paper is organized as follows. Section 1 contains basic results, the
most of them being used throughout this paper. Section 2 deals with bases in al-
most linear spaces. Not all of them have a basis, and when they do then there
"exist a norm and a metric such that they are snals. Section 3 is devoted to the
question whether the dual space of a nals contains non-zero almost linear func-
tionals. If X has a basis then this is surely true, and we also give some suffi-
cient conditions for an affirmative answer to the above auestion. We also examine
the extension property of almost linear functionals defined on an almost linear
subspace of the nals X. Finally, Séction 4 contains examples related to the sub-
ject matter of this paper.

We did not change the terminology (and notatlon) from the theory of norm-.
ed linear spaces ([11), except for the linear functional which we extended it in
two ways to an als. ‘

The most part of the results of this paper makes sense only when the nals
(als) X is not a Is. From our results which make sense i= 4 nls (1s) E, we recover
either trivial or known results in E. That is why throughout this paper, if other-

wise not stated, the als X 18 not a ls.
1. BASIC PROPERTIES OF A NORMED ALMOST LINEAR SPACE

In 1.1 - 1.5 below, we recall some of the definitions and remarks of [2].

1.1. DEFINITION. An almost linear space (als) is a set X toaether with
two mappings s:X x X = X and m:R x X > X satisfying the conditions Ly - Lg given
below. For x,ye X and X e R we denote s(x,y) by x+y and m(A,x) by Ax, when these
will not lead to misunderstandings. Let x,y,zeX and A,ue R'Ll)‘ (x+y)+z=x+(y+2) ;
Lz). x+y=y+x; L3). There exists an element 0 €& X such that x+0=x for each x &X;
Lh)‘ Ix=x; L5). A (x+y)=Ax+ry; L6). 0x=0; L7). A (ux)=(An) x; Lg)-}(l+u)x=xx+ux for
220, u=20.

We denote -1x by ~-x, when this will not lead to misunderstanding, and in
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the sequel x-y means x+(-y).
1.2. DEFINITION. A nonempty set Y of an als X is called an almost linear
subspace of X, if for each y,,y,eY and 1eR, s(y],yz)e Y and m(x,y1)e Y. An almost
linear subspace Y of X is called a linear subspace of X if s:Y x Y + Y -and m:RxY +
+ Y satisfiy all the axioms of a Is.

For an als X we introduce the following two sets.

(1.1) VX={xeX: x-x=0}
(1.2) NX={xe X:rx=-x}
By L‘ - L8 it follows that VX is a linear subspace of X, and it is the largest
one. The set WX is an almost linear subspace of X and we nhave wx={x-x: x€ X}.
Notice that VX N Wx={0}. Clearly, the als X is a ls, iff VX=X, iff NX={0}.

1.3. DEFINITION. A norm on the als X is a functional ||.]|]: X - R satis-
fying the conditions N‘ - N, below. Let x,y,z€ X and A eR. N1). ||x-z||s||x-y||+

+[ly=zl 15 M) Dt l=Ia] Fixl s N lxf]=0 i£F x=0.

Us'ing N, we get
(1.3) [y sl x| [+ [yl ] x,yeX)
(1.4) Ho=y izl [xl =11yl (x,y e X)

By the above axioms it follows that ||x||20 for each xeX.

1.4. DEFINITION. An als X toaether with ||.]||: X » R satisfyina N1 - N3 i
called a normed almost linear space (nals).

Clearly, any nls is a nals. Since the norm of a nals does not generate a
metric on X (for xe X\ V, we have ||x-x||#0), we shall sometimes work in a parti-
cular class of normed almost linear snaces defined below.

1.5. DEFINITION. A strong normed almost linear space fnals) Is a nals X
together with a semi-metric p on X which satisfies H1 and MZ below.

My P I T=1y T Tso oyl xeyl | (x,yeX)

M, p (x+z,y+2)<p (x,y) (x,x,z €X)

As we have observed in [2], if X is a nls then the only semi-metric on X
satisfying M, and M, is that generated by the norm (which is a metric on X).

Now we shall give some basic facts which hold in a nals (snals).

1.6. LEMMA. Let X be a nals and let x,y,z €X. If

(1.5) X+y=x+2z

then ||y||=||z|{ In particular if x=x+y then y=0. If X s a snals, then (1.5)
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tmplies that o(y,z)=0.
Proof. By (1.5) we pet x+y+z=x+Zz=x+2y, and so, x+2"y=x+2"z for each neN.

Hence
(1.6) y+2~nx=z+2-nx (neN)

Using (1.4), (1.6) and (1.3), we obtain that ||y||-2-n||x]|s||y+2-nx||-||2+2-nx||s
$||z}|+2-n|!x||, for each neN. Therefore ||y||s|]|z||, and similarly [zl1slyl]
whence ||y||=||z||. If X is"a snals, then by (1.6), M, and M, we obtain ply,z)s
so(y,Z.nx+y)+p(Z-nx+y,z)=p(y,2-nx+y)+o(Z.nx+z,z)So(0,2.nx)+D(Z_nx,O)SZ-nl|x||+
1fn||x||-2-n*l||x|| for each neN, whence p(y,z)=0.

Remarks. a);ln an als X the relation x=x+y does not always imply v=0 (see
4.1 b), 4.3 b). b). In a snals X where p is not a metric on X the relation (1.5)
does not always imply y=z (see 4.6 b)).

1.7. LEMMA. Let X be a nals and let x € X, w € W,. Then max{||x|], ||w]|}<
S||x+wl|.

Proof. We have 2| |w||=||w-w||<|[w=x||+][x-w|]|=2||x+w| |, and 2||x]|=
=|[x=(=x)| ||| x=w| | +| |w+x] |=2| | xtw| |, whence the conclusion follows.

1.8. LEMMA. Let X be a nals and let x,yeX. If x+tyeV, , then both x,y¢

x ’
€ VX.
Proof. If x+ye VX then (x=x)+(y-y)=0. Since x-xe Wx , by Lemma 1.7 it
tollows that ||x=x||=||y-y||=0, and so x-x=y-y=0, i.e., x,ye VX.

Remark. In an als X the relation x+erX , does not always imply %,ye VX
(see 4.2 b)).

1.9. LEMMA. Let X be a nals, and let x,yeX, foX, a€R, |a]|21 such that
x=ax+y. If a21, then a=1 and y=0; 7if as-1, then a=-1 and yéVX .

Proof. Suppose a>1. Then x=x+(1-a)x+y, whence by Lemma 1.6, we obtain
(1-a)x+y=0. By Lemma 1.8 it follows that (1-a))(éVx , and since x {VX , we must
have a=1, and so y=0.

Suppose a<-1. Then x=a(ax+y)+y, and so x-a2x+(uy+y). Since uzzl, by the
above case we obtain azal and ay+y=0. Therefore a=-1 and y-y=0, i.e., erx.

Remarks. a) Lemma 1.9 is no longer true in an als (see 4.1 b), 4.2 b)).
b) In a nals X the relations x=ax+y, x,ye X, X *VX and 0<|u|<1 are not contradic-
tory (see 4.4 b)).

1.10. LEMMA. Let X.be a nals. If WiV =W Y, ”l‘wx , v_'eV i=1,2,

’
then Wy =W, and vi=vy- *
Proof. Suppose WitV =Wy, Then W =WtV where VEVyV, . Hence W mWyoV,
and so wz-w2-2v. By Lemma 1.6 it follows that v=0 and so Wy=w, and vi=vy.
Remark. Lemma 1.10 is no longer true in an als (see 4.3 b)).
1.11, LEMMA, Let X be a snals where p i8 a metric, and let x € X. If

xtwtv € WtV for some we Wy and ve Vy then xe wX+Vx.
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Proof. Let wlewx and Vi€ VX such that

(1.7) XEWAVEW +V

Let wy=x-x€ Wy. Using (1.7) we obtain
(1.8) WyHV ) TXEW WY

Multiplying (1.8) by -1 and adding the obtained relation to (1.7), we get (w+w1)+

+(2x+v-vl)=(w+w])+(w2+vl-v). Since p is a metric on X, by Lemma 1.6 we obtain that

2x=w,+2(v,-v), and so X € Wy+V, .
1.12. LEMMA. Let X be a snals where p is a metric, Y an almost linear
subspace of X and x, € X. Suppose that

(1.9) {Axo+y: >0, yeYI Ny=p

Then the relations Ayx_+y =A,Xx +y, , A;20, y €V, i=1,2 imply that A=A, and ylﬂyz.
Proof. Suppose A x +y =A,X +Y, » A;20, y; €Y, i=1,2. If A,;=0 then by (1.9)
it follows that ).2=0 and so Y1=Yy: Without loss of generality we can supoose now
A21p>0. Then A2x°+(>\l-xz)x°+y1=>‘2xo+y2 , whence by Lemma 1.6 we get (Al-xz)x°+y1=
=y, By (1.9) it follows that Ay= A, » whence y,=y,.
1.13. LEMMA. Let X be a nals and let - X, ne N be such that
lim| |x +x|[=0. Then xeV,

Proof. We have ||x-x||s| |x-(-xn) | 1+] |-xn-x| |=2| Ixn+xl| for each ne N.
Therefore ||x-x||=0 and so xEVX .

Immediate consequences of the above lemma are the following two resu'ts.

1.14. LEMMA. Let X be a nals x€ X\VX ) X € X, a € R, neN. If
lim| lxn+unx| |=0 then 1im a,=0.

1.15. LEMMA. Let X be a nals and let x,xneX, )\ne R, neN, lim xnm . If
the sequence {| |Anx+xn| |):=1 s bounded, then x eV, .

2. BASES IN ALMOST LINEAR SPACES

2.1. DEFINITION. A subset B of the als X is called a basls of X if for
each x € X\ {0} there exist unique sets {bl,...,bn}qB, {Al,...,xn}cR\{O} (n de-
pending on x) such that x-z?_|x'b| » where 1,50 for b, §Vx .

Clearly, if B Is a basis of X then 0§B.

In contrast to the case of a 1s, there exists almost linear spaces (even
snals) which have no basis. In Section 4 one can find examoles of spaces which

have or which have not bases.

2.2. LEMMA. If the als X has a basis B, then the sets {-b: beB} and
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{a,b: bes, @ #0, o, >0 for b¢V,} are also bases of X.
Proof. The proof is straiahtforward.
2.3. LEMMA. Let X be an als with a basis and let XpsXy € Xo If X 4x,€V

X
then xier , I=1,2.
Proof. Suppose Xy+x, € VX and let X3=7%y and xb=-x2 Since X has a basis B,
there exist bl"' b € B, b #b for i#j, such that x, —Z 'J.b. where ui.ZO if

b. ‘-VX , 1<igh. By hypothesus we get that Zl. x,=0 and so zn_ J(zh_ o,.)b.=0. Sup-
i j=1i=1"ij""j

pose b ¢V . Then b —(H}:I_1 )b]+z (ZI_ .. Since b,e B, it follows that

]+Zi=l ”=l. But o, ]20 ISWSH, and so = =0, |SIS’+ Consequently for each bj¢VX ,

1<j<n, we get ui.—O, 1<i<h, which shows that xiEVx , 1<ish,

2.4, LEMMA. Let X be an als with a basis B. Then B ovy i8 a basis of Vy-

Proof. Use Lemma 3.

2.5. LEMMA. Let X be an als. The set BeX ig a basis of X iff B nv, i8 a
basis of VX » and for each x € X\VX there exist unique bys...b € BNV, , veV
and Ays.eesd >0 such that x=J]_|x b +v.

Proof. Use Lemmas 2.4, 2.3 and Definition 2.1.

2.6. LEMMA. Let B be a basis of the als X. Then for each be B\VX there
exist unique y(b) € B\V, , vib) e Vy and A(b)>0 such that -b=x(b)y(b)+v(b).

Proof. Let be B\VX. Then -b‘VX and by Lemma 2.5 we get

X

(2.1) -b={f=]xibi+v

k X’ X
determined. Clearly the lemma is proved if we show that k=1. lLet e,,...,e €B\V

X ? uijzo, 1gigk, 1<j<m, such that

where b],...,b € B\V k=1, bi#bj for i#j, veV, and Ai>0, 1<i<k, are uniquely
X’
ei#ej for i#j, vieV

(2.2) “by=Lapug oty (151k)

ijji
Multiplying (2.1) by -1 and using (2.2) we qet
(2.3) b=37. , (1 Ye +TK A v 4v
: = g St

Since beB\V, , there exists an index j e{1,...,m} - say j =1 - such
that b=e e and we must have 2 A, ”i .=0, 2<j<m. Slnce A >0 and Hy 20 it follows
that M .=0 for each 1<isk and each 2<Jsm Consenuently, we get by (2.2)

-b, = 1<i<gk
(2.4) by=u; e+, (1512k)
and u;,>0 since -b fv , 1sisk. Suppose k>1. By (2.4) for i=1,2 we get that

e=(=by=v ) /uy =(- b =v,)/uyy and so by=(uy /up,)by +((vyhuy))-(vy/uyy)), contra-
dictlng Lemma 2.5.



AN APPROACH TO GENERALIZING BANACH SPACES 39

Let Y:BN VX -+ B\ VX be defined as in Lemma 2.6. Then ¢ is well-defined and

we have:

2.7. LEMMA. The mapping ¥:B\ Vy > BNV, defined as above is injective and
V(W (b))=b for each be B\‘VX' In particular ¢ is surjective.

ﬁEEi'LEtbwaEB\szmm ﬂwtw(m)mﬂbﬂ=b68\vx.Thmw-m=xﬁﬁvi,
Ai>0, X3 VX , 1=1,2, and similarly with the proof aiven at the end of Lemma 2.6,
this contradicts Lemma 2.5.

Let now be B\VX. Then -b=Ay(b)+v, where A>0, vev, and y(b) e B\VX are
given by Lemma 2.6. Then -y(b)=(b/A)+(v/A), and so, again by Lemma 2.6 we get

¥(b))=b.

The main result of this secticon is the following.

2.8. THEOREM. Let B be a basis of the als X. Then there exists a basis B’
of X with the property that for each b’e B’\VX we have -b’e€ B’\ Vy - Moreover
card (B\Vy)=card (B’\ Vx)'

Proof. Let B’={b-¥(b):beB\ vx}u (anx). Then for be B\V, we aet by
Lemma 2.3 that b’=b-y(b)€ B’\“VX' Hence by Lemma 2.7 we obtain that -b’=y(b)-
-y (p(b)) € B’\ VX . To show that B’ is a basis, we use Lemma 2.5. Clearly, B’NV,=

X
=B N VX is a basis of VX (by Lemma 2.4). Let now xe€ X\ VX Then there exist unique
b],...,bnﬁ B\ VX' n>1, bi#bj for i#j, ve VX and A],.. JA >0 such that x—Z A b‘+
+v. By Lemmas2.6 and 2.7, for each be B\VX we have -w(b) u(b)b+v(b), where w(b)>

>0 and v(b) € V are uniquely determined. Then b-y(b)=(u(b)+1)b+v(b), whence

(2.5) b%%)(—i’%-u—"(g’-i—f (beB\V,)

Let b}=bi-w(bi)€ B’\ VX , 1<i<n, and let us put u(bi)=ui and V(bi)=vi' We have by
(2.5) that
n Ai -
"=Zi=1‘]‘i’ﬁb§+"
where ;e VX We show now that this renresentation is unnque Suppose x~2 A b’+
+v —z|_ b +v » where bl €B’\V, , b’?‘bj for i#j, A;, v;20, 1sisn, v1,v evx .
Then there exlst bié B\ VX , 1<i<n, such that bi bi-w(bi). Here bl#bJ for i#j sin-
ce b}#b! , i#j. Using (2.5) where u(bi)=“i and v(bi)=vi , we get
x=2?=‘ki((ui+l)bl+vi)+;l=2?=1vi((u‘+1)b +v, )+; . By Lemma 2.5 it follows that
A ()=, (), 1sisn and I vy -Z W v'+v2 . Since u;>0, it follows
from the former equality that Ai—vi , and 50 v‘—vz. Hence the mapping X:B‘\VX >
> B’\ V, defined by x (b)=b=-y(b), be B\V, is a one-to-one mapping, and so card
(B‘\VX)=ca}d (B’\ VX)’ which completes the proof.
2.9, COROLLARY. If the als X has a basis then wx has a basis.
Proof. Let B be a basis of X. By the above theorem we can suppose that

for each b€ B\VX we have -beB\VX. Let B‘={b-b:be B\VX} C W,. We show that Bl

X
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is$ a basis of wx . Let we wx‘\{O}. By Lemma 2.5, w=2?=‘xibi+v, where bie B\V

b. #b for i#j, x.>o', 1<i<n

X’
» veVy . Then -w=z?=1xi(-bi)-v and so w=(1/2) (w-w)=
_zn (. /2)(b b ) To show the uniqueness of this representation, suppose

w—}:k X, (b -b. ) Z t=ri (B7), b€ BNVy , biobi#bosb for i4], and );,up0, 1Sisk.
Then biftbj for i#j, and since for each be B\VX , -be B\Vx we must have Ai=ui ’
I<igk.

Remarks. a) The converse to Corollary 2.9 is not true (see 4.6 c), 4.8 c)).
b) An almost linear subspace Y of an als X with a basis, has not in general a ba-
sis (see 4.8 c)). :

Another consequence of Theorem 2.8 is

2.10. COROLLARY. If X s an als with a basis, then there exist a norm
[1.]] and a metric o on X for which X is a snals.

Proof. Choose a basis B with the property from Theorem 2.8. For an element
x€ X\{0}, use the unique representation given by Deflnltlon 2.1, x-z and
define |[x||=]]_,Ix;]. Observing that if x=J7_/x.b, 2. N NI b ,

b € B'\V for l<|<k b €B (\VX for k+1<i<n and A >0 for l<|sk then the unique
representat|on for -x is —x—Z -b )+Zn k+1 )bi , it is easy to show that
[1.]] satisfies N]-N3 Let now x ye X. Then x—z b, » y=2?___1uibi ) xi,uizo for
b € B \VX , b, #bJ for i#j, and define p(x,y) z IA i|' Then p is a metric on X

satlsfylng M, and Mz. Therefore X is a snals.

Thou;h the norm and the metric defined as above are not easy to be handled,
we can use their existence to conclude that all the results of Section 1 involving
algebraic structure are also true in an als with a basis. We shall make references
only to two of them, which we collect in a lemma.

2.11. LEMMA. Let X be an als with a basis.

i) The relations x+y=x+z, X,y,z € X imply thai =¢

ii) The relations WV LAY, Woe Wy, voeVy , i=1,2 imply that wy=W,
and vi=Vy-

2.12. COROLLARY. Let X be an als. If N has a basis then wx+vx has a basts.

Proof. Let B, be a basis of WX and B, a basis of the linear space VX. By
Lemma 2.11 ii), B, U BZ is a basis of WX+VX.

3. ALMOST LINEAR FUNCTIONALS AND THE DUAL SPACE

Up to 3.7 (except for 3.4) we recall definitions and results from [2].

3.1, DEFINITION. Let X be an als. A functional f:X > R is called an almost
linear functional if the conditions (3.1)-(3.3) are satisfied.

(3.1) f(x+y)=F(x)+f (y) (x,y€x)

(3.2) F(Ax)=Af (x) (A20, xeX)
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(3.3) f (w)=0 (wewx)

The functional f:X > R is called a linear functional on X if it satisfles (3.1),
and (3.2) for each A€ R. Then (3.3) is also satisfied.

Let X¥ be the set of all almost linear functionals defined on the als X.
For f,,f,¢ b , let s(F],fZ) be the functional on X defined by s(f1.f2)(x)=
=f1(x)+F2(x), x€ X, and for fe ¥ and AR let m(x,f) be the functional on X de-
fined by m(x,f) (x)=Ff(Ax), xe€ X. Then s(fl,fz)e X#-, m(x,f)e X", and s:X¥ x X‘ >
> xF , mR x x¥ » x* satisfy LI-L8 , where 0€ X’ is the functional which is 0 at
each x € X. Therefore X¥ is an als. Notice that for each fe& X we have that flVX
is linear. We denote S(fl'fz) by f,+f, and m(X,f) by Aof.

3.2, LEMMA. Let X be an als and let fe x¥ . We have feVyg <Iff f is line-
ar on X, iff =lof=-f, iff flwx=o.

3.3. DEFINITION. Let X be an als. An almost linear subspace I' of X# 5
said to be total over X if the relations x,,x,€X, f(x])=f(x2) for each fe T Impiy
that X =Xy

The als X¥ may be not total over X (see Section 4)-

3.4, LEMMA. Let X be an als. If x=wX then X* =\JX# . If X=Vxl\t71en x* ='VX# .
If in addition x*¥ is total over X then the comverse to the above statements is
also true.

Proof. Suppose X=W, and let fé X% . Then for each x € X we have (-1of)(x)=
=f(-x)=f(x) and so -lof=f, i.e., fé€ Wy# ..Suppose X=Vy. Then Nxt{O} and for each
fe x¥  we have f]wx=0. By Lemma 3.2 it follows that feVX# .

Assume now that X¥ is total over X and let xe X. If X* =W,# then for
each f€ X¥ we have that -lof=f and so (-lof) (x)=f(-x)=f(x), whence by our assump-
tion it follows that x=-x, i.e., xewx. e x® =qu then by Lemma 3.2, we get
f(x-x)=0=f(0) for each fe x¥ and so x-x=0, i.e., xé€ VX'
Let now X be a nals and for fé€ X# define

(3.4) [1f]]=sup{]F(x)]: xeXx, ||x]|s1}

Let X*=(fe x¥ || f||<).

3.5. THEOREM. X* together with ||.|| defined by (3.4) is a nals.

3.6. DEFINITION. The space X* together with ||.|| defined by (3.4) is
called the dual space of the nals X. »

Remark. We recall that for any nals X, the dual space X*1s a 3nals for
the metric p defined by

p(fi.fz)-sup{ | f, (x)-fz(x) |: xex, |]x||st} (f‘ € X’)

3.7. LEMMA. For any nals X, V. {8 a Banach space.

X
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Proof. Since in is a nls for the norm defined by (3.4), and by Lemma 3.2
each fEVX* is linear on X, the proof that VX* is complete, is similar with the
proof that the dual space of a nls is complete.

Remark. The snals X’t where p is the metric defined in the above remark, is
complete in the metric p.

In contrast to the case of.a ls, when X is an als it is possible that
)ﬁ=£0} (see 4.1 d), 4.2 d)). On the other hand in all our examples when X is a
nals, even X*#{O} and an open question is whether x* may be {0}. The main part o1
this section is devoted to this question but unfortunately we were not able to
prove or disprove it. Now, when the nals X has a basis, then x*#{0}. (Hence by
Corollary 2.10, for any als X with a basis el #{0}). To show thiswe need the fol-
lowing lemma.

3.8. LEMMA. Let X be a nals with a basis B. Then for each b€ B\Vx there
exists fe€ X# such that f(b°)=| and t(b)=0 for each be B\{bo}. If boe wx then
fex*.

Proof. Let x€ X\{0}. Then x=]7_x.b, , where by#b, for 4] and A;>0 for
b€ B\Vx. Define f(x)=0 if bc¢{b‘,...,bn} and f"(x)=)\i if b;=b, for some ioe

€ {1,...,n}. Define also f(0)=0. Then f satisfies (3.1)-(3.3)o(notice that (3.3)

holds since f20), and so fex¥ . Suppose now that b_e W, . By Lemma 2.2 we can

suppose Hb []=1. Let x €X such that f(x)>0. Then x—)\obx+2k A;b; where A >0,
b, #b for i#j. By Lemma 1.7 we have f(x)= -HX b ||S||x|| and so fe x* , LFl]=1.

3.9. THEOREM. Let X be a nals such that w has a basis. Then X #{0}

Proof. Since wx has a basis, by Lemma 3.8 there exists fé(wx) \ {0}. Let
x € X and define fl(x)=f(x-x). Then fle X# , fl#O and for each x € X we have that
osf, G| F]| | 1x=x||<2|[£[][1x]], T.e., fex*N{o}.

3.10. COROLLARY. If the nals X has a basis, then x*4(0}.

Proof. Use Corollary 2.9 and Theorem 3.9.

3.11. PROPOSITION. Let X be a nals with a basis B such that card(B NV )<e.,
Then X*=(fe x* oF | vy € (vy)*).

Proof. Clearly we must prove only the inclusion 2@ . Let fe X", f|Vx €
€ (VX)*. If ff)(*, then there exist X, € X, Hx ||<1, neN such that |f(x ) o> -
Let B\V ={b‘, ..,b } By Lemma 2.5, we have that X zks‘ nlb iV, o A i?_0, vne\/
néN. By Lemma 1. 15 the sequences {2 ni : 1 1<i<k, are all bounded, and since
[f(x)]= |3 feniFb)+F(v )| > =, it follows that [f(v )| > =. Since Flvy € (vy)*
we must have Hv || + . 0n the other hand ||v |l 1x ”"’HZ,:] nlb ||, for each
neN, a contradlction since the right hand Inequallty is bounded. Therefare fe x*,

3.12. COROLLARY. If the nals X has a basis B such that card B<» then

#

x ’

¥ XX,

As we have mentioned in the introduction, in a nals X a theorem of Hahn-

X

-Banach type is no longer true. In a nals X there could exist an almost 1lnear
subspace YC X and f'GY* such that: a) f can not be ea.cnded to a functional f1 € X#I
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(see 4.5 d)); b) f has a unique extension fe X# but fléix* (see 4.5 ¢e)); c) f
has a unique extension f, € x* but ||F‘[|>||f|| (see 4.5 f)). In view of a), eny
conditions on X, YcX and f e Y*~ {0} which auarantee the existence of an extensio.
as those from b), c), or norm-preserving extension, are of interest. In the sequel
we shall deal with this problem taking into account our main problem whether
X*#{0}.

The almost linear subspace W, ¢ X has the property that for each fe (\vIX)’t

there exists a norm-preserving extenzion to X while for VX this is an open question.
3.13. PROPOSITION. Let X be a nals and let f¢€ (w ) . Then there exists
fe x* such that f1| W =f, ||f [l=]1£]| and f |V =0.
Proof. Clearly, the functional deflned by fl(x)=f(x-x)/2, x € X has all the
required properties.
An immediate consequence of this result is:
3.1h. COROLLARY. Let X be a nals. If ()*#{0} then X™#{0}.
In view of this result, to solve the problem whether for a nals X we have
X*#{O}, it is enough to solve it for a nals X such that X=WX (and X has no basis).
If the converse to Corrolary 3.14 were true in the class of nals X such
that X#VX then for each nals X, X*#{0} as one can see from the next result. For
this result our assumption from the introduction that X Is a nals which is not a
Is, is essential. ’
3.15. PROPOSITION. The following assertions are equivalent:
i) There exists a nals X such that X*={0}.
ii) There exists a nals X such that X*#{0} and X*=Vxx (i.e., x* is a Ba-
nach space).
Proof. 1) => ii). Suppose X is a nals such that X*={0}. Let Y={(x,a):
x€ X,0 ¢ R} and let s:Y x Y > Y and m:R x Y + Y be defined by s(('x1 ,uI),(xz,uz))=
PYLTRL) ) and m(}, (x,a))=(Ax,Aa). Let 0 €Y be the element (0,0). Then Y is
an als and we have V ={(v a): veV, ,a eR} and W -{(w 0) W& Wy }. Since X#V then Y#
#Vy. Define a norm on Y by ||(x,u)]|]=||x||+|a| Then Y toqether with |]. ||l is
a nals. Clearly the functional f_defined on Y by f ((x,a))=a, (x,a) €Y, belongs
to Vyx and || f | |;=1. We show that Y=V x. Let f €Y \Vyx. By Lemma 3.2 there
X such that f((w° 0))>0. Deflne the functional f, on X
by f (x)=f((x,0)), x 6X Then f e x* and by 1), =0 a contradigction slnce
f (w )-f((w ,0))>0. Therefore VY*=Y . :
i) ==bi) Let X be a nals such that X*=v t#(O} Since X is not a ls,
W,#{0} and we have (V )*={0}.

In the theory of ‘Banach spaces it is well-known that there exist Banach

=(x +X

exists (wo 0) e WY » W e W

spaces which have no preduals. Pronosition 3.15 suqagest -. in case a nals X #lith
X*={0} exists - the following question. Is it true that for each Banach space E
there exists a nale X such that X*zE 7 We can also ask the following questior

which makes sense for any solution to the main nroblem whether X*¢{0}.78 £t true
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that for each Banach space E there exists a nals X such that Vx?EE ?

We study now the extension property of functionals defined on the linear
subspace VX.
(see 4.8 e)). When X is an als, it is possible that VX¥{0} and VX*=(0} (see 4.3€)),
but in all our examples when X is a nals, if VX#{O} then Vxx#{o}. The same pheno-

Here we notice that in a nals it can happen that Vx={0} and VX*#{O}

menon appears in all our results on extensions of functionals defined on VX , when
we always get linear functionals on X.

3.16, PROPOSITION. Let X be a nals with a basis B.

i) For each f e (V, *. « there exists f,e er fllvx=f.

ii) If card (B‘xv )<°° then for each f e(V )* there exists fle VX* such that
f]]VX f.

Proof. By Theorem 2.8 we can suppose that B has the nroperty that for
each bé BNV, we have -beé B\ V.

X X

i) Let fe (V,J¥ ~\ {0} and let xe X\V
bys...,b € BNV

n

X By Lemma 2.5, there exist unique
X ? Ai>0, 1<i<n and ve VX such that
(3.5) x=]"_ 2 b+

Define f1(x)=f(v) and for veé Vx define ft(v)=f(v). Then clearly fle x¥ and fl is
an extension of f. To show that f ¢ Vydt by Lemha 3.2 we must show that f1(-x)=
=-f, (x) for each xe XNV . If x has the representation aiven In (3.5) then
-x—z'_ AL (= b, )-v and so f, (=x)=Ff (- v)--f (x).

||) Suppose card (B‘\V )<= and let f e(V )*\ {0}. Then by i) above there
exists f‘e Vx# , f]IVX=f, whence the result follows by Proposition 3.11.

3.17. COROLLARY. Let X be a nals with a basis B such that card (B‘\Vx)<w.
Then X* s total over X.

Proof. Suppose B\V,={b,,...,b } and let x,,x, ¢ X such that f(x1)=f(x2)
for each fe x* By Lemma 2. 5 we have that x' Z llij+vi , AiiZO, 1<j<n, vy € VX .
i=1,2. By Lemma 3.8, for each bJe B‘\V there exnsts f.e X such that fj(bj)=l
and f (b)=0 for be B\ {b }. By Proposition 3.11, fJe X", whence by our assumption
it follows A1j-A2 for 1SJSn. Consequently, for each fe X* we cet f(v )=f(v ).
Since VX is a nls, by Proposition 3.16 ii) it follows that Vi=Vy. ThereFore X=Xy

3.18. PROPOSITION. Let X be a nals such that X=W +V . Then for each

fe (Vx)* there exists a norm-preserving extension f, e VX: .

Proof. Let fe (Vx)*\.{O}. By Lemma 1.10, for each xe X there exist unique
;€ wx and ve Vx such that x=w+v. Define f1(x)=f(v). Clearly fle X#
3.2, fi eV, . By Lenma 1.7 we qget |f1(x)|=|f(v)|s]Ifl}!lvl[slif||1lx|| and so
NNET

3.19. PROPOSITION. Let X be a snale such that p ie a metric and let
X € X \(UX+VX). Suppose

and by Lemma
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X-{Ax°+p(—x°)+w+v t A,u20, wewx » Ve V)

i) For each fe (V,)* there exists f e Vix , Flvy=f.

i) VX*#{O}'

iii) For each fe€ (wx+vx)* there exists f,e x* f, | (Wx‘-VX)=f.
Proof. We show first that

(3.6) X=X, U X, U (wx+vx)

where X1=on+w+v ©A>0, welWy , ve VX], X2={-Ax°+w+v >0, we \rlx , VE Vx.}f, and
that we have X, N X,=0, xinfth+vx)=o, i=1,2. Since the inclusion = in (3.6) Is
obvious, let xe X, say x=)\x°+u(-x°)+w+v, A,u20, we wx , veVX. I A=p, then since
A(xo-xo)ewx , it follows that xewx+vx. If >y, then x=()\-u)x°+u(x°-xo)+w+v6 X
Similarly, if A<u then x(Xz. This proves (3.6). Since ixof !JX+VX , by Lemma 1.11
it follows that Xin (wX+VX)=0, i=1,2. Let now xeX1n Xz. Then there exist
Ai>0, wi‘ wx » Vi€ VX , i=1,2 such that x=)\‘xo+w]+v‘=-)‘2x°~o-w2+v2 . Hence,
(A1+12)x0+w1+v1=)\2(xo-xo)+w2+v26 W #Vy , whence by Lemma 1..11 it follows
(7\1+)\2)x° € wX+VX , a contradiction since A‘+A2>0 and x°¢— NX+V

X
X, N X2=¢. Using Lemma 1.12 (for Y=w)'(+VX) and Lemma 1.10 we net that any xe X can
be uniquely represented in the form

Therefore

= )
(3.7) X=AX by (A€ R, wewx s ver

i) Let fe (VX)*\{O}. If xe X has the representation given by (3.7), de-
. - i <
fine f1(x) f(v). Clearly fle Vx:g .Af f‘¢qu then there exist X € X, llxn||_1.
neN such that |f|(xn)! > =. Suppose x =A X bW +v , A €R, w €W, , v EV,,
neN. Suppose that for an infinity of n we have \n_>_0, and without loss dof cenera-
lity we can suppose )‘nZO for all neN. By Lemma 1.7 it follows that |anK°*Vn||5
<| |xn||sl for each neN, and so by Lemma 1.15 the seauence [\n}:=1 s baynded.
Then ||vn| |st+x_[Ix [], ne N, whence the sequence ' 'vn::f‘:_]
the same conclusion If \ <0, ne N, since then we work with =Xy instead of x_. Now,
since |f1(xn)|-|f(vn)| + ® and fe(VX)’k . we obtain that v _
diction. Therefore flevxq .

is bounded. We qet

+~ ® , a contra-

if) If Vx#{O) then by i) above we qet in#';o‘. Supoose now Vx={0'~ and let
x € X. Then by (3.7) there exist unique \€R. w e\dx . such that x-.\xo+w. DefFine
f(x)-AonH. Clearly we have feV,g . By Lenma 1.7 we aet fix) = x ¢

<| l)\x°+w| |=]||x|| and so fe Vyx {01
1) Let f G(WX+VX)‘\{0\. If Vx-(O‘: then the result follows by Proposition
3.13. Suppose now Vx¥{0). By 1) above, there exists fye x® such that fZiVX"“VX
and lewx-o. By Proposition 3.13, there exists f3e X* such that f;iwx'fi"‘x and
f3lVym0. Let £ =fyafs. Then fe x* and we have NICRSELS
3.20. PROPOSITION. Let X=Wy be & euile such thav o ig a metric, ¥ an
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almost linear subspace of X and x € X\ Y. Suppose that X={ax *y 320, ye Y} and
let fe YN\ 10}, If there exist no YisYg €Y such that Y=XHV1 then there
exists a norm-preserving extenston of f to X.

Proof. By hypothesis and Lemma 1.12 it follows that each xe X has a unique

¥ and

representation of the form x=AX_+ty, 320, yeY. Define fl(x)=f(y)' Then f € X
by Lemma 1.7 we have Osfi(x)=f(y)sllf|l]|y|[s||f||||x||, i.e., '[f|||=llf|l-
3.21. PROPOSITION. Let X=wx‘be a nals, Y an almost linear subspmace of X
and x € X N Y. Suppose X={Axo+y : 220, yeY} and let fe Y*\\{O}. If there exist
Yi2Yg €Y such that y,=x +y, and f(YZ)Zf(y‘) then there exists f€ x*, f]|y=f~
Proof. Suppose y,=x +y, , y;,y, €Y and f(yz)zf(y]). Let 8=f(y2)'f(y1)20,
and for xe X, x=Ax°+y, 220, ye Y define f](x)=AB+f(y). In order that f] be well-

-defined we must show that if Ax°+y=uxo+z, A,u20, y,zeY then
(3.8) AB+f (y)=uB+f(z)

Since (3.8) is clear if A=u=0, suppose now A>0. Then AX +yHIY | TUX HIY  +2=1y )42 and
SO X _+y3=Y), where y3=(y+uy])lx eY and yh=(uy2+z)/k €Y. Then x *y,+y;=y,+y, and
since x +y =y, it follows that YorY3=Y Yy Hence f(y2)+f(y3)=f(y1)+f(yh) i.e.,
B=f(yk)-f(y3). Using the above expressions of ¥3 and Yy we obtain (3.8). Conse-
quently f, is well-defined and we have that F1e x¥ .

Suppose f1f x*. Then there exist x €X, ||xn||51, neN, such that fl(xn)+

o

+ o, Suppose xn=xnxo+yn y xnzo, Y€ Y, neN. By Lemma 1.15, the sequence (An)n=l
is bounded and so, since |[yn||5||xn|!+xn||x0|| for each ne N, the sequence
([[yn||}n=] is bounded. On themother hand fl(xn)=AnB+:(yn) + @ and so fly ) >,
a contradiction since {||yn||}n=1 is bounded and feY .

Remark. We can not improve the conclusion of Proposition 3.21 to obtain

a norm-preservind extension (see 4.5 f)).
4. EXAMPLES

In this section we give examnles of almost linear spaces, normed almost
linear spaces and strong normed almost linear spaces, mainly for exhibiting
counterexamples related to the content of this paper. Some examnles are from [2],
others are new and we send the interested reader for more examples, information
and proofs to consult [2]. We d;aw attention that we do not know an example of
a nals which is not a snals.

In all the examples below s and m are the mapnings defined in Section 1.
In the sequel we shall sometimes denote s(x,y) by x + y and m(x,x) by Xox. The
norm of a nals will be denoted by ||]|-]]||.

L.1. EXAMPLE. a) Let X={xe R : x20}. Define s(x,y)=max{x,y} and m(a,x)=x
for A#0, m(0,x)=0. The element 0 €X Is 0 &R. Then X is an als. We have Vy={0} and
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HX=X. Ctearly, there exists no norm on X.
b) Let x,ye X, O<y<x. Then x=x i y and x=gox 1 y for a#0. Notlce that the
conclusion of Lemma 1.8 holds In X.
c) X has no basis.

d} We have x* ={0}.

4.2. EXAMPLE. a) Let L be a s and let X=L where s(x,y)l=x+y, m(x,x)=|2|x
and Be X Is the element D €L. Then X is an als and we have UX-{D} and Hx-X. There
exists no norm on X. ’

b} Let x€L~{D} and let y=-x {this operation is understanded In L}. Then
%,y¢ X and we have x + y=0 €V, and both x,y§V,. We also have x=2ox 4y end so
the conclusion of Lemma 1.9 does not hold. Motice that in thls example the relae-
tlon (1.5) implles yez,

c) X has no basis.

d) We have ¥ ={0).

4.3, EXAMPLE. a) Let L be a 1s dim 122, and let ¢ LY, ¢#0. Lot X=
={xe¢L : $(x)=0} and let Ke=lxeX : ¢ (x)>0}, X;{xe)( : ¢(x}=0}. Define s(x,y)=
=xty if both x,ye X _or both x,yeX_ , s{x,y)as{y,x}=x If x X _ and yex , and
m[l,x)-—-[)\lx if xe){._ » m{A,x)=Ax §f xe)(o. Let 0& X be the element D &l. Then X [s
an als and we have UX=X0 N ux=x+ 4 {0}. There exists no narm on X.

v) lLet w&NX\{D}. Then w=w + v for each veVy.

c) X has no basis.

d) Let f=¢|X. We have X? ={xof )& R}={Af : A20} and X’ is not total ovesr

e} We have fo{o} and Vx# ={0}.

4.4, EXAMPLE. a) Let RZ be endowed with the Euclidean norm |- ]| and let
e1-(1,o), ez-m,n. Let A={xe, : 320}, 1=1,2Z and let X=A,U A,. Deflne s{x,y}=
=xty if both x,y €A, , i=1,2, s(x,y)=s{y,x]=(||x”+|]y“)ez 1f xeA N0},
ye A N0}, i#] and m(x,x)=|a|x. Let 0€X be the element 0 &€R®. Then X 15 an als
Ix[11=1|x]|. Then X together with |||+|]] Is a
nals. 1t 1s a snals for the semi-metric o Ox,y)=| |||x|1i-111¥l]] |.

b) Let »x=(0,2) & X, y=(1,0}) & X and let a=1/2. We have x={1/2)ox ¥ ¥ anc

and we have Vx={0}. NXBX. Let |

yER/2. .

¢) X has rno basls.

d) Let f(x)a|]]x]]], x €X. We have X*={xof : A €R}={Af : ’20} and X" is
not total over X, .

4.5. EXAMPLE. a) Let L be a 1s and ¢ ¢ ¥ , 0. Let X={x&l : §({x)>0} W
W {0}. Define s{x,y)=xty and m(A,x)=|3|x. The element 0&X is the element OelL.
Then X Is an als and we have Vy=(0} and W, =X. Define [11x]]]=¢¢x). Then X Is @
nals. For the semi-metric defined by p(x,y)=}¢ (x)=¢{y)| 1t 15 a snals,

b} X has no baslis if dim L22.

c) Lat fwd|X. We have W*ax® wlnof 1 A& RI={Af : 220}, Clearly !_(* is not



48 G. GODINI

total over X if dim L>2.

d) There exists a snals X1 , an almost linear subspace Y € X1 and fe Y*,
f#0 such that f can not be extended to an almost linear functional f1€ Xr . Indeed,
let L=R2 and ¢=(0,1) € ¥ and define X as in a) above. Let X,={(a,B)e X : a>0,820}
and Y={(a,B) € X] : B=a}. Then X] is an almost linear subspace of X and so it is a
snals, and Y is an almost linear subspace of Xl. Let f be the functional defined
on Y by f((a,B))=B-a, (a,B) €Y. Clearly fe v¥ and we have 0<f((a,B))=B-a<B=
=|{l(u,B)|||. Therefore f € x*. Suppose there exists f1€ X?’ such that f]|Y=f. Let
y]=(l,2)e Y, y2=(3,3)e Y and x°=(2,l)6 X\ Y. Ve have Yo=X HY, and so fl(y2)=
=f1(xo)+f1(y‘). It follows that f1(x0)=-l, which is not possible since x € W, =X,.
Notice that for the snals X2={Xxo+y : x>0, yeY} and fe v* defined as above, we
have y,=x +y, and f(y2)<f(y]) (see Proposition 3.21).

e) There exist a snals X1 , an almost linear subspace Y X] and Fc—Y’t
such that there exists a unlaue erX:r with F1[Y=F and Fl #-XT . Indeed, let X be
as in d) above and let X]={(a,8)é X : a<g}, Y=f(u,8)€-x1 : 0<a<B} . Then X, is a
snals and Y is an almost linear subspace of X] . Let fey® be defined by
f((ax,B))=B-a, (a,B) €Y. Then the functional fl((a,8)=8-u, (a,B) € X, belongs to X?
and f |Y=f. Let f,€ xf such that f,|Y=f, and let x;=(a;,8,) €X;\ Y. Then <0 and
so (-a],-a])e Y, and we also have that (O’Bl-ul)é Y. Therefore fz((-a] ,-uj))=0
and fz((0,81-a‘))=81—u‘. Since we have (a],B‘)+(-a1,-a‘)=(0,8‘-u‘) it follows that
fz((u1,81))=81-a,=f'((a],B,)), i.e., fy=f,. Therefore f has a unique extension

fle X:’. Let xn=(-n,l) €X, » neN. We have |||xn{|I=l and f1(xn)=n+1, i.e., fi¢ XT.

. f) There exist a snals Xl , an almost linear subspace Y & Xl anf fe y*
such that there exists a unique fle-XT , f]|Y=f and ]]]f1]]]>||]f|[|. Indeed, let
X be as in d) above and let X,={(a,8) € X : |a|<B}, Y={(a,B) €X; : o20}. Then X, is
a shals and Y is an almost linear subspace of X,. Let fe v* be defined by f((a,B))
=6-a, (a,8) € Y. As in e) above f € X} defined by f; ((a,8))=8-a, (a,8) €X, is the
unique extension of f to X,. We have Il’f1'|]=2>||if||f=l. Observe that we have
Xl={Xxo+y : 220, y €Y} where xo=(-1,1)6 X

L.6. EXAMPLE. a) Let (E,||-]|) be a nls and let X be the collection of
all nonempty, bounded and convex subsets A of E. Define s(A],A2)=A‘+A2={a1+a2 :
:a;€ Ai}’ i=1,2 and m(A,A)=AA={)a : aeA}. Let 0€X be the set {0}. Then X is an
als, and weeshave VX={{x} : x€E}=E and WX is the set of those A&€X, A symmetric
with respect to 0€E. For A€ X, let |||A||[=sup”A||a||. Then X together with

[11-1]] is a nals. It is a snals for the Hausdorff semi-metric defined by
(4.1) o (A;,A))=max { sup inf II3|'32||- sup inf !|a1'32||}
ae A aeA, ae Ay aj€ A

b) Let a be an arbitrary non-zero element of E. Let A1=A3={aa : =1<a<1}
and Azs{aa : =1sas1}. Then A'e X, i=1,2,3 and we have A1+A2-A]+A3 , AZ#A3 .
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c) Tne.snals X-has no basis. Indeed, this is a consequence »f b) above and
Lemma 2.11 a).~CoPgE=R'and X defined as in a) above, Wx has the bas+s {(=1,1)
[-1,11}.

d) We do not have a complete description of x* and Vx* but we know that
they are both #{0}. Moreover for each ¢e(VX)*(=E*), ¢$#0 there exist fle X*\.Vxﬁ
and fyeV.x , [IIf‘|||=]|[f2]||=]|]¢lll such that fl‘vx=f2|VX=¢. Indeed, define
f‘(A)=supa£ A¢(a), AeX, and fz(A)=(f1(A)-f1(;A))/2, A€X. Then f,,f, satisfy the
required conditions. We do not know whether X" is, or is not total over X.

4L.7. EXAMPLE. a) Let (E,[|?||) be a nis and let X be the collection-of all
nonempty, bounded, closed, convex subsets A of E. Define s(A],A2)=KTIK; , and de-
fine m,0€ X as in Example 4.6 a). Then X is an als, and VX,WX have a similar des-
cription as in 4,6 a). Endowed with the same norm as in 4.6 a), the als X is a
nals. Together with p defined by (4.1) it is a snals. Notice that now p is a.metric

on X.

b) Let E=R and define X as above. We have that X=WX+VX. Since a basis for

wx is the set B1={[-l,l]}, by Corollary 2.12, X has a basis. It seems to us that
for dim E22 the corresponding X has no basis.

c) We can repeate word for word what was said in 4.6 d) but now we know
that X* is total over X (see [2]).

) 4.8. EXAMPLE. a) Let (E,[|-][) be a nls and let ¢¢ g* [l#]1=1, ¢ attains
its norm. Then H={xe E : ¢(x)=0} is proximinal in E, i.e., for each xe E the set
Py(x)=th ¢ H : Hx~h0||=infhe H]lx-h]]} is nonempty. It is known (see.e.a., [4])
that there exists a linear selection pH(x)é PH(x), x€E. Let X={xeE : ¢(x)=0}.
Define s(x,y)=x+y, m(x,x)=Ax for 120 and m(-l,x)=x-2pH(x). The element 0€X is

0e E. Then X is an als and we have V =H, wx={xe E : ¢(x)20,pH(x)=0} For xeX let

Illxl||=¢(x)+|lPH(x)||. Then X is a ials and for the semi-metric on X defined by
p(x,y)=l¢(x)'¢(y)!+!}IpH(x)|]-||pH(y)||| it is a snals. If H is a semi L-summand
in E (i.e., for each x&E we have that PH(x) is a singleton and ||x||=||x-pH(x)||+
+|[pH(X)|| (see [31)) then ||[x|||=]|x|| for each xeX and for the metric on X de-

fined by o(x,y)=|lx-y|| (where x-y is understanded in E), X is a snals.

b) Let Xo€ Wy \ {0}. Then wx={xxo : A20} and so W, has the basis {x }. sin-
ce X=WX+VX by Corollary 2.12, X has a basis.

c) Suppose dim E22, X defined as in a) above, and let Y={x€E: ¢(x)>0} U
U {0}. Then Y is an almost linear subspace of X and Y has no basis. Notice that
wY=wx has a basis.

d) Let x €W, \{0}. Then X*={6,|X : ¢;€ EX, ¢, (x )20} and Vya=
={¢,1Xx : o€ £, 61 (x)=0}. Here x*. is total over X.

e) Let Y be defined as in c) above. We have VY=f0} and for eachi’evxf
flyevyx , i.e., Vyx#{0}.
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