WSAA 12

Zvonko Tomislav Cerin
On properties preserved by the approximate domination

In: Zdenék Frolik (ed.): Proceedings of the 12th Winter School on Abstract Analysis, Section of
Topology. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 6. pp. [49]--74.

Persistent URL: http://dml.cz/dmlcz/701828

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/701828
http://project.dml.cz

ON PROFERTIES PRESERVED BY THE
APPROXIMATE DCMINATION

Zvonko Eerin

ABSTRACT. In thils paper we identify propertiés which are preser-
ved by Marde&lé’s notion of approximate domination. In particular, we
show that internal versions of certain shape theoretic and certain
approximate properties, variocus forms of the fixed point property,
and also compactness, pseudocompactness, and strong paracompactneas

are examples of such propertiee. -

AMS(M0O3) Subject Clapsification {1980): 54C99, 54199

Key words and phragses: weak homotopy dominaticn, approximate domina-

tion, U -close, m-convergence, proximate fixed poilnt property

INTRODUCTION

In his approach to the problem of extending the notion of phape
fibration %o arbltrary topclegieal spaces, Mardefié [19] introduced
the following definition. A space X is approximately dominated by =a
clage ) of spaces, in notation X € &, provided for every normal
(open) cover & of X there 1s a Y& D and nmaps u:X —> ¥ and d:¥ — X
guch that deu 1y &4-close to the identity map 1x en X, 1. o., Buch
that for every x GEI there 1s s member of # which contains both x and
deu(x). Except for few resulta in [19]. L‘lS]. and [21] on spaces which
are approximately dominated by the elass of all polyhedra, there ia

This paper is in final form and no version of it will be submitted for publication elsewhere.
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no evidence in the literature of attempts to further investigate the
new concept.

In the present paper we address ourselves to the identification
of properties which are preserved by the approximate domination
(which we call 4é-invariant properties). More precisely, we are look-
ing for prop;rties TT which satisfy the following condition: If X is
approxiﬁately dominiied by a class of spaces each of which has the
propertg.TT, then X also has the property TT.

Our list of & -invariant properties has more than two dozen en-
tries. It c;n be roughly divided into six parts.

The first part form all 2h-invariant and all 3h-invariant pro-
perties from (3]. These are shape theoretic properties defined in
terms of homotopy commutative diagrams involving nerves of either two
or three normal covers. For example, the properties "to have deforma-
tion dimension £ n" [14] "to have the k-th Betti number with respect
to Cech homology E n", "to have trivial shape", tameness [3] smooth-
ness [3], and movability [20] are of this type.

The second part conéists of all Za—invariant and all 3&-invari—
ant properties from [3]. Those properties are approximate in nature
because they. are defined in terms of diagrams that commute up to a
given normal cover. Again, they involve nerves of either two or three
normal covers. The properties "to have covering dimension 4 ﬁ", app-
roximate movability [21]. and the strong fixed point property [3] are
in this group.

The third part comprise internal versions of properties from the
first part. More precisely, the third part form properties which are
invariant under the weak homotopy domination. This notion of domina-
tion is somewhere betwsen the notion of homotopy domination and the
notions of shape domination, Zh-domination [3]. and Bh-domination [3].
The idea is to use genuine maps between spaces as in the ordinary ho-

notopy theory and then project into nerves of normal covers to compa-
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re those maps as in the shape theory. The properties in this group
are created by requering that certain maps which appear in the defi-
nitions of properties in the first part are maps into a space (this
explains the use of the word "internal") rather than into a nerve of
a normal cover of a space. The examples of such properties are (weak)
internal tameness, (weak) internal smoothness, and internal movabili-
ty [4], [21].

The fourth part form internal versions of properties from the
second part. They can be also regarded as approximate versions of pro-
perties from the previous group. Hence, (weak) internal approximate
tameness, (weak) internal approximate smoothness, and internal appro-
ximate movability [21]/are examples of properties of this kind.

The fifth part includes fhe following three properties related
to the fixed point property: approximate fixed point property, proxi-
mate fixed point property [18], and the internal strong fixed point
property.

Finally, the last part consists of properties from the general
topology related to the notion of compactness. For example, compact-
ness, almost compactness [1], pseudocompactness, strong paracompact-
ness, and T -boundness.

The last three parts include properties which are preserved only
by the approximate domination and are not preserved by other weaker
notions of domination,

All of the listed properties are preserved by the m-convergence
[12] on hyperspaces. Consequently, this paper establishes for the
m-convergence results analogous to the ones proved about the g-conver-
gence in [3]. On the other hand, since‘on metric spaces the m-conver-
gence is equivalent to the convergence in the metric of continuity [5],
our results extend to arbitrary topological spaces the results in [5)
and [13] and also considerably enlarge the number of properties now

known to be preserved by the convergence in the metric of continuity.
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PRELIMINARIES

While the abstract and the introduction were directed to the wi-
dest possible audience, the rest of this paper is written for specia-
lists. This part requires careful reading and consistent application

notions, explanations, and abbreviations given in the present se-
ction.

We shall use stéﬁdard logical symbols. The symbols \/ and 23 are
used in front of variables that are put in paranthesis and are follo-
wed by a formula or some other sequence of symbols. The meaning of
the variables and the unusual symbols are explained below or in the
text. Each parenthesis containing the symbol 3 should be followed
mentally with words "such that". The expression within square brackets
following a variable explains limitations on this variable and it sho-
uld be preceded mentally with the word "with". An underlined expressi-
on between the parenthesis containing the symbolla and the first co-
lon is an abbreviation for the rest of the formula and is not a part

of the formula. This abbreviation clearly lists all preceding variab-

les.
IF NOT STATED OTHERWISE
X, Y, Z are topological spaces.
A, B ‘are subsets of X.
c, D are classes of topological spaces.
S denotes both the class of all simplicial complexes and the ca-
tegory of simplicial complexes and simplicial maps.
1—r is a topological property.
T1 - is a E}ass of all spaces which have the property.TT.
r€TT=xeTl.
X denote all normal (open) covers of X [2].
uy v, S, " € X andw, z, 7, VE€T.
u, [restriction of U to A] = {Un A‘ Ue_ll}.

v<u [V refines u] 1 (YvEV(JUEW VC U,
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A choice of a cover of X is always made so that it refines all

covers that have previously been defined on X.
Ufveulvnare)
{2v‘v€ v}.

We do not distinguish in our notation between a complex and its

2,A or 2A [ star of A (w. r. t. U)]

2UV or 2V [star of V (w. r. t. U)]

realization.
X, is a barycentric coordinate of a point x in a complex with
respect to a vertex v.
We do not distinguish in our ;otation between a normal cover and
its nerve. Hence, 4 denotes also a simplicial complex whose vertices
are members of 4 and U,,..., U in 4 span a simplex iff f~]2=1 u, # 0.

Maps are continuous functions and between simplicial complexes

all maps are simplicial.

C-map is a map whose domain is a member of a class C.

1X denotes the identity map on X.

iA.X denotes the inclusion of A into X.

Ve is a cover f'1(V) = {f'1(V)| VEEL}induced by a map f:X — Y.
£y is a (simplicial) map Ve —> V defined by fv(f_1(V)) =V for

every VE V.
We do not distinguish in our notation between a map and its homo-
topy class. We write f g if maps f, g:X —> Y are homotopic and

f 2 g or f 2 g for homotopy classes if they are D-homotopic (i. e.,
if feh = geh for every D-map h:Z —» X).

PV -— U ["p is a projection (of V into U)"] iff (\/VGE V) vCp(V

uv denotes the unique homotopy class of projections of V into 4.

DX — U ["p is a projection (of X into u)"] iff (VUEQ, xE )
p(x)y > O.

u denotes the unique homotopy class of projections of X into 4.

WARNING: Some symbols have several different usages. However, it
will be always clear from the context which one is meant. For example,

when we write Uedeu = U it is clear that Y must denote a morphism be-
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cause the left hand side contains the symbols for composition. Hence,
U can not denote a cover or a nerve of a cover. This implies that d

and u actually denote homotopy classes of maps and not maps themselves.

WEAK HOMOTOPY DOMINATION

In this section we shall introduce a relation of weak homotopy
domination. It is wea_ker than the relation of homotopy domination, but
stronger than the hon;otopy relations 2h and 3h from [3]

(3.1) NOTATION. Write X £ Y provided (Ju:X —» ¥, d:Y —> X)
Uoedou = U,

We shall say that X is weakly homotopy dominated by a class 7, in
notation X £ ?, provided (VU)(QY €ED) X% Y. When D ={Y}. a class

with a single element Y, we use X< Y instead of X< {Y}. If for every
XEC, X LD, then the class D weakly homotopy dominates the class £

and we write C £ D.

(3.2) THEOREM. The relation of weak homotopy domination is refle-
xive and transitive.

PROOF. (X C, C{ D X4 D). Let L € X. Since X £ C, there is a
YE C and maps a:X —> Y and b:Y —> X such that Uobea = U. Let & =
ubE'i. Since C £ D, there is a Z € D and maps m:Y —» Z and n:Z —> Y
such that #enem = 4. Put u = mea:X —> Z and 4 = ben:Z —> X. Then
Uedeu = lUebenomea = butldenom-a = buddoa = lebea = U. In other words,
xﬁ Z and, therefore, X< D.

Recall [3] that we write X 3‘{1 Y provided (Juw) # $W): (Vz)(av)
fw,z,v): (¥s5)(3J7, ew —su, v — 2z, £37 —55) ewWZov = UV
and e*W7 = USef,

(3.3) THEOREM. X< Y = X % T.

PROOF. Since X 2 Y, there are maps u:X —> Y and d:Y —> X such
that Uedeu =U. Let ¥ = UdE'i. We claim that 3%(14/) is true.

Indeed, let ZEY. Put ¥ =2 € X. Pick an SE X with s L u, V.
Then dUOUZOuZ‘VS‘S = du'UZ'uZ°V = dUOIdZOZou = duoldou = lodeu = U =
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USeS. It follows from [20, p. 328]. that there is an N & X such that

(1) du-UZOuZOVM = um,
Our claim will be proved provided we show that 3%(”, Z, M) is true.

In crder to see this, let AE')‘I' Put 7 = Ade'f’ Choose a Be'f
which refines both Z and 7. Let ¥:7 —» V and §:3 —> 7. Put e = du:
W —U, v = uZ-p:/'l —>Z, and g = dAoq:B —> A. Observe that
UAegeB =UAodje7BeB =llA°dA°7 = UA%Aed =Ued = dutld = e*l/B®B ., Once
again, [20. P. 328] implies that there is an 7 Ei‘y such that

(2)  UAogenF = eeF . ,
Let é;? —>3. Put £ = gesiF —>» A, It remains to check e®W/Zoev = wi
and e°l7 = lUAof. But, the first of these equalities is 'simply another
form of (1), while the second follows from (2).

The relations 3h and 2h in the statement of the following coro-
llary were introduced in [3].

(3.4) COROLLARY. (a) X4 2 3 X 3, D.

(b) X<D =2 X2 0.

(e)C KD = C 3 0.

(dA)c ¢ D = C 2, D.

h

PROOF. The implication (a)( follows from the above theorem, (b)
is a consequence of (a) because X Bh D implies X Zh D, while (c) and
(d) follow from (a) and (b), respectively.

Recall that Y homotopy dominates X provided there are maps u:X

—> Y and d:Y —» X such that deu = 1X' Since the compositions of ho-
motopic maps with a map are homotopi;.:, if Y homotopy dominates X, then
X Y.

The following observation shows that in order to check whether X
is weakly homotopy dominated by a class D instead of the \éech system
of X we can use arbitrary ANR-expansion p = (pi):X — X = (Xi. Pyj I)
of X [20. p. 48]. Write x~<E D provided for every i€ I there is a Y
& D and maps u:X —> Y and d:Y —> X such that pyodeu = p,.

(3.5) THEOREM. For every ANR-expansion p of X, the relations
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X £ Dand X 412 D are equivalent."

PROOF. Since the morphism ; = (U)X — ; = W, uv» X) is an ANR-
expansion of X [?0, p.328], it suffices to show that for ANR-expansi-
ons p and g of X, the relation X <B D implies X <g D.

Suppose q = (qj):X —> 7 = (Zj' Q0 J) and j € J. The condition

(E1) for p applied to a morphism qj:X —> Z, implies that there is an

i€ 1Ianda morphisn{_r:Xi —_—> Zj in the homitopy category H70p. such
that qj = rep,. Since X <:2 D, there is a YEEZ‘and maps u:X —> Y and
d:Y —> X with piod-u = Py Then qjodau = rtpiodou = rep; = qJ.

In view of [20. Theorem 4, p. 50], the above theorem includes as
a special case the following criterion for a metrizable space to be
weakly homotopy dominated by a class D. It is useful in verifying the
examples below.

(3.6) THEOREM. A metrizable space X is weakly homotopy dominated
by a class D provided for every neighborhood U of X in an ANR which
contains X as a closed éubset there is a YEED and maps u:X —> Y and
d:Y —> X such that deu is homotopic to the inclusion of X into U.

(3.7) EXAMPLES. (a) The reverse implications in the Corollary
(3.4) are not true. Indeed, the Warsaw circle W and the circle S sa;
tisfy W 2h S and W 3h S because W and S are shape equivalent. However,
W is not weakly homotopy dominated by S because every map of S into W
is null-homotopic and there are neighborhoods of W in the plane insi-
de of which W can not be contracted to a point.

(b) The closure A of the graph of the function sin(1/x), 0<&x & 1,
is weakly homotopy dominated by the one-point space P because A has
trivial shape. But, A is not homotopy dominated by P because A is not

contractible.

THE { ~-INVARIANT PROPERTIES

The goal in this section is to identify properties that are pre-
served by the weak homotopy domination. Most of those properties mig-
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ht be regarded as internal versions of corresponding 2h—invariant and
Bh-invariant properties from [_3].

A property TTis { -invariant provided X (ﬁimplies X ETT. In
other words, Tr is (-invariant provided X has the property TT when-
ever X is weakly homotopy dominated by a class of spaces having the
property TT.

We shall say that X has a property <C provided X{ C. The theo-
rem (3.2) implies the following.

(4.1) COROLLARY. The property { C is { -invariant.

On the other hand, the corollary (3.4) implies the following.

(4+2) COROLLARY. All Zh-invariant and all Bh-invariant properties
are { -invariant.

Let H70p denote the homotopy category of topological spaces. Let
7 and G be collections of morphisms in H70,.. We shall say thgt X has
a property [J7 provided 4 € 7 for every Uei’ Similarly, X has a
property TC7 F 347 provided (Vu)(IV)(VcEC, £:6 —> X) Vver &7 >
uet & G.

A Bubcollection 7 of the collection MorA of all morphisms of a
category X is a left ideal in A provided uef & 7 whenever f & 7, u &
MorK, and uef is defined. One similarly defines a right ideal in X.
If 7 is both a right and a left ideal in X, then 7 is an ideal in X.

For every collection 7 of morphisms in H7o0p, XE-_ (7op; MorH/op >
7] 1implies X& [J7. The converse is true when 7 is a right ideal in
H70p. Hence, the next theorem includes the following statement: If 7
is an ideal in H70p, then the property fjr is (-invariant.

(4.3) THEOREM. If 7 and § are left ideals in H70p, then the pro-
perty (C; 7 ® §) is { -invariant.

PROOF. Let D be a class of spaces with the property (C; 7 = ¢).
Suppose X { D. We must show that XE€ T1Cs 7 # §).

Let 4 &X. Since X ¢ D, there is a Y € D and maps u:X —» Y and
d:Y —> X such that Usdeu = U. Let & = UdEY. Since Y QTE?_FTg')'.
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there is a ZET such that for every C-map g:C —> Y, Zeg e F >
weg€ g. Let s =2 E€¥. Pick a v ETX with VL U, .

Suppose f:C —> X is a C-map and Vef Ei F. Since 7 is a left ide-
al in H7op, uZOSVOVOf = ZouOf(E_f. The way in which Z was chosen imp-
lies that Weuef & §. Since § is also a left ideal in H7op, we get
dyoleuef = Usdeuef = Uef € .

Internal versions of many familiar shape properties are of the
form [J¥ for a suitable choice of the ideal 7. For example, taking
for the ideal 7 homotopy classes of maps f:X ——; Y which satisfy (1)
£ 1s (C, D)-tame [10]; (2) £ 1s (C, 2)-smooth [10]; and (3) catyf € n
[j]will give us properties [ J7 such that (1) X is weakly internally

(C, D)-tame; (2) X is weakly internally (C, D)-smooth; and (3) icat X

F
£n (the internal F-category of X is less than or equal to n), respec-
tively. In order to help the reader dechipher above notions, we shall

define the first property. A space X is weakly internally (C, D)-tame

provided (Vu, c€ ¢, £:¢ — x)(ADE 2, a:C —> D, b:D —> &) Uef =
bea.

Let R and T be binary relations on morphisms of H7op. A space X
has a property ({Cs R = T) provided (Vll)(a V)(VCEC. f, g:C — X)
Vef R Veg = Uef T Ueg.

Let R be a binary relation on the collection MorA of all morphisms
in a category K. Then R is 1l-stable provided uef R ueg whenever f, g,
uEE_MorK, f R g, and uef and ueg are defined.

(4.4) THEOREM. If R and T are l-stable binary relations on morp-
hisms of H70p, then the property (C; R = T) is { -invariant,

PROOF. Analogous to the proof of the theorem (4.3).

A broperty of mild internal (C, D)-smoothness provides an example
of the property to which the theorem (4.4) applies. Here, X is mildly
internally (C, D)-smooth provided (Vu)(3 v)(VcE ¢, £, g:C —> X)
Vet 2 Veg 3 Uef = Ueg.

Let Q. be a g-system on C L}]. A space X is internally Q.-movable
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provided (Yu)(3v) P, v): (Ve € ¢, £:0 — v)(F (4, D, D, DDE
Qg» F:D —> U, g:Dy —> X) FlDo = UVefei and F|D1 = Ueg,

‘ Observe that every internally Qc—movable space is QC-movable [3].
Also, a space X in internally Hg ,-movable [3] iff X is internally mo-
vable [21].

(4.5) THEOREM. The internal Q -movability i.s a { -invariant pro-
perty.

PROOF. Let D be a class of internally Qc-movable spaces. Suppose
X { D. We must show that X is internally Q.-movable.

Let Ué_'f. Since X { D, there is a Y& D and maps u:X —> Y and
d:Y —> X such that #edeu = U. Since Y is internally Qc-movable. there
is a ZE? such that §2°(14/, Z) holds. Let V = Zuei" Pick an SEX
with &' U, V. Observe that dyoWZouyeVseS = 4, WZeuyoV = q,0WZ°Zou =
du-ldou = Uodou = U = USeS. By [20, p. 328], there is an 7 Ei‘ such
that d,°0Zsuy®VM = UM, We claim that Qr°(4, M) is true.

Indeed, let a C-map £f:C —> /1 be given. It follows from 620(14/. Z)
that there is an (i, Dy, D, 01)6% , 8 G:D—>4, and an h:D, — ¥
such that G|D, = WZeu,eVSefei and G|D, = Weh. Put F = d;oG:D —> U and
g = dsh:D, —> X. Then FlDo = d,°WZouyeVSefol = USefoi and F\D1 =
4,°G)Dy = d*Weh = Uedeh = Uog.

A space X is internally (C, D)-tame provided (VU)(Q V) i(C, D)y,
4 »: (YcEc, £:6 — V)(IDE D, a:C —>» D, b:D —> X) Usbea =
liyef,

Every internally (C, D)-tame space is both (C, D)-tame [3] and
eakly internally (C, D)-tame.

(4.6) THEOREM. The internal (C, D)-tameness is a < -invariant
property.

PROOF. Let £ be a class of internally (C, D)-tame spaces. Suppose
X £ £. We must show that X is internally (C, D)-tame.

Let U € X. Since X £ &, there is a Y € € and maps u:X —» Y and

d:Y —> X such that Uedeu = [, Let ¥ = ude'i'. Since Y is internally
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(C, D)-tame, there is a ZE? such that i(C, D)taw’ Z) holds. Let V =
Zue X. Pick an § Ei‘ with § L U, V. Observe that §,°/Zou,°VSeS =
doUZeu,oV = 4pWZoZey = gyelou = Uedou = U = UseS. By [20, p. 328],
un. ve claim that 1(C, D),

]

L}

there is an M € X such that dyollze oV

U, M) is true. '
Indeed, let a C-map f:C —> M be given. Let P! —> V. Put g =

u

y4
D and h:D —> Y such that #/ehea = {/Zog. Put b = deh:D —> X.

opef:C — Z. By i(c, D)ta(a/, Z), there is a D& D and maps a:C —>

A space X is internally (C, D)-smooth provided (Vu)(3v) 1(c, 0)
W v): (VeE€c, a, b:c —> v [a 2 b])(a a’, b :C —> X) Uoea’ = UVoa,
/ob” = (Vob, and Uea = leob’.

Every internally (C, D)-smooth space is both (C, D)-smooth [3] and
weakly internally (C, D)-smooth.

(4.7) THEOREM. The internal (C, D)-smoothness is a { -invariant
property. v

PROOF. Analogous fo the proofs of the theorems (4.6) and (4.5).

APPROXIMATE DOMINATION

The notion of approximate domination has been introduced by Mar-
de8ié in [_19]. It is a concept typical of the "approximate geometric
topology". In this area we replace "strict" conditions with "approxi-
mate" conditions with an error as small as we please. The error is.
measured by a normal cover and depends on the following definitions
of closeness for maps.

Let UE'}? For x, y & X, write xil.ay provided there 1s a U & U
such that x, y & U.

Maps f, g:Z —> X are U-close (in notationm, ff[ig') provided f(z)
ﬁg(z) for every ze_Z. In the case when Z C X and 'i‘mu.:iz’x. then we
say that f is U-small (in notation, f L 4).

Let A, BC.X. Let VEX and ¥ B. For x € V and y& W, write
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x Ly provided given VE V and WE ¥ with x; > 0 and y, > O, then the-
re is a UG 4 such that VUWCU.

Maps f:Z —> V and g:Z —> ¥ are U-close (in notation, e 4 g) pro-
vided f(z)f[\l.g(z) for every z € Z.

In the case when C (. X, ZE&T, and Z = Z, the above definition
is equivalent to the following. Maps f:Z —> V and g:Z —> ¥/ are lU-clo-
se iff (VvG_Z)(BUEU) £(v)U g(v) C U. In this situation, f is
U-small (in notation, f &) provided fﬁﬁz.

Let AC X. Let VET. For an x € X and a y € V, write fo\lay pro-
vided given a V& V with yy > 0, then there is a UE U such that xE U
and VC U.

Mips f:Z —> X and g:Z —> V are U-close (in notation, e L g)
provided f(vz)rgo g(z) for every ze Z.

(5.1) NOTATION. Write X&” Y provided (Ju:Xx —> ¥, d:Y —> X)
dou £ U.

We shall say that X is approximately dominated by a class 2, in
notation X & D, provided (VU)(BYED) X @U Y. When D = {Y}. a class
with a single element Y, we use X & Y instead of X & {Y}. If for every

XEC. X< D, then the class D approximately dominates the class C and
we write C& 2 [19, Definition 1].
(5.2) THEOREM. The relation of approximate domination is reflexi-

ve and transitive.

PROOF. See [19, Remark 1].

Recall [_3] that we write X 3‘: Y provided (3 v, W) 3‘;(1/. W) (VZ)
(35) 3{:(1/, W, Z, §): (V/'z)(_:} 7, el —>V, vi§ —> 2, £:7 —> N, P, T)
eopev <U and eer 'ILI‘. '

(5.3) THEOREM. x % v » x 3% ¢

(5. . X & o Y.

PROOF. Choose maps u:X —> Y and d:Y —> X such that deud Y. Let
U=u, €Y. We clain that 3§u(u. W) is true.

In order to check this, let Z €Y. Put V = z € . Pick an SE X
with § L U4, V, Now, we claim that 3§U(U. W, Z, §) is true.
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Indeed, let M EX. Put 7 = M4 & V. Pick an ¥ €T with ¥ L Z, 7.
Let Pz — W, TN —> W, q:S —> V, and T:#¥ —> 7. Define e = d, W
— U, v = ueq:§ —>Z, and f = dyes:¥ —> M. It remains to see that
eopov L 2/ and eer 2 1. _ ‘

Let SE& S. Pick a Z& Z such that q(S) = u_1(Z). Hence, v(S) = 2.
Next, we choose a UE& & with p(Z) = d_1(U). In other words, eepev(S) =
U. Let x€ S. Then x €q(S) so that u(x) € Z. Since Z( p(2) = 4™ (U),
we get deu(x) &€ U. But, deu L U implies that there is a U, & U with
X dou(x)€U1. It follows that SUe.pov(S) =sUuC 2,U, i. e.,
that eepev 2.

On the other hand, let NE #. Pick an ME M and a UEC U such that
s(N) = a'(M) and r(N) = a"1(U). Then £(N) = M and eer(N) = U. But,
NC s(N) N\ r(N) so that M NU #£ @. This means that £(N) U eer(N) C

2

,Us 1. 6., that eer 2 ¢,

The relations 3a and 2a in the statement of the following coro-
llary were defined in [3].

(5.4) COROLLARY. (a) X&D % X 3, D.

(b) X&D > X2, 0.

(c) C&D > C 3. D.

(@¢) c&Dd > C 2, D.

PROOF. The implication (a) follows from the above theorem, (b) is
a consequence of (a) because X 39, D implies X 2a D, while (c) and (d)
follow from (a) and (b), respectively.

Recall [6] that Y r-dominates X provided there are maps u:X — Y
and d:Y —> X such that deu = 1
x4 Y.

The following observation shows that in order to check whether X

X Clearly, if Y r-dominates X, then

is approximately dominated by a class 2 instead of the Cech system of
X we can use arbitrary resolutions p = (pi):X —> (Xi, Pyyr I) of X
[19]. Write X 42 D provided (Y1 E I, U E—_xi)(axei). wX — Y,

d:Yy — X) piodouipi.
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(5.5) THEOREM. For every resolution p of the space X, the relati-
ons X &2 and X <B D are equivalent.

PROOF. Suppose X & D. Let an i EI and a U E’i‘i be given. Let
V= UPi E‘i Select a Y € D and maps u:X —> Y and d:Y —> X with deu

& V. Then pyedeu r[‘é-pi.

Conversely, suppose X & P D. Let Ue'i Since every resolutiénl
satisfies the condition (B1) (see the proof of the Theorem 6 in [_19]).
there exists an 1 & I and a normal cover V of X; such that p;1(l/) re-
fines 4. Now, use X <p_ D to get a Y& D and maps u:X —> Y and d:Y
—> X with pjedeu < p,. Clearly, deu £ 4.

(5.6) THEOREM. X & D = X D.

PROOF. Let U E'i'. Since U 1s en ANR, there is a normal cover 54.'-0"f
U such that A-close maps into U are homotopic'D 7]. Let P:X —> U. Put
V = Ape'i‘. Since X & D, there is a YE D and maps u:X —> Y and d:Y
—> X such that deu £ V.. Then pedeu i-p so that pedeu ® p. Hence,

Uodou = U,

(5.7) EXAMPLES. (a). The reverse implications in the corollary
(5.4) are not true. Indeed, the circle S and the circle wi—th the spi_xj'al
C satisfy C 3& S but C is not approximately dominated by S. ‘. ‘

(b). The closure A of the graph of the function sin(1/x), 0 x
<9, is approximately dominated by the arc I but A is not r-dominated
by I. ' .

(c) Also, A is weakly homotopy dominated by the one-point space
P but A is not approximately dominated by P.

The next result shows that the 1limit of an m-convergent net of
aubséts is approximately dominated by the members of the net.

Recall the definition of the m-convergence on the hyperspace ¥Z
of all non-empty subsets of a space 2 [12]. For X, YEEZ and an & E
7, write xfﬁ;r provided (J£:X —> Y, g:Y —> X) £ € and g £. We
shall say that a net {xi}iel in %Z m-converges to an X E'KZ (in nota-

tion, X; — X) provided (V€ €D (I 1, en\Vs 1) 51
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(5.8) THEOREM. Let X be a P-embedded [2] subset of a topological
space Z. Let {X,f, o be a net in%z. If X, —> X, then X& {xi}ier

PROOF. Let 4 &€ X. Choose a V € X with 2V £ U. Since X is P-embed-
ded in Z, there is an £ € Z with Ex & V. Pick an 1 € I such that x'-fr
X,. Clearly, x &Y X,.

(5.9) COROLLARY. Let {Xi}iEI be a net of P-embedded subsets of

i

a topological space Z. Let X & 3Z. If X; —> X, then & {xi}ieI'
PROOF. By [11] and (_12]. X is P-embedded in X.

THE £ -INVARIANT PROPERTIES

We now turn to the identification of properties that are preser-
ved. by. the approximate domination.
. ~
A property TT is & -invariant provided X Qﬂimplies X ET\-. It

is m-invariant if for every net {xi}iel of subsets of a topological

space z und a P-embedded subset X of Z with Xi = X, Xie Tr for eve-
ry 1 €I implies X € TI. . ‘

The corollaries (5.4); (5.6), and (5.8) imply the following sta-
tements, respectively.

' (6.1) COROLLARY. All 2,-invariant and all 3, -invariant properties
[3] are << -invariant.

(6.2) COROLLARY. All { -invariant properties are & -invariant.

(6.3) COROLLARY. All @-invarienf properties are m-invariant.

We shall say that X has a property &C provided X & C. The theo-
rem (5.2) implies.the following.

(6.4) COROLLARY. The property &C is & -invariant.

Let 7 Mor7op. We shall say that X has a property s# provided
(Vuy(3v, s:x —> v) ¢ £ U and £ € 7. A space X has a property 87
provided (Vu)(3 £:X —> X) £ ¢ U and £ € 7. Observe that X € 57 imp-
lies X & 87 whenever 7 is a left ideal in 7op. _

(6.5) THEOREM. If 7 is an ideal in 7op, then both s7 and 87 are
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are & -invariant properties.

PROOF. We shall prove that s7 is Q-invariant. An analogous proof
for the property s7 is left to the reader.

Let D be a class of spaces havingA the property s7. Suppose X & D.
We must show that X € s7. _

Let 4 € X. Select a V € X with 2V £ U. Since X & D, there is a Y
€ D and maps u:X —> Y and d:Y —> X with deu V. Since Y € oF and
W = Vd €Y, there is a Z €Y and a map g:Y —> Z such that g £ ¥ and
g€ 7. Let :Z —> W/. Put f = d, epegou:X —> V. One can easily check
that f € 7 and £ L U.

A space X is internally C-e-movable provided (VU)(a V) iCZO(U.
V): (VC EC, £:C — V)(ag:C —> X) ffgag.

Observe that every internally C-e-movable Qpa.ce is C-e-movable
[3]. Also, ifC is a class of k-spaces, then a compactum X is inter-
nally C-e-movable iff X is C-e-movable [_8].

(6.6) THEOREM. The internal C-e-movability is a & -invariant pro-
perty.

Let D be a class of internally C-e-movable spaces. Suppose X & D.
We must show that X is internally C-e—ﬁovable.

Let U € X. Select & V €%, a YED, and maps u:X —> Y and d:Y —>
X with 2V £ U and deu £ V. Let W = Vdelf. Since Y is internally C-e-
movable, there is a Ze‘f such that iC;O(ld, Z) holds. Let an § e?{' re-
fines both V and Zu' We claim that iC;o(U. S) is true.

Indeed, consider a C-map f:C — 5. Let P:5§ —> Zu. Let h = u,e pe
f:C —> Z. The condition icgo(ld, Z) implies that there is a map k:C
—> Y with hy\ak. Put g = dek:C —> X. It remains to check that f,li, g.

Let x & C. Consider an SE S with f(x)S> 0. Let 2 = u(p(8)) & Z.
Then h(x)Z > 0. The relation h!f/\.k implies that there is a W& # such
that h(x) & W and ZC W. Let V = d(W). Clearly, g(x) & V and da(z) V.
Let y € s. Then‘u(y) € Z and deu(y) € V. Since deu V, there is a v,
€ V such that deu(y), y € V,. In other words, S C 2,V: Pick a U € U
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with 2,V C U. Then g(x) & U and S C U.
A space X is weakly internally (C, D)-e-tame provided (‘du. CE cC

£:60 —> x)(3D €0, a:¢ —> D, b:D —> x) £ L bea. It is internally
(C, D)-e-tame whenever (VU)(a V) i(c, D):a(ll. V): (VCEC. f:c —
V)(ADE 2, a:c —> D, b:D —> X) £ L bea.

Observe that every internally (C, -} ¢-tame space is weakly in-
ternally (C, D)-e-%ame. The converse is not true in general. Indeed,
the Warsaw circle W is weakly internally ({31}, {I})-e—tame. but it is
not internally ({31}. {I})—e-tame. A compactum X is internally (C, 2)-
e-tame iff it satisfies the definition (3.1) in L9]. Also, a (weakly)
internally (C, D)-e-tame space is (weakly) internally (C, D)-tame.

(6.7) THEOREM. Both the weak internal (C, D)-e-tameness and the
internal (C, D)-e-tameness are & -invariant properties. -

PROOF. We shall prove that the internal (C, D)-e-tameness is a
Q-invariant property. An analogous proof for the weak internal (C, D)-
e~-tameness is left to the reader.

Let £ be a class of internally (C, D)-e-tame spaces. Suppose X &
€. We must show that X is internally (C, D)-e-tame.

Let U e'i. Pick a V€ X with 2V { U. Since X & £, there is a Ye
¢ and maps u:X —> Y and d:Y — X such that deu ¢ V. Let & = Vde’f.
Since Y is internally (C, D)-e-tame, theFe is a Z & Y such that 1i(C,
D):a(ld, Z) holds. Let § E?I' refines both V and Zu' We claim that i(cC,
D)za(d. §S) 1is true.

Indeed, let CE C and fiC —> §. Let P:S —>Z . Put g = wepef:
c—>2Z. By i(C, D):a(&l. Z), there is a DE D and maps a:C —> D and
ctD —> Y such that g!i/- cea, Put b = dec:D —> X. Then f»-‘{, boa.

A space X is internally (C, D)-e-smooth provided (VU)(E v) i(c,

PR
0)8,w, v): (Veec, as bic —sv [a&b])(Ja’, v'ic —>x) alw’,
b b’, and a* = b’. It is weakly internally (C, D)-e-smooth whenever
(Vu, c€c, a, b:C —x [a&b})(aa’- b':C —3x) aLa’, by,

and a° ¥ b’.
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Observe that every internally (C, D)-e-smooth space is weakly in-
ternally (C, D)-e-smooth. The converse is not true in general. For
example, the Warsaw circle is weakly internally (281}, {1})-e-smooth
but it is not internally ({51}, {1})—e—smooth. A (weakly) internally
(Cs» D)-e-smooth space is (weakly) internally (C, ?)-smooth.

{6.8) THEOREM. Both the weak internal (C, D)-e-smoothness and the
internal (C, D)-e-smoothness are &-invariant properties.

PROOF. The proof is similar to the proof of the theorem (6.7).

The next three properties are related to the fixed point proper-
ty.

Let 7 be a collection of morphisms in the category 7op of topo-
logical spaces and continuous functions. We shall say that a space X
has the approximate fixed point property with'respect to 7(in notati-
on, X € afpp(r)) provided (Vu, £:x —>x [r€ 7)) (Fx€ D xLs(x).

Recall that X has the fixed point property with respect to 7 (in

notation, X € fpp(7)) if for every map f:X —> X in 7 there is a po-
int x € X with x = f(x). The fpp(Mor7o,) is the familiar fixed point
property. Clearly, X & fpp(7) implies X € afpp(7).

(6.9) PROPOSITION. (Bestvina). Let X be a paracompact T, space.
Then X € afpp(7) implies X & fpp(7).

PROOF. Suppose X¢fpp(7). Then there is a map f:X —> X in 7
such that x # f(x) for every x & X. Since X is T,, for every x EX
there is an open neighborhood Ux of x and an open neighborhood Vx of
f(x) with Uxﬂ Vx = . Since f is continuous, for every x & X, there
is an open neighborhood W, of x such that w.C U, and f(Wx)(: Vee Sin-
ce X is paracompact, the open cover U = {wx}x €x is a normal cover
of X [_2] Clearly, for every U C 4 and every x€ X, x €U implies f(x)
¢ U. Hence, x¢.afpp-(7).

(6.10) THEOREM. If 7 is an ideal in 7oz, then the property afpp(7)
is é—invariant.

PROOF. Let D be a class of spaces having the property afpp(7).
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Suppose X & D. We must show that X € afpp(F).

Let an f:X —> X in 7 and a U E?f be given. Pick a V éi‘ with 2V
<u.‘Since X & D, there is a Y & D and maps u:X —> Y and d:Y — X
such that deu £ V. Let g = uefed:Y —> Y. Observe that g€ 7. Since ¥
€ afpp(7), there is a y & Y such that y}'\/. g(y). Let x = d(y). It is
easy to check that <L f(x). Hence, X & afpp(7).

The following definitions provide an extension from metric spaces
to arbitrary topological spaces of proximate notions in [_18_]-

Let f:X —> Y be a function between topological spaces and let V

be an open cover of Y. The function f is V-continuous at a point x € X

provided there is a neighborhood U of x in X such that £(U)(C 2f(x).
If f is V-continuous at every point x € X, then we say that f is V-con-
tinuous.

Another, more restrictive, notion relies on normal covers of X.
The function f is V-Continuous provided there is a U e'f such that
£(2x) C 2f(x) for every x& X.

These two different concepts of proximate.continuity lead to two
different versions of the proximate fixed point property L18].

Let 7 be a collection of morphisms in the category Sets of sets
and functions. Write X &€ Pfpp(7) provided (VU)(B V) 'ﬁfpp,(u. V): (V
£f:X — X [f c 7 V-'é'ontinuous])(ax_e_ X) xrl‘Lf(x). If an entirely
analogous condition for V-continuous functions in 7 holds, then we
write Xeapfpp(F). Clearly, X & pfpp(7) implies X & Pfpp(F). The con-
verse is true for paracompact spaces. A compactum X has the proximate
fixed point property [18] iff X € pfpp(MorSets). Also, since a conti-
nuous function f:X —> X is V-continuous for every open cover V of X,
if 7 is a collection of morphisms in 70, then X & pfpp(7) implies
X € afpp(7).

(6.11) THEOREM. If 7 is an ideal in Sets, then the properties
pfpp(7) and Pfpp(F) are & -invariant.

PROOF. Let D be a class of spaces with the property pfpp(F). Su-
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ppose X & D. We must show that X & pfpp(F).

Let 4 € X. Choose a vE€ X with 2v < . Since X & D, there is a Y
€ D and maps u:X —> Y and d:Y —> X such that deu £ V. Let ¥ = VdE
Y. Since Y & pfpp(F), there is a Z €Y such that pfpp; (W, Z) holds.Let
S = Zué'}?. We claim that pfppF(U, $) is true.

Indeed, let f:X —> X be an S-continuous function in 7. Put g =
uefod:Y —> Y. Observe that g E‘F. We shall first prove that g is Z-
continuous.

Let z €Y. It suffices to show that g« is Z-continuous at the po-
int z. Since f is S-continuous, there is a neighborhood N of d(z) in
X such that £(N) C 25f(d(z)). In other words, uef(N) C 2,g(z). Since
d is continuous, there is a neighborhood M of z in Y with d(M) C N.
Hence, g(M) = uefed(M) Cuef(N)C ZZg(z).

It follows now from the pfppi_.(ll/, Z) that there is a point y € Y
and a V& V such that y, g(y) € d~1(V). Let x = d(y) & X. Pick a U €
U with 2V C U. Clearly, x, deg(y) € V. Since deg(y) = dou(f(x)) and
deu < V, there is a V, € V such that f(x), deu(f(x)) €V1. Hence, x,
£(x) & U.

The above proof applies also to the property Pfpp(F) provided we
shcw that g is Z-Tontinuous when f is S-¥ontinuous.

In order to prove this, first use the fact that f is S-Tontinuous
to get an # €X such that f(2”d(z))C 2,f(d(z)) = u_1(22uofod(z)) =
u_1(2zg(z)/) and, therefore, u°f(2/Vd(z))C 2,g(z) for every z € Y. Put
n = Nde"f. Since 2,z = d-1(2/Vd(z)), we get g(2yz) = uefed(2yz) = uef
(2/Vd(Z))C 2Zg(z), for every z € Y. |

Let. 7 be a collection of morphisms in 7op. Write X & sfpp(7) pro-
vided (V) (V) Fix,(u, V)2 (Vex — v [refD@xen x L),
Recall [ 3] that we write X € sfpp(F) provided (Nuy3v) Fixz (4, V):
Vs, £2:5 — v [r€ FpDses) sLrs).

"~ (6.12) PROPOSITION. If 7 is a right ideal in 7op, ‘then X & sfpp(7)

implies X € sfpp(7).



70 ZVONKO GERIN

Let Y EX. Pick V, S €T such that 2/ £ 4 and Fix,(V, §) holds.
We claim that Fix, U4, §) is true.

Indeed, let an M€ X and an f£:1 —> S in 7 be given. Let P:X —>
M. The composition g = fep:X —> § is in 7. Hence, there is an x € X
with xf'i,g(x). Pick an M &/ such that xC M. One can easily check that
&L £(m).

(6.13) PROPOSITION. If 7 is a left ideal in 7op, then X & sfpp(F)
implies X & afpp(7).

PROOF. Let an £:X —> X in 7 and a U & X be given. Since X &
5rpp(7), there is a V € X such that Fix, (4, V) holds. Let F:X —> V.
Put g = pef:X —> V. Since g C 7, by Fix, (4, V), there is an x € X with
xﬁ.g(x). Clearly, x £ f(x).

(6.14) THEOREM. If 7 is an ideal in 70z, then the property sfpp(F)
is & -invariant.

PROOF. Let D be a glass of spaces with the property sfpp(F). Su-
ppose X & D. We must show that X & sfpp(F).

Let ue'i Pick a Vé’f with 2V £ 4. Since X & D, there is a YE
D and maps u:X —> Y and d:Y — X such that deudg V. Let ¥/ = VdeﬁY'.
Since Y € sfpp(7), there is a Z € Y such that Fix, W, Z) holds. Let
S = ZuE’}‘f. Let M € X refines both V and S. We claim that Tix;, w, m)
is true.

Indeed, let an f:X —> /M in 7 be given. Let P:! —> §. Put g =
uyepefod:Y —> Z. Observe that g&E 7. By Fixr(h/, Z), there is a yE Y
with yr[‘L g(y). Let x = d(y) & X. It is easy to check that x4 £(x).

We shall now identify several é-invariant properties from the
general topology.

For a class of topological spaces D, let i) denote a class of all
spaces Y such that there is an X&) and a map f:X —> Y of X onto Y.

(6.15) LEMMA. If X & D, then there 1s a net {Ai} in (3x) N
(i) such that Ay - XL

1€1

PROOF. Let I = X. For an 1 = € I, choose a Y €D and maps u:X
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— Y and d:Y —> X such that deu <. Put A; = d(Y) € (8X) N (12).

Let f = dou:X —> Ai and let g denote the inclusion of Ai into X. Cle-

arly, £ £ U and g £ U. Hence, Ai»\‘ffx and A; —> X.

A topological property TT is m—étable provided X & TTand YEi{X}
1uply Y € TT. '

(6.16) THEOREM. Every property TT which is both m-invariant and
-stable is also & -invariant.

PROOF. Let D be a class of spaces with the property ﬂ. Suppose
X 4 D. We must show that X Eﬂ

By the above lemma, there is a net gAi}iGI in (3X) N (iD) such
that A; —> X. Since T is m-stable, Ay € T for every i € I. Finally,
since || is also m-invariant, we get X 6“

(6.17) COROLLARY. The following properties are &-invariant:

compactness, almost compactness [1], countable compactness, Lindelsf,

and "to have s n components",

PROOF. The listed properties are clearly m-stable and by the re-
sgits in [1 1] and L12:' they are also m-invariant. -

Recall that a space X is pseudocompact provided every real-valued

(continuous) map f:X —> R is bounded.

(6.18) THEOREM. ‘Pseudocompactness is a Qrinvariant property.

PROOF. Let D be a class of pseudocompact spaces. Suppose X & D.
We must show that X is pseudocompact.

Let f:X —> R be a continuous map. Let V denote a cover of the
real line R with open segments (n, n + 2) (n €& 2). Let U = f_1(v) =
Vfé’i. Since X & D, there is a Y &€ p and maps u:X —> Y and 4:Y —
X such that deu { #. Put g = fod:Y —> R. Since Y is pseudocompact,
the function g is bounded, i. e., there is a k € N such that g(Y) C
(-k, k]. Clearly, g.ﬁ(x) = fedeu(X)C [—k, k]. But, fedeu and f are
y-close, so that £(X)(C [—k -2, k + 2]. In other words, f is bounded. .

Hence, X is pseudocompact.

Recall that a space X is called strongly paracompact [16. P 404]
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if X is a Hausdorff space and every open cover of X has a star-finite
open refinement.

(6.19) THEOREM. Let D be a class of strongly paracompact spaces.
Let X be a paracompact Hausdorff space. If X <D. then X is also stro-
ngly paracompact.

PROOF. Let 4 be an open cover of X. Since X is paracompact, U'EE
X. Pick a V€ X with 2V £ U. Since X & D, there is a YE D and maps
utX — Y and 4:Y —-) X such that deu V. Let V¥ = Vde'f. Since Y is‘
strongly paracompact, there is a star-finite open refinement Z of W.
Put § = Zu. It is easy to check that § is a star-finite refinement of
U.

Let T be a cardinal number. Recall that a space X is 7 -bounded
provided a closure of every subset of X of cardinality £ T is a con-
pact space.

(6.20) THEOREM., Let ) be a class of T -bounded spaces. Let X be
a paracompact Hausdorff‘ space. If X & D, then X is also T -bounded.

PROOF. Let A be a subset of X with |A| £ T. For each Ue'i con-
struct a compact set Au in X as follows.

Pick a V €X with 2V £ U. Since X & D, there is a Y €D and maps
u:X —> Y and d:Y —> X such that deu £ V. Observe that |u(A)| ¢ T.
Since Y is T -bounded, u(A) is a compact subset of Y. Put Ay =
d(u(A)). It is easy to check that AU—Q.K. Hence, the net {.AU} p-con-
verges [11] to A. Since X is paracompact Hausdorff space, A 1is P-em-
bedded in X. It follows from [11]. that X is compact. Hence, X is T-
bounded.
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