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BILINEAR MAPPINGS AND OPERATOR IDEAILS*

Ao Braun8 and He Junek .

Summaxy

There are several possibilities to generate ideals of multilinear
mappings by common operator ideals, We discuss here some of these
procedures and study their mutual relations. For sske of simpli-
city we restrict us to ideals of bilinear mappings.

1, Operator Ideals and Ideals of Bilinear Mappings

In connection with the theory of holomorphic functions defined on
Banach spaces on the one side, and the theory of tensor products
on the other side, ideals of multi-linear forms have been stu- .
died more or less extensively during the last years (cf. /3/,/4/).
Several results concerning concrete multi-ideels have been
obtained in this way. However, no general theory of multi-ideals
does exist up to now, Encouraged by the reach theory of operator
ideals Pietsch outlined an axiomatic theory of multi-ideals and
suggested the further developement in /1/. This paper cen be
considered as a contribution in this direction. Only for sake of
simplicity we restrict ourself to the study of vector-valued
bilinear forms. We shall use here the notion used in /1/ and /5/.
Let us recall the basic definitionms.
Let E and F be any Banach spaces. By xJ(E,F) we denote the
Banach space of all linear bounded operators mapping E into F. We
put Zv = U Z (E,F), where the union is taken over all pairs
E,F of Banach spaces.. By F we denote the subclass of all finite
rank operators. A subclass & s %! with the components

*) This paper is in final form and no version of it will be
submitted for publication elsewhere
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GA(E,I) := XA 561(E,F) is called an operator ideal, if the
following conditions are satisfied:
(i) Each component ¥ (E,F) is a linear subspace of 301(E,F)
containing & (E,F).
(11) If R€ X '(E,,E), T € C(E,F), and S € X' (F,F,), then
STR € GL(E,,F )

A non-nsgative function T —= [| T/ & [l defined on an operator
ideal (@ is called a norm if the following comes true
(1)l =1 ll is a norm on each component (X (E,F) and
lewyl@ll=lal+lyl for acE' and ye€F,
(11) If Re L' (B ,E), T € G(E,F), and S€ £ (F,P,), then

[IsTRIG S-Sl <[l | &l IR

A paixr (6 ,ll =|@[ ) is called a normed ideal if the components

& (E,F) are complete with respect to the norm|[|~|/@(|. If the com=
ponents of L are complete with respect to the uniform operator
norm, then ® is called a closed ideal. For more details we refer
to /5/. As examples let us mention the following ideals,

g, &,‘M,?C denote the closed ideals of all approximsble, compact,
weakly compact and separable rank operators, respectively,

7L denotes the normed ideal of all nuclear operators. Recall that
an operator Se X(E,F) is said to be nuclear, if there is a
representation

o0 Q0
s=2_a ® y. for some a,€E', y, €F with >, llall ly,ll <co ,
=1 4 i i i =7 i i

o0
In this case we put [SIn [ = inf > || e.ill Il yill , where the infimum
i=

is taken over all possible representations of S.

5, is the ideal of all operators which are factorizable through
some Hilbert space. This ideal can be normed by the definition
HTI;H = inf [[R]| lIS]l , where the infimum is taken over all possible
factorizations T = ReS through some Hilbert space. Finally, 7 and
p denote the ideals of all integral and all absolutely summing
operators, respectively. They are normed ideals as well,

Now let us turn to ideals of bilinear mappings. For any Banach
spaces E,F,G we denote by zz(E,F;G) the Banach space of all
bounded G-valued bilinear mappings defined on E x F equipped with
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the uniform norm. This space is metric isomorphic to the Banach

space Z(E, ¥(F,G)) and we will identify these spaces in all the

followinge As in the case of operators, e ? denotes the class of

all bounded bilinear mappings. A bilinear form Mex? (E,F;G) is

called to be of finite rank (McF(E,F;G)) if it is a linear combi-

nation of bilinear forms of the following type: Given a€E', bePF!',

and z¢G, then a bilinear form M= a ® b ® 2 is defined by

M(x,y) = {x,a) (Yéb> Ze

A subclass A of £° with the components . (E,F;G) t= N £2(E,F;C)

is called a biideal if the following conditions are satisfied:

(i) Each component # (E,F;G) is a linear subspace of ZZ(E,F;G)
containing & (E,F;G).

(1) If Me#(E,F;G), ReX(E ,E), S€¥(F ,F), and TeX(G,G ), then
TM(R =4S -)ed(Eo,FO;Go).

Given two operator ideals @ and &4 , there are several possibilities
to generate biildeals, In this paper we shall study two of them. No
confusion will appear if we write Z instead of z1,22.

11 Definition (i) Let & and B be operator ideals. Let E,F,G be
any Banach spaces. Then ¥ (& ,%)(E,F;G) is the set of all
bilinear forms MeX(E,F;G) for which there are operators
S€Q(E,Fq), Te 5(F,F;) and a bilinear mapping NeZ(E, WFq36)
such that M admits the factorization M = N(S,T).

(ii) Suppose that (%, I-15]) is even & normed operator ideal.
For all Banach spé.ces E,F,G define

(&,6] (E,F56) = OUE,B(F,¢)) «

It is easy to see that both constructions lead  to biideals. Since
2(®&,%) is defined by a factorization, the structure of this
ideal is very clear. In opposite to this the ideal [d, %] is
rather difficult to handle, Next we are interested in finding
conditions for the coincidénce of the ideals ¥(&@,%) and[x,%].
For this purpose we give a slight generalization of Definition 1.1,

1,2 Definition, Let# be any biideal and let &t and % be any
operator ideals. For any Banach spaces E,F,G let
A(O,%)(E,F;G) be the set of all bilinear mappings
Me 2(E,F;G) which admit a representation

M= N(S,T)
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for some operators Se A(E,E;), T€ 8(F,F;), and some bilinear
mapping Ne¢ A (E;,Fq3G).

It is obvious that A (x,%) is also a biideal.
1.3 Proposition., If &, are any operator ideals and if & is

even a normed ideal, then

c(x,5)s [, 0] .

Proof, Suppose Mek( (@ ,%)(E,F;G) and let M = N(S,T) be some

representation of M, where Se€a(E,E;), T€F,F,), and

Ne X(Eq,Fq;G)o Since Nx € £(P;,G) for all xe€ E;, we get

NxTe 5(F,G). Next we prove N(-T-)e 2(Eq, 5(F,G))e In fact, the

function N(-,T-): E; —= 5(F,G) is linear in the first coordinate

and we have

I N(x,2-) 1 (Fe6) || =l N(x,=) ] B(F,6) |

Slwxle(rg,@l « o] 52,r) |
SN - "X“ ° "Tlﬁ’(FyF‘]) "

for all xe¢ E1 o .
This shows N(-,T-)€ £(E;, 6(F,G)). Since Se(E,E;), this proves
N(S,T)e @(E, B(F,G)).

2+ FPactorization Results

Let & and ¥ be any normed operator ideals. In this section we
will give necessary and sufficient conditions for the validity
of the equation

Z(apb)'-"[aab']o (=)

2.1 Proposition. Let (@&,Il ~[@]) be any normed operator ideal,
Then [(F,& ]= Z(F, &) holds true.

Proof, Let E,F, and G be arbitrary Banach spaces. For any a¢E'
and SeX(F,G) we havea xS ( , ). Obviously, the forms

a @ S, a€E', Sca(F,G) generate the space [ Fyex ] (E,F;G).
This proves the assertion.

2,2 Proposition. For each operator ideal ¢r holds
(@, 2]1= (&, £).
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Proof. Let .

B:; X (F,G)xF —e G defined by B(T,y) = Ty, ye F, Te2(F,G), be
‘the canonical valuation mepe. Suppose '
Me[@,2](E,F3G6) = @ (E, £(F,G)). Since
- M(x,¥y) = B(Mx,y) = B(M,15)(x,y) for all x¢E and yeF, we obtain

M= B(M,1p) e 2( o, )e

Next we shall give a necessary condition for the validity of
equation (%) in terms of the transposed bilinear map, which is
defined as follows, For every Mct.(E,F;G), XcE, and ye F we put
Mr(y,x) = M(X,¥)e Then M e X (F4E;3G)s Obviously, T is a metric
isomorphism between the Banach spaces X (E,F;G) and X(F,E;G).
For every biideal «f we denote the complete image.of £ under T
in £ 2 by 47, Clearly,&7 is a biideal, as well,.

. The next statements are evident.

2.3 Proposition, Let Of and % be normed operator ideals.
Then 2(0,0)T = Z(%,0).

' 24 Gorollgx' o Let @ and ¥ be any normed operator ideals,
Then [ $,6 1= (5, a) tnplies [, ] S [a, ],

In prepa.ratién of the next result we need the notion of the dual
operator ideal (cf. /5/).

2,5 Definition, Let Ot be a (normed) operator ideal, An operator
Se¢(E,F) belongs to the dual operator ideal crdual j¢

S'ec A(F'E')e In the normed case the dusl ideal norm

I-10 9L | 15 qefined by [l 5] @Bt | = 51| otf.

2.6 Proposition. Let (¢ and % be normed operator ideals, Then
(Bs0t] S [@s 6] implies 5 duel,

Proof, Suppose Te B{E,F). Then we have KFTezs(E,F"), where Kp
denotes the canonical injection from F into its bidual F", The
operator KpT can considered as a bilinear form

KpTe 8(E, X(F',C)) = 6 (B, x(F',C)). Its transposed map (KFT)T
corresponds to the dual operator Tte £(F',E') by the equation

(KpD'(byx) = KpT(x,b) = {b,KxTx > = ( Txyb) = (x,T'bd
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for x€e E, beF', Using the assumption, we get

T o= (KeD) € [@,8] (F',E;0) = & (P',BY), 1.0, TeU8L |

Now we are going to give sufficient conditions for the equation
(2)o The proof of the next proposition is based on the followinge.

2.7 Lemﬁa. Let (7 and ¥ be any operator ideals., Suppose that &
is even normed.Then[ S , al’s [a.x-] implies [b, alsS 2(xz,0.,

Proof, Let Mc[$,&] be éiven. Then we have MTGEGL, ¢l= X(0,X%)

2.8 Proposition: Let & and ©- be operator ideals. Let Ot be
normed, If f&,erg [@,¢] then [B~L,0t]1S 2( L&, ) for every
operator ideal £ , If, additionally, G+4{ =& then

(&,60c]= £ (& ,).

Proof, Using 2,7 we get

($ek,al=[5,2] (£,2) € L(X,@NL,2) = L(K,2).
If e =4 then we have
(c,al=[6:< ,a]S 2(Lyo0) S [&, ],
Therefore, [ & , Ot ]= X (L, &)
In the following we discuss sufficient conditions for the inclusion
 [ead [a, 2] .

2,9 Proposition, Let Ot be a normed operatorrideal and let #7 be
the ideal of nuclear operators. Then (2 ,a] ¢ fa,x] °

Proof, Suppose that Me [n,a](E,F;G). Then there are e € E' and
T,€ O(F,G) such that

(o] ©0
w=d_a © 1y et guaiuumilauwo .



BILINEAR MAPPINGS AND OPERATOR IDEALS 31
By 2,1 and 2,3 we have

n
(X ey ® 1) e [A,x](R,E®)

n - n
> N, © )Mol € 2 llall iz, lall <oo,
i=1 i i i=1 i i

This implies

00 .
g(ai o 1) ela,2].

2,10 Corollary, Let &t and £ be operator ideals, let (¥ be normed,
_Then _ o
’ [n-,_c,a_lg L(Ly0r)
-and h
HWed = L
theu .

o= (L) o

2011 Prbpos};bion. For every closed operator ideal CY we have

(g, al"slae] .« -

Proof. Suppose that Me[Q, A](E,F;G) = q (E, a(F,G)). By defini-
tion of 9 there are finite rank operators MHGS’(E a(r, G)) with
lim( M - - M |l = 0, Using 2.1 we have M e (& ,(t).

Hence Mne %( Ce, 3’") L'a, Z.] By the closedness of (¥ it follows
from o - nmmn- M that M e [O, 2],

2,12, Corollarye. Let Ot be any closed operator ideal and let X
be an arbitrary operator ideal. Then

[9"6 ’ d’]& Z(e&‘pa)o

1t §ed =4 then [£,a]= £ (£,0).
Especially. [9.&]3 Z(g,a) and Eg,g]’ X(?,?)o
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2,13 Definition, A (normed) operator ideal & is called to be
injective if Se¢ X(E,F), Te X(E,G), andll Sxll £ | Tx || for all x€E
imply Se¢ &(E,F) and, in the normed case,ll st&ll £ [ Tlee |l .

2,14 Proposition. Let @ be any injective closed operator ideal,

Then

(k,a] s [&,2] .

Proof. Suppose that M e [R,&] (E,F;G). Let Uy denote the unit ball
of E. Since M(Ug) is précompact in & (F,G), there is a sequence .
(Ti) of operators Tie @(F,G) such that

I l—~0 and M(Up) § FeX (7,1 tem}.

’

Phe -Banach spaCe c (G) is defined by
(@ ={ (zy)1 z € %, I (zi) Il = supll zyll<},

Next, define an operator

T: F —vco(G) by Ty = (Tiy)ieﬂ for yeF.

Then we get
n
oy -2 37,5 0= supliogyll € sup e Uiyl
i=1 i>n i>n

for each ye F, where j denotes the canonical injection from G into

the 1*B coordinate of ¢ o(@)s Since lim sup Il‘i Il = 0, 1t folloms
n=—eoc i»n

Tafef -1in iZ 3474€ B(F,G).

n —e00

If we put P, = T(F), we obtain Te &(F,F,) by the injectivity of &,
1 1

Now, we can define a bilinear map N3 T(F) X E —e G by
N(Ty,x) = M(x,y) for x€E and yeF, Let & > 0 and xe Uy by given
Then there are numbers /1.1 and an operator Re &(F,G) such that

o0

E 2,0 $1, IRN§1, and x = 2__ 2,7, +ER. Now, 1t follows
i=1 i=1 14
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00
‘from M(x,y) = iZ1 Liﬂ.‘iy + &Ry that

o
Bue) 18 2121 suplizgyl+ el vl

Hence

ANy, x) =l ux,3) [ & l2yll + el yl2or e11 yer, ana € — 0

proves the continulty of N.

Therefore, N can be extended to some bilinear map belonging to
< (Fy4E;G). This extension is denoted by N, as well,

Now, the assertion follews from u' = N(T 1E) e (a, ] (F,E;Q).

2,15 Corollary. Let Gtbe any injeotive closed operator ideal and
let £ be an arbitrary operator ideal., Then

[Res,a]c £(2,R), If, additionally, €+d =L then

e al=2(L,0).

As a specisl case, we get [£,&]= £(£,@) and
[é, é1= Z(ﬁ.&)o

3., Examples and Counterexamples

To provide us with examples of pairs (¥, @) of normed operator
ideals which do not satisfy the equation (=) we will use the
following two propositions,

The contrapositions of 2.4 and 2.6 yield.

3.1 Propogition, Let & and #-be any normed ldeals. If
s4¢advel then [s,0]l ¥ 2(5,0).

3.2 Proposition, [ ﬁ Jf' [no,x] . Especially,

[no no] $ [mz [p,m] é [m’x] » and
E,xz ;1 $ [5,21.

Proof, Choose (E,F,G) = (11 ,lm ,12) and define
Wi 1g % Lo —= 1y by M(E 42 ) = (842 )5y » E€Lln2€loy o
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Then M: 1, —e £(1 g ,12) = 5_ (1, ,12). The: diagram

14 S 2 (1o 912)
Iﬁ /

where M1(§) = D§ » Ee 1y, and D& (,u) = (gi/‘i)ieN.' yields a
factorization of M by Ide (1,4 ,12) =R (14 .12) by Grothendieck's
Theorem (cfo /5, 22.4.4/).

This shows Me[2 ,%51(11,100 315)0

The transposed bilinear map MT: 1o — %(14,1,) is given by
MT(R) =D, for 2 €lo » SincellDy: 1, —>12|I=l|x.||°a , MT 18
even an isometric embedding, and this map cannot be weakly
compact, since 1, 1is not reflexive. This proves M' ¢ [ 70,21 .

Now, 2.4 together with 3.1, 3.2, and some well known relations
between operator ideals yield several pairs of operator ideals,
which do not satisfy the equation (%), '

Simul taneously, this table shows that the positive results given
in section 2 are optimal,

g £ xop g

TW ¥ ok a «[¥
]
]
]
1
]
]
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