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COMPACTNESS AND WEAK COMPACTNESS OF GRADIENT MAPS 

Josef Kolomý 

Let X be a real normed space Ec: X a subset of X • A map
ping F : E -*• X* is said to be a gradient map if there exists a 
functional f : .£-> R having the Gdteaux (or Frgchet) derivative 
f' on E such that F(u) = f'(u) for each ue E • Using the James 
C3] deep criteria of the compactness of the sets and the results 
from the theory of locally convex spaces, we establish some further 
results concerning the compactness and weak compactness of gradient 
maps. Recall that the compactness and continuity properties of gra
dient mappings were considered by Ando Cl] , Daniel T2J , KadecC43, 
De Lamadrid C 5J , Palmer C6J , RestrepoC7J , RotheC8J , Vajnberg 
L 9J and others. 

NOTATIONS AND DEFINITIONS 
Let X be a real normed linear spaces , X its dual, < , / 

the pairing between X* and X . We denote by <T(X,X* ), <T(X* ,X) 
the weak and weak topologies in X,.5T" ,respectively* Let P be a li-

SL n 

near subspace of X , which is total over X • We define the ( -topo
logy of X (or the weak topology in X induced by P ) as the to
pology with the fundamental system of neighborhoods of 0 consisting 
of all sets of the form 

VK t = i u e X : K u * , u > / < ^ for all ueK } , 
where K is a finite subset of P and £"> 0. This topology is a 
Hausdorff locally convex topology on X , which is weaker than the 
o~(X,X^ )-topology on X • A Banach space X is said to be : 

(i) smooth, if the norm of X is Gateaux differentiable on 
S1(0) = f u 6 X : ilu« = 1 ] ; 

(ii) a dual Banach space if there exists a Banach space Z such 
that X = Z* in the sense of topology and the norm. By the weak 
topology in X we always mean the (HZ ,Z)-topology of Z ,where 
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X = Z*. The closed (bounded) balls of X are s(Z*,Z)-compact. The 

examples of dual Banach spaces : 1,,1^ , L ^ , reflexive Banach spa

ces, the Orlicz space -^(G), where an N-function satisfies A^ -

condition. A set valued mapping J : X -*• -2X is called a (normali

zed) duality mapping, if for each u c X 

J(u) = { u * e X * : <u*,u> = lull 2, ||ul = II u II} . 

For each u e X , J(u) is non-empty convex weakly* compact subset 

of X . By f (u) we denote the Gateaux or Fr^chet derivative of 

f : X -*• R at u • From the context it will be always clear which 

kind of derivative is considered. Let G ex be a subset of X • We 

shall say that f : G -> R is uniformly Frgchet differentiable on G 

if f has the Fnichet derivative f' on G and Ihll""1.. f(u+h) -

- f(u) - f'(u)hH -* 0 uniformly with respect to u e G as I h/|-^0 

for all h e X such that -u + h € G . We shall say that a subset M 

of X contains a set E of X properly, if E^M and 

dist (^E, 2) M ) > 0 , where c>E denotes the boundary of E is 

X . 

Let E,M be subsets of X such that M is open and E is 

contained in M properly. Let f : M -> R be a functional having 

the Gateaux derivative f'(u) on E , P be a linear subspace of X* 

which is total over X • We shall say that a functional f has a 

property (P̂  ) on E it there exists a <r(X, f7*)-continuous 

functional g : M-> R which is uniformly Frdchet differentiable 

on bounded subsets of E such that the following condition is satis

fied: if (v^ )cE , (u^)crX are nets, v^ — > vo^^ i uto"~*' ° 

converges both in the <r(X,P )-topology, then there exists an in

dex fiQ such that l^f'tv^ ), u^>l= kg'tv^ ), \Jfr> I for 

/3 ̂  /3 . j# DaneS pointed out that the last condition is satisfied 

iff there exists a functional ,(P : E -> R such that \ ^(u) I = 1 

and f'(u) = /*(u) g'(u) for each u e E . Note that ^ need not be 

either <5*(X, P )-continuous, or uniformly Frgchet differentiable 

on E . A mapping F : E -.> X , where E<rX , is said to be com

pact (weakly compact) on E if for each bounded set BcrE the set 

F(B) is relatively compact (relatively weakly compact) in X • 

For a set Ec X we set F = f', where E •* u ~r f'(u)^ X and f' 

denotes the Gateaux (or Fr^chet) derivative of f on E . 

RESULTS 

m * 

THEOREM 1. Let X be a Banach space, f c X a closed separa

ble total subspace over X , E a convex balanced <r(X, P )-compact 
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subset of X , M an open subset of X which contains E properly, 

f : M —>• R a functional having the Geiteaux derivative f on E 

and satisfying the condition (R3 ) on E . Assume that F(E)c-ri 

and J(u)n P ./ 0 for each ueX • 

Then F is compact on E • Moreover, f is Lipschitzian on 

each closed convex subset of E . 

THEOREM 2. Let X be a separable reflexive Banach space, 

jl/Ec X a convex closed bounded subset of X , M an open sub

set of X which contains E properly, f : M —* R a functional 

having the Gateaux derivative f' on E . Suppose that there exists 

a sequentially weakly.continuous functional g : M —+ R such that 

either 

(i) M is convex, g is convex on M and has the Gateaux de

rivative g' on E ; or 

(ii) g is uniformly Fr^chet differentiable on E . If 

l|f'(u)f| * Og'(u)H for each u*E , then F is com

pact on E . 

THEOREM 3* Under the assumptions of Theorem 2 assume only that 

X is reflexive Banach space. 

Then F is weakly compact on E • 

PROPOSITION 1. Let X be a dual Banach space, M an open 

subset of X , E a closed bounded subset of X properly contained 

in M , f : M —y R a weakly*" continuous functional on M . 

Then the following statements are valid: 

(i) If f is uniformly Fr^chet differentiable on E , 

F : E -** Z , then F is continuous on E from the weak* 

topology of X to the strong topology of Z • Moreover, 

if Z is separable, then F is compact on E • 

(ii) Suppose M is convex, Z*" is separable, f is continu

ous and convex on X and has the Gateaux derivative f' 

on E . If F maps E into Z , then F is compact 

on E • 

THEOREM 4. Let X be a separable complete semireflexive Haus-

dorff locally convex space, M an open convex subset of X , E 

a closed convex bounded subset of X such that EcM and 

^M fl ̂ E = 0 • If, f : 1ft —y R is convex weakly continuous functio

nal having the Gfateaux derivative f' on E , then F is weakly 

compact on E . 

REMARK. Let X,Y be Hausdorff locally convex spaces, A:X-.> Y 

a linear mapping. Then the graph G(A) of A is closed in X x Y 

if and only if the closed linear subspace 
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r = ̂ u ^Y : x —>• < u* , Ax> is continuous on X J is total 

over Y ; i.e. p is weak*' dense in Y"* • Setting X = Y we ha

ve the examples of the closed total subspaces P over X • 
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