USA 13

Davide Carlo Demaria; Garbaccio Rosanna Bogin

On shape groups and Cech homology groups of a compact space

In: Zdeněk Frolík and Vladimír Souček and Jiří Vinárek (eds.): Proceedings of the 13th Winter School on Abstract Analysis, Section of Topology. Circolo Matematico di Palermo, Palermo, 1985. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 11. pp. [25]--36.

Persistent URL: http://dml.cz/dmlcz/701877

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

```
Davide Carlo Demaria - Rosanna Garbaccio Bogin
```

Given a pretopological space $S=(X, P)$, we associate to any interior covering X of S a symmetrical $p f$-space S_{X} on the set X (see [2], [3]). Precisely, to obtain the pretopology of S_{X}, we take for each point x of X the principal filter $\widehat{\operatorname{St}(x, X)}$.

Then we associate to S the inverse system $\hat{S}=\left(S_{X}, p_{X X}\right.$, $\left.\operatorname{Cov}(S)\right)$, where ${ }^{P_{X X}}{ }: S_{X}{ }^{\rightarrow}{ }^{S} X$ is the identity in X and $\operatorname{Cov}(S)$ is the collection of all interior coverings of S.

For each dimension n, we associate to \hat{S} an inverse system of prehomotopy groups $\Pi_{n}\left(S_{X}, a\right)$ and an inverse system of singular homology groups $H_{n}\left(S_{X}\right)$. Taking the inverse limits $\underset{\leftarrow}{\lim } \Pi_{n}\left(S_{X}, a\right)$ and $\underset{\sim}{\lim } H_{n}\left(S_{X}\right)$, we obtain the shape groups $\check{\Pi}_{n}(S$, a) and the Čech homology groups $\check{H}_{n}(S)$ of the pretopological space S.

In this way, if S is a topological space, instead to approximate it by means of polyhedra, we reduce the more the set of admissible functions into S, in such a way to obtain the set of continuous maps.

Here we prove that our shape groups and Čech homology groups of a connected compact topological space S are isomorphic to the classical ones. ${ }^{1}$)

In [2] we proved that, if the covering $X=\left\{X_{i}\right\}(i \in J)$ is finite, then S_{X} belongs to the same homotopy type of a finite symmetrical pf-space (i.e. an undirected graph) $G^{\prime}(X)$, that we obtain in the following way. The vertices $v_{i_{1}} \ldots i_{n}$ of $G^{\prime}(X)$ correspond to the maximal subsets $\left\{i_{1}, \ldots, i_{n}\right\}$ of J such that $\bigcap_{r=1}^{n} x_{i_{r}} \neq \emptyset$, and there is the edge $v_{i_{1}} \ldots i_{n} v_{j_{1}} \ldots j_{m}$ iff $\left\{i_{1}, \ldots, i_{n}\right\} \cap\left\{j_{1}, \ldots, j_{m}\right\} \neq \emptyset$.

Here ($\$ 2, \$ 3$) we consider a suitable collection $\operatorname{Cov}^{\prime}(S)$ of open coverings of S which is cofinal in $\operatorname{Cov}(S)$, and for any $X \in \operatorname{Cov}^{\prime}(S)$ we construct an open covering Z such that the nerve $N(X)$ of X is'isomorphic to the complex $K_{G^{\prime}}(Z)$ of the graph $G^{\prime}(Z)$. This is possible if the covering X is independent and non singular. In fact, if X is independent, we obtain Z such that the graph $G_{N(X)}$ of the edges of $N(X)$ is

This paper is in final form and no version of it will be submitted for publication elsewhere.
(${ }^{1}$) Any compact topological space is supposed to be Hausdorff. Moreover we consider only infinite spaces, since any finite connected compact space is a singleton.
isomorphic to $G^{\prime}(Z)$. Moreover, if X is also non singular, the complex $N(X)$ is complete and therefore isomorphic to the complex $K_{G_{N}(X)}$.

Afterwards, given $X=\left\{X_{i}\right\}(i \in I)$ and $X^{\prime}=\left\{X_{h}\right\}(h \in H)$ in $\operatorname{Cov}^{\prime}(S)$ such that $X \leq X^{\prime}$ and $Z \leq Z^{\prime}$ and a suitable function $\phi: H \rightarrow J$ such that $X_{h}^{\prime} \subseteq X_{\phi(h)}$ for each $h \in H$, we show that the following diagram over pretopological spaces:

where $\bar{\phi}$ and $\tilde{\phi}$ are precontinuous maps induced by ϕ, is such that $\bar{\phi} f^{\prime}=f \tilde{\phi}$ and $\Phi_{p}{ }^{\prime} \sim_{p p} Z_{Z Z}$.

Hence (§4) we obtain the following commutative diagrams:

where $h^{\prime *}, h *, h_{*}^{\prime}, h_{*}$ are isomorphisms.
Since also the collection Cov " (S) of the coverings Z is cofinal in $\operatorname{Cov}(S)$, we obtain:
$\underset{\longleftrightarrow}{\lim } \Pi_{n}\left(S_{Z}, a\right) \simeq \underset{\leftarrow}{\lim } \Pi_{n}\left(|\dot{N}(X)|, x_{1}\right) ;$
$\underset{\longleftarrow}{\lim } \mathrm{H}_{\mathrm{n}}\left(\mathrm{S}_{\mathrm{Z}}\right) \simeq \underset{\mathrm{I}}{\underline{1} \mathrm{im}} \mathrm{H}_{\mathrm{n}}(\mathrm{N}(\mathrm{X}))$.
Finally we give some examples.

1. On some finite open coverings of S.

Let $X=\left\{X_{1}, \ldots, X_{p}\right\}$ be a covering of a nonempty set S. For any positive integer $n \leq p$ and any n-tuple (i_{1}, \ldots, i_{n}) such that $1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq p$, we put:

$$
\begin{aligned}
& x_{i_{1}} \ldots i_{n}=x_{i_{1}} \cap \ldots \cap x_{i_{n}} \\
& x_{i_{1}} \ldots \hat{i}_{r} \ldots i_{n}=x_{i_{1}} \cap \ldots \cap x_{i_{r-1}} \cap x_{i_{r+1}} \cap \ldots \cap x_{i_{n}} .
\end{aligned}
$$

1.1 Definition The covering X is independent if:
$x_{i_{1}} \ldots i_{n} \neq \emptyset \Longrightarrow x_{i_{1}} \ldots i_{n} \nsubseteq U\left\{x_{j} / j \notin\left\{i_{1}, \ldots, i_{n}\right\}\right\}$ for any $n-t u p l e\left(i_{1}, \ldots, i_{n}\right)$ with $1 \leq n<p$.
1.2 Definition Let N be an integer such that $3 \leq n \leq p .\left\{x_{i_{1}}, \ldots, X_{i_{n}}\right\}$ is a singularity of X with degree n and indices i_{1}, \ldots, i_{n}, if the following conditions
hold:

```
\(x_{i_{1} \ldots i_{n}}=\varnothing\);
\(\mathrm{X}_{\mathrm{i} 1} \ldots \mathrm{i}_{\mathrm{r}} \ldots \mathrm{i}_{\mathrm{n}} \neq \emptyset\) for \(\mathrm{r}=1,2, \ldots, \mathrm{n}\).
```

Then X is non singular, if there are no singularities of X.
1.3 Proposition Let S be a connected compact topological space. Any open covering $X=\left\{X_{1}, \ldots, X_{p}\right\}$ of S has an independent open refinement $Y=\left\{Y_{1}, \ldots, Y_{p}\right\}$.
Proof: First we construct a finite set X of distinct points of S, taking a point $x_{i_{1}} \ldots i_{n}$ in each $X_{i_{1}} \ldots i_{n} \neq \emptyset$ for $n=1, \ldots, p$. (This is possible since any nonempty open subset of S is infinite). Then we put:

```
\(Y_{i}=X_{i}-X(\hat{i})\) where \(X(\hat{i})=\left\{x_{i_{1}} \ldots i_{n} \in X / i \notin\left\{i_{1}, \ldots, i_{n}\right\}\right\}\).
```

1.4 Remark. $x_{i_{1}} \ldots i_{n} \in Y_{j_{1}} \ldots j_{m}$ iff $\left\{j_{1}, \ldots, j_{m}\right\} \subseteq\left\{i_{1}, \ldots, i_{n}\right\}$; so y is minimal.
 point of Y_{i}, since Y_{i} is the only element of Y containing x_{i}.
1.5 Proposition Let S be a connected compact topological space. Any independent open covering $X=\left\{X_{1}, \ldots, X_{p}\right\}$ of S has an independent shrinking $Y=\left\{Y_{1}, \ldots, Y_{p}\right\}$ such

Proof: Construct a finite set X of distinct points of S , taking a point $\mathrm{x}_{\mathrm{i}_{1}} \ldots \mathrm{i}_{\mathrm{n}}$ in $x_{i_{1}} \ldots i_{n}-U\left\{x_{j} / j \notin\left\{i_{1}, \ldots, i_{n}\right\}\right\}$ whenever $x_{i_{1}} \ldots i_{n} \neq \emptyset$, for $n=1, \ldots, p$. Then consider the closed subset:
$Y(i)=X(i) \cup\left(S-\underset{j \neq i}{ } X_{j}\right) \quad$ where $X(i)=\left\{x_{i_{1}} \ldots i_{n} \in X / i \in\left\{i_{1}, \ldots, i_{n}\right\}\right\}$.
Finally take an open subset Y_{i} of S such that:
$\mathrm{Y}^{(\mathrm{i})} \subseteq \mathrm{Y}_{\mathrm{i}} \subseteq \overline{\mathrm{Y}_{\mathrm{i}}} \subseteq \mathrm{X}_{\mathrm{i}}$.
1.6 Remark. $\mathrm{x}_{\mathrm{i}}{ }_{1} \ldots \mathrm{i}_{\mathrm{n}} \notin \overline{\mathrm{Y}}_{\mathrm{j}}$ for $\mathrm{j} \notin\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{n}}\right\}$, since $\overline{\mathrm{Y}_{\mathrm{j}}} \subseteq \mathrm{X}_{\mathrm{j}}$.
1.7 Lemma Let S be a connected compact topological space and $X=\left\{X_{1}, \ldots, X_{p}\right\}$ an independent open covering of S. If $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is the singularity of X relative to $(1,2, \ldots, n)$, we can construct an independent open refinement $X^{\prime}=$ $=\left\{U^{\prime}, V^{\prime}, X_{2}, \ldots, X_{n}^{\prime}\right\}$ of X such that:
(i) $\quad U^{\prime} \subseteq X_{1}, \quad V^{\prime} \subseteq X_{1}, \quad X_{1}^{\prime} \subseteq X_{i}$ for $i=2, \ldots, p$;
(ii) $\left\{U^{\prime}, V^{\prime}, X_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\},\left\{U^{\prime}, X_{2}, \ldots, X_{n}^{\prime}\right\}$ and $\left\{V^{\prime}, X_{2}, \ldots, x_{n}^{\prime}\right\}$ are not singularities;
(iii) given m indices $i_{1}, i_{2}, \ldots, i_{m}$ such that $1<i_{1}<i_{2}<\ldots<i_{m} \leq p$ and $i_{r}>n$ for some r, we have:
a) $\left\{U^{\prime}, V^{\prime}, X_{1}^{1}, \ldots, X_{1_{m}}^{\prime}\right\}$ is not a singularity;
b) if $\left\{U^{\prime}, X_{i_{1}}^{\prime}, \ldots, X_{1_{m}}^{!}\right\}$or $\left\{V^{\prime}, X_{1_{1}}^{!}, \ldots, X_{1_{m}}^{!}\right\}$is a singularity of X^{\prime}, then $\left\{X_{1}, X_{i_{1}}, \ldots, X_{i_{m}}\right\}$ is a singularity of X.
Proof: Construct a shrinking $Y=\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{p}}\right\}$ of X with the process from Proposition 1.5, and put:

$$
\begin{aligned}
& Y_{\hat{1}}=Y_{1} \cap \ldots \cap Y_{i-1} \cap Y_{i+1} \cap \ldots \cap Y_{n} \quad \text { for } i=2,3, \ldots, n ; \\
& U=Y_{1} \cap\left(S-U_{i>2} Y_{\hat{1}}\right) ; \\
& V=Y_{1} \cap\left(S-\overline{Y_{2}}\right) ; \\
& y^{\prime}=\left\{U, V, Y_{2}, \ldots, Y_{p}\right\} .
\end{aligned}
$$

Clearly Y^{\prime} is an open covering of S and $\left\{U, V, Y_{2}, \ldots, Y_{n}\right\},\left\{U, Y_{2}, \ldots, Y_{n}\right\}$, $\left\{\mathrm{V}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ are not singularities of V^{\prime}.

Now consider m indices $i_{1}, i_{2}, \ldots, i_{m}$ such that $1<i_{1}<i_{2}<\ldots<i_{m} \leq p$ and $i_{r}>n$ for some r, and distinguish two cases.
I) If $Y_{1} \cap Y_{i_{1}} \ldots i_{m}=\emptyset$, then $\left\{U, V, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ is not a singularity of y^{\prime}. Moreover, if $\left\{U, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ or $\left\{V, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ is a singularity of y^{\prime}, then $\left\{Y_{1}, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ is a singularity of Y, and hence $\left\{X_{1}, X_{i_{1}}, \ldots, X_{i_{m}}\right\}$ is a singularity of X.
II) If $Y_{1} \cap Y_{i}{ }_{j} \ldots i_{m} \neq \emptyset$, put $I=\{2,3, \ldots, n\}$ and distinguish three possibilities.

1) $I-\left\{i_{1}, \ldots, i_{m}\right\}=\{2\}$.

Since $Y_{1} \cap Y_{i_{1}} \ldots i_{m} \subseteq Y_{\hat{2}} \subseteq U \subseteq Y_{1}$, we obtain $Y_{1} \cap Y_{i_{1}} \ldots i_{m}=U \cap Y_{i_{1}} \ldots i_{m} \neq \varnothing$; therefore $\left\{U, Y_{i}, \ldots, Y_{i_{m}}\right\}$ is not a singularity of Y^{\prime}.
Moreover $V \cap Y_{i_{1}} \ldots i_{m} \subseteq Y_{\hat{2}} \subseteq S-V$, hence both $\left\{\dot{V}, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ and $\left\{U, V, Y_{i_{1}}, \ldots, Y_{i_{n}}\right\}$ are not singularities of y^{\prime}.
2) $I-\left\{i_{1}, \ldots, i_{m}\right\}=\{j\}$ with $j>2$.

Both $\left\{U, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ and $\left\{U, V, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ are not singularities of y^{\prime}, since $U \cap Y_{i_{1}} \ldots i_{m} \subseteq Y_{\hat{j}} \subseteq S-U$.
Moreover $\left\{V, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ is not a singularity of y^{\prime}, because $V \cap Y_{i_{1}} \ldots i_{m}=$ $=Y_{1} \cap Y_{i_{1}} \ldots i_{m} \neq \varnothing$.
3) $I-\left\{i_{1}, \ldots, i_{m}\right\} \geq\{h, k\}$ with $h<k$.

The point $z=x_{1 i_{1}} \ldots i_{m}$, we fixed to construct the shrinking y of λ, is such that $z \notin \overline{Y_{h}} \cup \overline{Y_{k}}$. So $z \notin \overline{\mathrm{Y}}_{\hat{i}}$ for $i=2,3, \ldots, n$; hence $z \in U \cap V \cap Y_{i_{1}} \ldots i_{m}$. Therefore $\left\{U, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\},\left\{V, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\},\left\{U, V, Y_{i_{1}}, \ldots, Y_{i_{m}}\right\}$ are not singularities of y^{\prime}.

Finally, construct an independent open refinement $X^{\prime}=\left\{U^{\prime}, V^{\prime}, X_{2}^{\prime}, \ldots, X_{p}^{\prime}\right\}$ of y^{\prime} applying Proposition 1.3.
1.8 Remark. To construct X^{\prime} we replace the element X_{1} of X with two subsets U^{\prime} and V^{\prime} of X_{1}, that we can associate again to the index 1 . Instead each element of X with index greater than 1 is replaced with one subset with the same index. From each singularity of X containing X_{1} and different from $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ we obtain at least one singularity of X^{\prime} with the same indices, where X_{1} is replaced by one of the sets U^{\prime}, V^{\prime}. So, if X has q singularities of index 1 , then X^{\prime} has at least $q-1$ and at most $2(q-1)$ singularities containing either U^{\prime} or V^{\prime}, that we call again of index 1. Instead each singularity of X non containing X_{1} determines a singularity of X^{\prime} with the same indices.
1.9 Proposition Let S be a connected compact topological space and $X=\left\{X_{1}, \ldots, X_{p}\right\}$ an independent open covering with q singularities containing X_{1}. We can construct an independent open refinement $\tilde{X}=\left\{\tilde{U}_{1}, 1, \ldots, \tilde{U}_{1, h}, \tilde{x}_{2}, \ldots, \tilde{X}_{p}\right\}$ of X which has no singularities containing some $\tilde{U}_{1, r}$.
Proof: Let $\mathrm{s}_{1}=\left\{\mathrm{x}_{1}, \mathrm{x}_{\mathrm{i}_{2}, 1}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{m} 1}, 1}\right\}, \mathrm{s}_{2}=\left\{\mathrm{x}_{1}, \mathrm{x}_{\mathrm{i}_{2}, 2}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{m}}}, 2\right\}, \ldots$, $s_{q}=\left\{X_{1}, x_{i_{2}, q}, \ldots, X_{i_{m}}, q\right\}$ be the singularities of X with index 1. Applying

Lemma 1.7, we eliminate s_{1} and we obtain an independent open covering $X^{(1)}=$ $=\left\{U_{1}^{(1)}, U_{2}^{(1)}, X_{2}^{(1)}, \ldots, X_{p}^{(1)}\right\}$, which has at most $2(q-1)$ singularities of index 1 , i.e. containing one of the subsets $U_{1}^{(1)}, U_{2}^{(1)}$ and generated from s_{2}, \ldots, s_{q}.

For the singularities generated from s_{2} we have two possibilities:
(i) only one of the collections $\left\{U_{1}^{(1)}, x_{i_{2}, 2}^{(1)}, \ldots, x_{i_{m}, 2}^{(1)}\right\}$ and
$\left\{U_{2}^{(1)}, x_{i_{2}, 2}^{(1)}, \ldots, X_{i_{m}}^{(1)}, 2\right\}$ is a singularity of $X^{(1)}$;
(ii) both of them are singularities of $X^{(1)}$.

Applying Lemma 1.7 once in case (i) and twice in case (ii), we obtain an independent open covering $X^{(2)}$ of form:

$$
\begin{array}{ll}
\left\{\mathrm{U}_{1}^{(2)}, \mathrm{U}_{2}^{(2)}, \mathrm{U}_{3}^{(2)}, \mathrm{x}_{2}^{(2)}, \ldots, \mathrm{X}_{\mathrm{p}}^{(2)}\right\} & \text { in case (i); } \\
\left\{\mathrm{U}_{1}^{(2)}, \mathrm{U}_{2}^{(2)}, \mathrm{U}_{3}^{(2)}, \mathrm{U}_{4}^{(2)}, \mathrm{x}_{2}^{(2)}, \ldots, \mathrm{X}_{\mathrm{p}}^{(2)}\right\} \text { in case (ii). }
\end{array}
$$

The covering $X(2)$ has at most $4(q-2)$ singularities with index 1 , i.e. containing one of the sets $\mathrm{U}_{\mathrm{r}}^{(2)}$ and generated from $\mathrm{s}_{3}, \ldots, \mathrm{~s}_{\mathrm{q}}$. The other singularities of $X^{(2)}$ have the same indices of those of X.

Afterwards we eliminate successively the singularities generated from s_{3}, from s_{4}, \ldots, from s_{q} applying an analogous process. So we obtain the independent open covering \tilde{X} we were looking for.
1.10 Theorem Let S be a connected compact topological space. Any finite open covering has a finite open refinement which is independent and non singular. Proof: Given an open covering $A=\left\{A_{1}, \ldots, A_{p}\right\}$ of S, we take an independent open refinement $X=\left\{x_{1}, \ldots, x_{p}\right\}$ of A.
We denote by $S_{1}, S_{2}, \ldots, S_{p-2}$ the sets of the singularities of X whose lowest index is $1,2, \ldots, p-2$ respectively.
If $\mathrm{S}_{1} \neq \emptyset$, applying Proposition 1.9 , we obtain a refinement $\tilde{X}^{(1)}=$ $=\left\{\tilde{U}_{1,1}^{(1)}, \ldots, \tilde{\mathrm{U}}_{1}^{(1)}, \mathrm{h}_{1}, \tilde{\mathrm{x}}_{2}^{(1)}, \ldots, \tilde{\mathrm{X}}_{\mathrm{p}}^{(1)}\right\}$ of X whose singularities are generated from s_{2}, \ldots, s_{p-2}. Instead, if $S_{1}=\varnothing$, we take $\tilde{X}^{(1)}=X$.
Then, similarly, we construct a refinement
$\tilde{X}^{(2)}=\left\{\tilde{U}_{1,1}^{(2)}, \ldots, \tilde{U}_{1, h_{1}}^{(2)}, \tilde{U}_{2,1}^{(2)}, \ldots, \tilde{U}_{2, h_{2}}^{(2)}, \tilde{x}_{3}^{(2)}, \ldots, \tilde{\mathrm{x}}_{\mathrm{p}}^{(2)}\right\}$
of $\tilde{X}^{(1)}$ whose singularities are generated from $\mathrm{S}_{3}, \ldots, \mathrm{~s}_{\mathrm{p}-2}$.
In this way; after p-2 steps, we obtain an open refinement of X which is non singular and independent.
2. Isomorphism between the pretopological spaces $G_{N}(X)$ and $G^{\prime}(Z)$.

Let S be a connected compact space and $X=\left\{X_{1}, \ldots, X_{p}\right\}$ an independent open covering of S, such that $X_{i} \neq \emptyset$ for $i=1,2, \ldots, p$. Then 1et $Y=\left\{Y_{1}, \ldots, Y_{p}\right\}$ be an independent shrinking of X (see Proposition 1.5).
For each positive integer $n \leq p$ and any n-tuple (i_{1}, \ldots, i_{n}) of indices of X such that $i_{1}<i_{2}<\ldots<i_{n}$ and $X_{i_{1}} \ldots i_{n} \neq \varnothing$, we put:

$$
\begin{aligned}
\left.A_{(} i_{1} \ldots i_{n}\right) & =x_{i_{1}} \ldots i_{n}-U\left\{\overline{Y_{j}} / j \notin\left\{i_{1}, \ldots, i_{n}\right\}\right\} ; \\
B\left[i_{1} \ldots i_{n}\right] & \left.=U\left\{A_{\left(j_{1}\right.} \ldots j_{m}\right) /\left\{j_{1}, \ldots, j_{m}\right\} \subseteq\left\{i_{1}, \ldots, i_{n}\right\}\right\} .
\end{aligned}
$$

2.2 Lemma Under the assumption $B[\phi]=\varnothing$, we have $B\left[i_{1} \ldots i_{n}\right]^{n B}\left[j 1 \ldots j_{m}\right]^{=B}\left[h_{1} \ldots h_{s}\right]$, where $\left\{h_{1}, \ldots, h_{s}\right\}=\left\{i_{1}, \ldots, i_{n}\right\} \cap\left\{j_{1}, \ldots, j_{m}\right\}$. 2.3 Definition We denote by A_{X} the collection of all subsets of S of form ${ }^{A}\left(i_{1} \ldots i_{n}\right)$ and by $B X$ the collection of the ${ }^{B}\left[i_{1} \ldots i_{n}\right]$ with maximal sets of indices.
2.4 Lemma Any $A_{(i} \mu_{1} \ldots i_{n} \in A_{X}$ is nonempty. Moreover A_{X} is an open covering of S and refines X.
2.5 Lemma B_{X} is an open covering of S.
2.6 Lemma Let $X_{j} \in X$ and $B_{\left[i_{1} \ldots i_{n}\right]} \in B_{X}$. We have $X_{j} \cap B\left[i_{1} \ldots i_{n}\right] \neq \emptyset$ if and only if $j \in\left\{i_{1}, \ldots, i_{n}\right\}$. Moreover, if $j \in\left\{i_{1}, \ldots, i_{n}\right\}$, then $X_{j} \subseteq \operatorname{St}\left(B\left[i_{1} \ldots i_{n}\right], B_{X}\right)$ and ${ }^{B}\left[i_{1} \ldots i_{n}\right] \subseteq S t\left(X_{j}, X\right)$.
2.7 Definition For each $i \in\{1,2, \ldots, p\}$, let $Z_{i}=Y_{i}-\underset{j \neq i}{Y_{j}}$. We put $Z=$ $=B_{X} V\left\{z_{1}, \ldots, z_{p}\right\}$.
2.8 Lemma $z_{i} \neq \emptyset$ for each $i \in\{1,2, \ldots, p\}$. Moreover $z_{i} \cap z_{j}=\emptyset$ whenever $i \neq j$.

Now let us consider the $p f$-space S_{Z} and the graph $G^{\prime}(Z)$ that we obtain from Z (see [2], §6).
2.9 Theorem Given an open covering $X=\left\{X_{1}, \ldots, X_{p}\right\}$ of S, let Z be the open covering of S associated to X with the foregoing process. Then the graph $G_{N}(X)$ of the edges of the nerve $N(X)$ of X is isomorphic to the graph $G^{\prime}(Z)$.
Proof: Each vertex of $G^{\prime}(Z)$ corresponds to a maximal collection of elements of Z with a nonempty intersection. Since in each of such collections we find exactly one element $Z_{i} \in Z$, the set of the vertices of $G^{\prime}(Z)$ is bijective to the collection $\left\{z_{\dot{i}}\right\}(i=1,2, \ldots, p)$, and we denote by $w_{\dot{i}}$ the vertex corresponding to z_{i}.
Clearly $\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ is bijective to the set $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ of the vertices of $N(X)$. Moreover, given two distinct indices i, j, in $G^{\prime}(Z)$ there is the edge $w_{i} w_{j}$ iff there is some $B^{B}\left[i_{1} \ldots i_{n}\right] \in Z$ such that $\{i, j\} \subseteq\left\{i_{1}, \ldots, i_{n}\right\}$, and hence iff $\mathrm{X}_{\mathrm{i}} \cap \mathrm{X}_{\mathrm{j}} \neq \varnothing$.
2.10 Corollary Under the same assumptions, if the covering X is non singular, then the nerve $N(X)$ of X is isomorphic to the complex $K_{G}{ }^{\prime}(Z)$ of the graph $G^{\prime}(Z)$. Proof: Since X is non singular, $N(X)$ is a complete complex (see [1], §3).
3. Isomorphism between the inverse systems $\left(S X^{\prime}-\left|p_{X} X^{\prime}\right|, \operatorname{Cov}(S)\right)$ and ($\left.G_{N}(X),\left|\Phi_{X X}\right|, \operatorname{Cov}(S)\right)$.
Let $R=\left\{A_{i}\right\}(i \in J)$ and $R^{\prime}=\left\{A_{h}^{\prime}\right\}(h \in H)$ be finite open coverings such that $R \leq R^{\prime}$, and let $\phi: H \rightarrow J$ be a function such that $A_{h}^{\prime} \subseteq A_{\phi(h)}$ for any $h \in H$.
3.1 Definition We denote by $\bar{\phi}$ the function from $G_{N}\left(R^{\prime}\right)$ to $G_{N}(R)$ given by $\phi\left(A_{h}^{\prime}\right)=A_{\phi}(h)$ for any $h \in H$.
3.2 Lemma $\phi: G_{N}\left(R^{\prime}\right) \rightarrow G_{N}(R)$ is a precontinuous map. Moreover, if $\phi^{\prime}: H \rightarrow J$ is another function such that $A_{h}^{\prime} \subseteq A_{\phi^{\prime}}(h)$ for any $h \in H$, then ϕ^{\top} and $\bar{\phi}$ are homotopic.
Proof: Clearly Φ is precontinuous, and the function $H: G_{N}\left(R^{\prime}\right) \times I \rightarrow G_{N}(R)$ given by:

$$
H\left(A_{h}^{\prime}, t\right)= \begin{cases}A_{\phi(h)} & \text { if } t \in[0,1 / 2] \\ A_{\phi^{\prime}}(h) & \text { if } t \in[1 / 2,1]\end{cases}
$$

is a prehomotopy of $\bar{\phi}$ to $\overline{\phi^{\top}}$.
3.3 Definition A function $\bar{\phi}: G^{\prime}\left(R^{\prime}\right) \rightarrow G^{\prime}(R)$ is called induced by $\phi: H \rightarrow J$, if, for any vertex $v_{h_{1}}^{\prime} \ldots h_{n}$ of $G^{\prime}\left(R^{\prime}\right)$, we have $\overparen{\phi}\left(v_{h_{1}}^{\prime} \ldots h_{n}\right)=v_{i_{1}} \ldots i_{m}$ with $\left\{i_{1}, \ldots, i_{m}\right\} \supseteq$ $2 \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right)$.
3.4 Lemma Under the foregoing assumptions, we have:
(i) any function $\tilde{\phi}: G^{\prime}\left(R^{\prime}\right) \rightarrow G^{\prime}(R)$ induced by ϕ is precontinuous;
(ii) any two functions $\widetilde{\phi}$ and $耳^{\prime}$ from $G^{\prime}\left(R^{\prime}\right)$ to $G^{\prime}(R)$ induced by ϕ are homotopic;
(iii) if $\psi: H \rightarrow J$ is another function such that $A_{h}^{\prime} \subseteq A_{\psi}(h)$ for any $h \in H$, and if $\widetilde{\psi}: G^{\prime}\left(R^{\prime}\right) \rightarrow G^{\prime}(R)$ is a function induced by ψ, then $\widetilde{\psi}$ and $\bar{\phi}$ are homotopic.
Proof: Since the pretopological spaces S_{R} and $G^{\prime}(R)$ belong to the same homotopy type, we find two precontinuous maps $p: S_{R} \rightarrow G^{\prime}(R)$ and $q: G^{\prime}(R) \rightarrow S_{R}$ such that $q p^{\sim} 1_{S_{R}}$ and $\mathrm{pq}^{\sim}{ }_{\mathrm{G}}{ }^{\prime}(R)$ in the following way (see [2], §6).
For any vertex $v_{i_{1}} \ldots i_{n}$ of $G^{\prime}(R)$, we put $q\left(v_{i_{1}} \ldots i_{n}\right)=x_{i_{1}} \ldots i_{n}$ where $x_{i_{1}} \ldots i_{n}$ belongs to $A_{i_{1}} \ldots i_{n}-U\left\{A_{j} / j \in J-\left\{i_{1}, \ldots, i_{n}\right\}\right\}$.
To define $p: S_{R} \rightarrow G^{\prime}(R)$, we consider the graph $G(R)\left({ }^{2}\right)$, and we put $p=\alpha \pi$ where $\pi: S_{R} \rightarrow G^{U}(R)$ is the canonical projection and $\alpha: G^{U}(R) \rightarrow G^{\prime}(R)$ is a function such that $\alpha\left(v_{i_{1}} \ldots i_{n}\right)$ is a vertex $v_{i_{1}} \ldots i_{m}$ of $G^{\prime}(R)$ with $\left\{i_{1}, \ldots, i_{m}\right\} \supseteq\left\{i_{1}, \ldots, i_{n}\right\}$. Similarly we obtain $p^{\prime}: S_{R^{\prime}} \rightarrow G^{\prime}\left(R^{\prime}\right)$ and $q^{\prime}: G^{\prime}\left(R^{\prime}\right) \rightarrow S_{R}$.
Now we construct a finite open covering $\tilde{R}=\left\{\tilde{A}_{i}\right\}(i \in J)$ of S such that $R \leq \tilde{R} \leq R^{\prime}$, putting:
$\tilde{A}_{i}=A_{i}-\left\{x_{h_{1}} \ldots h_{n}=q^{\prime}\left(v_{h_{1}}^{\prime} \ldots h_{n}\right) / i \notin \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right)\right\}$,
where $v_{h_{1}}^{\prime} \ldots h_{n}$ denotes a vertex of $G^{\prime}\left(R^{\prime}\right)$.
Clearly $x_{h_{1}} \ldots h_{n} \in \tilde{A}_{i}$ iff $i \epsilon \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right)$; moreover the point $x_{i_{1}} \ldots i_{m} \in \tilde{A}_{i}$ iff $i \in\left\{i_{1}, \ldots, i_{m}\right\}$.
Afterwards we define $\tilde{p}: S_{\tilde{R}} \rightarrow G^{\prime}(\tilde{R})$ and $\tilde{q}: G^{\prime}(\tilde{R}) \rightarrow S_{\tilde{R}}$ like p and q respectively, and we consider the precontinuous maps $p_{\tilde{R} R^{\prime}}: S_{R^{\prime}} \rightarrow S_{\tilde{R}}$ and $P_{R} \tilde{R}: S_{\tilde{R}} \rightarrow S_{R}$ given by the the identity in S .
Now we define a precontinuous map $\tilde{\phi}: G^{\prime}\left(R^{\prime}\right) \rightarrow G^{\prime}(R)$ in the following way:

(${ }^{2}$) The vertices of $G_{(R)}{ }_{(R)}$ are the classes of the equivalence relation σ in S, given by x \quad iff $I_{x}=I_{y}$, where $I_{x}=\left\{i \in J / x \in A_{i}\right\}$ and J is the set of the indices of R. We will write $v_{i_{1}} \ldots i_{n}$ to denote the equivalence class $[x]$ such that $I_{x}=\left\{i_{1}, \ldots, i_{n}\right\}$. We recall that in $G_{(R)}{ }_{(R)}$ there is the edge $v_{i_{1}} \ldots i_{n} v_{j_{1}} \ldots j_{m}$ if and only if $\left\{i_{1}, \ldots, i_{n}\right\} \cap\left\{j_{1}, \ldots, j_{m}\right\} \neq \varnothing$.

We easily see that $\varnothing\left(v_{h_{1}}^{\prime} \ldots h_{n}\right)=v_{i_{1}} \ldots i_{m}$ with $\left\{i_{1}, \ldots, i_{m}\right\} \supseteq \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right)$, i.e. $\widetilde{\phi}$ is induced by ϕ.
Then Φ is unique up to homotopies, since $\Phi \sim_{p p_{R}} \prime^{\prime}{ }^{\prime}$, where $p_{R R^{\prime}}: S_{R^{\prime}} \rightarrow S_{R}$ is the identity in S.
Finally, also $\widetilde{\psi}$ is homotopic to $\mathrm{pp}_{R R} \mathrm{q}^{\prime}$; and hence $\widetilde{\psi}$ and Φ are homotopic.
3.5 Remark. For any precontinuous map $\phi: G^{\prime}\left(R^{\prime}\right) \rightarrow G^{\prime}(R)$ induced by $\phi: H \rightarrow J$, we obtain the following homotopy commutative diagram:

3.6 Definition Let $\operatorname{Cov}^{\prime}(S)$ denote the collection of the finite independent non singular coverings of S, whose elements are nonempty open sets.
3.7 Proposition $\operatorname{Cov}^{\prime}(\mathrm{S})$ is cofinal in $\operatorname{Cov}(\mathrm{S})$.

Proof: Observe that any $A \in \operatorname{Cov}(S)$ has a refinement R which is a finite open covering of S; then recall Theorem 1.10.
3.8 Definition Let Cov" (S) denote the collection of all finite open coverings Z associated to some $X \in \operatorname{Cov}{ }^{\prime}(S)$ (see §2).
3.9 Proposition Cov " (S) is cofinal in $\operatorname{Cov}(S)$.

Proof: Given $R \in \operatorname{Cov}(S)$; take a finite open star-refinement R^{\prime} of R and $X^{\prime} \in \operatorname{Cov}^{\prime}(S)$ such that $R^{\prime} \leq X^{\prime}$. It is easy to see that any covering Z^{\prime} associated to X^{\prime} refines R.
3.10 Proposition Let $X=\left\{X_{i}\right\}(i \in J) \in \operatorname{Cov}^{\prime}(S)$ and let $Z \in \operatorname{Cov}^{\prime \prime}(S)$ be associated to X. If we take $X^{\prime}=\left\{X_{h}^{\prime}\right\}(h \in H)$ in $\operatorname{Cov}^{\prime}(S)$ such that X^{\prime} star-refines $A X$, then any covering Z^{\prime} associated to X^{\prime} refines Z. Moreover, if Λ is the set of the indices of A_{X} and $X: H \rightarrow \Lambda$ is any function such that $S t\left(X_{h}^{\prime}, X^{\prime}\right) \subseteq A_{X(h)}$ for each $h \in H$, then, taking $\phi(h) \in$ $\epsilon \chi(h)$, we can define a function $\phi: H \rightarrow J$ such that:
(I) $X_{h}^{\prime} \subseteq X_{\phi(h)}$ for any $h \in H$;
(II) for any $B^{\prime}\left[h_{1} \ldots h_{n}\right]^{\in Z^{\prime}}$ there is $B\left[i_{1} \ldots i_{m}\right] \in Z$ such that $B^{\prime}\left[h_{1} \ldots h_{n}\right] \subseteq$ $\subseteq B\left[i_{1} \ldots i_{m}\right]$ and $\left\{i_{1}, \ldots, i_{m}\right\} \supseteq \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right)$;
(III) the function $\Phi_{Z Z^{\prime}}: G^{\prime}\left(Z^{\prime}\right) \rightarrow G^{\prime}(Z)$, that we obtain putting $\Phi_{Z Z^{\prime}}\left(w_{h}^{\prime}\right)=w_{\phi(h)}$ for any $h \in H$, is induced by ϕ.
Proof: Ad (I). Observe that $X_{h}^{\prime} \subseteq A_{X(h)} \subseteq X_{i}$ for any $i \in X(h)$.
Ad (II). $B_{\left[h_{1} \ldots h_{n}\right]}^{\prime} \subseteq \operatorname{St}\left(X_{h_{r}}^{\prime}, X^{\prime}\right) \subseteq A_{X}\left(h_{r}\right) \subseteq \cap\left\{X_{j} / j \in X\left(h_{r}\right)\right\}$ for $r=1,2, \ldots, n$. Therefore ${ }^{B}\left[h_{1}^{\prime} \ldots h_{n}\right] \subseteq \cap\left\{x_{j} / j \in \bigcup_{r=1}^{n} \chi\left(h_{r}\right)\right\}$. Hence $\left.B_{[i} \underline{U}_{1}^{n} \chi\left(h_{r}\right)\right]$ is nonempty; so there is $B\left[i_{1} \ldots i_{m}\right] \in Z$ such that $\left\{i_{1}, \ldots, i_{m}\right\} \supseteq{ }_{r=1}^{n} \chi\left(h_{r}\right) \supseteq \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right)$ and ${ }^{B}\left[i_{1} \ldots i_{m}\right] \supseteq A_{X}\left(h_{r}\right) \supseteq B^{\prime}\left[h_{1} \ldots h_{n}\right]$.
Ad (III). Let w_{h}^{\prime} be a vertex of $G^{\prime}\left(Z^{\prime}\right)$. w_{h}^{\prime} corresponds to the nonempty intersection of Z_{h}^{\prime} and of all $B\left[h_{1} \ldots h_{n}\right] \in Z^{\prime}$ such that $h \in\left\{h_{1}, \ldots, h_{n}\right\}$. By. (II), for
each of 'such $B^{\prime}\left[h_{1} \ldots h_{n}\right]$ there is ${ }^{B}\left[i_{1} \ldots i_{m}\right]$ guch that $\left\{i_{1}, \ldots, i_{m}\right\} \supseteq \phi\left(\left\{h_{1}, \ldots, h_{n}\right\}\right) \rightarrow$ $\ni \phi(h)$ and ${ }^{B}\left[h_{1} \ldots h_{n}\right] \subseteq{ }^{B}\left[i_{1} \ldots i_{m}\right]$. Moreover each of such $\left.B_{\left[h_{1}\right.}^{\prime} \ldots h_{n}\right]$ contains Z_{h}^{\prime}. Hence the vertex $w_{k}=耳_{Z Z} \prime\left(w_{h}^{\prime}\right)$ of $G^{\prime}(Z)$ must correspond to a maximal nonempty intersection of a collection of elements of Z containing all the ${ }^{B}\left[i_{1} \ldots i_{m}\right]$ we just mentioned. For example w_{k} may correspond to the collection containing $Z_{\phi(h)}$

3.11 Remark. Similarly, let $X \in \operatorname{Cov}{ }^{\prime}(S)$ and let $Z \in \operatorname{Cov}^{\prime \prime}(S)$ be associated to X. If we take $Z^{\prime} \in \operatorname{Cov} "(S)$ such that Z^{\prime} star-refines A_{X}, then any $X^{\prime} \in \operatorname{Cov}^{\prime}(S)$, to which we can associate Z^{\prime}, is a refinement of X. Moreover we obtain the statements analogous to the ones from Proposition 3.10.
3.12 Proposition Under the foregoing assumptions, we obtain the following homotopy commutative diagram:

where p , p^{\prime} are the precontinuous maps from Lemma 3.4, and f , f^{\prime} are the isomorphisms from Theorem 2.9.
Proof: PPZZ' $\sim \Phi_{Z Z^{\prime}} \mathrm{P}^{\prime}$ by Remark 3.5, and $\Phi_{Z Z^{\prime}} \mathrm{f}^{\prime}=\mathrm{f}_{Z Z} \prime$.
3.13 Theorem The inverse systems ($\left.S_{X},\left[P_{X X}{ }^{\prime}\right], \operatorname{Cov}(S)\right)$ and $\left(G_{N}(X),\left[{ }_{X} X^{\prime}\right], \operatorname{Cov}(S)\right)$, where [${ }^{X} X X 1$] and [${ }^{\Phi} X X$ '] are the homotopy classes represented by ${ }^{\mathrm{p}_{X X}}$, and $\bar{\Phi}_{X X}$ ' respectively, are isomorphic.
Proof: First we define a function $\Phi: \operatorname{Cov}^{\prime}(\mathrm{S}) \rightarrow \operatorname{Cov}^{\prime \prime}(\mathrm{S})$, taking for each $\mathrm{X} \in \operatorname{Cov}^{\prime}(\mathrm{S})$ an element $Z=\Phi(X)$ of $\operatorname{Cov"(S)~which~is~associated~to~} X$ (see $\$ 2$).
Then, for each $X \in \operatorname{Cov}{ }^{\prime}(S)$, we consider the precontinuous map $h_{X}: S_{X} \rightarrow G_{N(X)}$ given by:

where p and f are the precontinuous maps before mentioned.
Given $X \leq X^{\prime}$ in $\operatorname{Cov}^{\prime}(S)$, take $X^{\prime \prime} \in \operatorname{Cov}^{\prime}(S)$ such that $X^{\prime \prime}$ star-refines both A_{X} and A_{X}.
Under this assumption, the following diagram is homotopy commutative:

Hence $\left(h_{X}, \Phi\right)$ is a morphism from $\left(S_{Z},\left[{ }_{Z Z}{ }^{\prime}\right], \operatorname{Cov}^{\prime \prime}(S)\right)$ to $\left(G_{N}(X),\left[\bar{\phi}_{X X}\right]\right.$, $\left.\operatorname{Cov}^{\prime}(S)\right)$. With a similar process we define a morphism (k_{Z}, Ψ) from ($G_{N}(X)$, [$\left.\bar{\phi}_{X X}{ }^{\prime}\right]$, $\operatorname{Cov}{ }^{\prime}(S)$) to $\left(S_{Z},\left[{ }^{2} Z Z^{\prime}\right], \operatorname{Cov}^{\prime \prime}(S)\right)$. Precisely we define $\Psi: \operatorname{Cov}^{\prime \prime}(S) \rightarrow \operatorname{Cov}^{\prime}(S)$, taking for each
$Z \in \operatorname{Cov} "(S)$ an element $X=\Psi(Z)$ of $\operatorname{Cov}^{\prime}(S)$ such that Z is associated to X. Then we consider the precontinuous map $k_{Z}: G_{N}(X) \rightarrow S_{Z}$ given by $k_{Z}=q^{-1}$, where $f: G^{\prime}(Z) \rightarrow G_{N}(X)$ and $q: G^{\prime}(Z) \rightarrow S_{Z}$ are the before mentioned functions.
Afterwards, each of the morphisms (h_{X}, Φ) and (k_{Z}, Ψ) is the inverse of the other. Finally recall Propositions 3.7 and 3.9.
4. Shape groups and Čech homology groups of a connected compact topological space S. To calculate the shape groups $\Pi_{n}(S, a)$ based at a point $a \in S$, we have to fix, for each covering X, an open set $X \in X$ such that $a \in X$.
Therefore we have to consider some pointed open coverings of the pointed space (S, a), such that there exists exactly one element of each covering X containing a. We denote such an element by X_{1}, and we choose the characteristical point x_{1} of X_{1} taking $x_{1}=a$. So a is a point of the element $A_{(1)} \in A_{X}$, and a belongs to the open set $Z_{1} \in Z$ and to each $B\left[1 i_{2} \ldots i_{m}\right] \in B X$. Then, "mutatis mutandis", we obtain that the inverse systems $\left(\left(S_{X}, a\right),\left[{ }^{X} X^{\prime}\right], \operatorname{Cov}(S)\right)$ and $\left(\left(G_{N(X)}, X_{1}\right),\left[\bar{\phi}_{X X}\right], \operatorname{Cov}(S)\right)$ are isomorphic. So, for each dimension n the inverse systems $\left(\Pi_{n}\left(S_{X}, a\right), p_{X X}^{*}, \operatorname{Cov}(S)\right)$ and $\left(Q_{n}\left(G_{N}(X), X_{1}\right), \bar{\phi}_{X X}^{*}, \operatorname{Cov}(S)\right)$ are isomorphic.
Afterwards, if $X, X^{\prime} \in \operatorname{Cov}(S)$ and $X \leq X^{\prime}$, since X and X^{\prime} are non singular and the complexes $N(X)$ and $N\left(X^{\prime}\right)$ are complete, the following diagram commutes:

where μ and μ^{\prime} are the isomorphisms given by the canonical projections from the polyhedron $|N(X)|$ to the graph $G_{N(X)}$ of the edges of $N(X)$ and from $\left|N\left(X^{\prime}\right)\right|$ to $\mathrm{G}_{\mathrm{N}\left(X^{\prime}\right)}$ respectively (see [1], §3).
Hence the inverse systems $\left(\Pi_{n}\left(S_{X}, a\right), p_{X X}^{*}, \operatorname{Cov}(S)\right)$ and $\left(\Pi_{n}\left(|N(X)|, X_{1}\right),\left.\Phi_{X X}\right|^{*}, \operatorname{Cov}(s)\right)$ are isomorphic. Therefore:

$$
\lim \left(\Pi_{n}\left(S_{X}, a\right), p_{X X \prime}^{*}, \operatorname{Cov}(S)\right) \simeq \check{\Pi}_{n}(\dot{s}, a) \simeq \underset{\leftarrow}{1 i m}\left(\Pi_{n}\left(|N(X)|, X_{1}\right),\left|\bar{\phi}_{X X}\right|^{*}, \operatorname{Cov}(s)\right)
$$

In the case of Čech homology groups, for $_{\text {for }} X \in \operatorname{Cov}(S)$ and each dimension n, we consider the homology group $H_{n}(N(X)$) of the simplicial complex $N(X)$ and the singular homology group $H_{n}\left(G_{N}(X)\right.$) of the graph $G_{N}(X)$ (see [5]). Given $X, X^{\prime} \in \operatorname{Cov}(S)$ such that $X \leq X^{\prime}$, we obtain the following commutative diagram:

where ν and ν^{\prime} are the isomorphisms considered in [5], §5.
Hence:
5. Examples.
5.1 Let S be the polyhedron $|K|$ of a finite simplicial complex K of dimension m. In this case we can calculate the groups $\Pi_{n}(S, a)$ and $H_{n}(S)$ more simply in the following way.
For any $i \in N$, we take the derived $K(i)$ of K, and we denote by $V^{(i)}$ the vertex set of $K^{(i)}$ and by $\sigma_{p}^{(i)}$ a p-dimensional simplex whatever of $K^{(i)}$. Then we put:
$r_{i}=\frac{1}{m} \inf \left\{d\left(x_{h}^{(i)}, x_{k}^{(i)}\right)\right\}$, where $x_{h}^{(i)}, x_{k}^{(i)} \in V^{(i)} ;$
$R_{i}=\left\{V\left(\sigma_{p}^{(i)}, r_{i}\right)\right\}\left(\sigma_{p}^{(i)} \in K(i) ; 0 \leq p \leq m\right)$, where $V\left(\sigma_{p}^{(i)}, r_{i}\right)=\left\{y \in S / d\left(y, \sigma_{p}^{(i)}\right)<r_{i}\right\}$;
$\Gamma=\left\{R_{i}\right\}(i \in N)$.
It is easy to see that each R_{i} is an open covering of S, and that the graph $G^{\prime}\left(R_{i}\right)$ is the graph of the edges of the complex $\mathrm{K}^{(\mathrm{i})}$. The set Γ is cofinal in $\operatorname{Cov}(S)$; so we have:
$\check{H}_{n}(S, a)=1 \mathrm{im}\left(\Pi_{n}\left(S_{R_{i}}, a\right), p_{R_{i}}^{*} R_{j}, \Gamma\right) ;$
$\left.\check{H}_{n}(S)=1 i m\left(H_{n}\left(S_{R_{i}}\right)\right), p_{*} R_{j}, \Gamma\right)$.
Since, for $i>0, \quad \Pi_{n}\left(S_{R_{i}}, a\right) \simeq \Pi_{n}(|K|, a), \quad H_{n}\left(S_{R_{i}}\right) \simeq H_{n}(K)$, and all functions $p_{R_{i}}^{*} R_{j}$ and $p_{*} R_{i} R_{j}$ are isomorphisms, we obtain:

$$
\begin{aligned}
& \check{\Pi}_{n}(S, a)=\Pi_{n}(S, a) ; \\
& \check{H}_{n}(S)=H_{n}(K) .
\end{aligned}
$$

5.2 Let (S, d) be a compact metric space.

For any $\varepsilon>0$ we consider the symmetrical pf-space $S_{\varepsilon}=\left(S, P_{\varepsilon}\right)$ where $P_{\varepsilon}=\{V(x, \varepsilon)\}(x \in S)$ and $V(x, \varepsilon)=\{y \in S / d(x, y)<\varepsilon\}$. If $\varepsilon^{\prime}<\varepsilon$, we consider the precontinuous map $p_{\varepsilon \varepsilon}{ }^{\prime}: S_{f^{\prime}} \rightarrow S_{\varepsilon}$ given by $p_{\varepsilon \varepsilon}(x)=x$ for any $x \in S$.
Then we easily see that, for each dimension n, we have:

$$
\begin{aligned}
& \check{\Pi}_{n}(S, a)=\underset{\sim}{\rightleftarrows}\left(\Pi_{n}\left(S_{\varepsilon}, a\right), p_{\varepsilon \varepsilon}^{*}, E\right),
\end{aligned}
$$

where E is the directed set that we obtain taking the set R^{+}of all positive real numbers with the inverted order.
5.3 Let S be the Warsaw circle, i.e. the following subspace of R^{2}.

Given the points $a=(0,1), b=(0,-2), c=\left(\frac{1}{2},-1\right), d=\left(\frac{1}{2}, 0\right)$, we take the segments $a b$, bc, cd and all points $(x, y) \in R^{2}$ such that $\left.\left.x \in\right] 0, \frac{1}{2}\right]$ and $y=\sin (\pi / 2 x)$.
Let $\Phi:\left[\frac{1}{2}, 1\right] \rightarrow a b \cup b c \cup c d$ be an homeomorphism such that $\Phi(1)=a$ and $\Phi\left(\frac{1}{2}\right)=d$, and let $\mathrm{f}:] 0,1] \rightarrow \mathrm{S}$ be the continuous surjection given by:

$$
f(x)= \begin{cases}(x, \sin (\pi / 2 x)) & \text { if } 0<x \leq \frac{1}{2} \\ \Phi(x) & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

Then for any $\varepsilon>0$ we consider the pretopological space S_{ε} from 5.2 and the
precontinuous loop $\psi_{\varepsilon}:[0,1] \rightarrow S_{\varepsilon}$ based at a, given by:

$$
\psi_{\varepsilon}(x)= \begin{cases}a & \text { if } 0 \leq x \leq \lambda \\ \Phi(x) & \text { if } \lambda \leq x \leq 1\end{cases}
$$

where $\lambda=1 /(4 n+1)$ and n is the lowest positive integer such that $1 /(4 n+1)<\varepsilon$. The group $\Pi_{1}(S, a)$ is isomorphic to $(Z,+)$, and we observe that its generator can be associated to the sequence of the prehomotopy classes represented by the loops ψ_{ε} of S_{ε}.

REFERENCES

[1] DEMARIA D.C. "Relazioni tra 1'omotopia regolare dei grafi e l'omotopia classí ca dei poliedri", Conf. Sem. Mat. Univ. Bari, 153 (1978), 1-30
[2] DEMARIA D.C. - GARBACCIO BOGIN R. "Homotopy and homology in pretopological

- spaces", Proc. $11^{\text {th }}$ Winter School, Supp1. Rend. Circ. Mat. Palermo, ser. II, n. 3 (1984), 119-126
[3] DEMARIA D.C. - GARBACCIO BOGIN R. "Inverse systems and pretopological spaces", Proc. $12^{\text {th }}$ Winter School, Supp1. Rend. Circ. Mat. Palermo, ser. II, n. 6 (1984), 93-106
[4] EILENBERG S. - STEENROD N. "Foundations of algebraic topology", Princeton University Press (1952)
[5] FERRARA U. "Relazioni tra l'omologia regolare dei grafi e l'omologia classica dei poliedri", Rend. Sem. Fac. Sci. Univ. Cag1iari, Suppl. vol. L (1980), 235250
[6] MARDEŠIĆ s. - SEGAL J. "Shape theory", North-Holland Publishing Company, Amsterdam (1982)

DAVIDE CARLO DEMARIA, DIPARTIMENTO DI MATEMATICA, UNIVERSITA' DI TORINO, VIA PRINCIPE AMEDEO 8, 10123 TORINO
ROSANNA GARBACCIO BOGIN, DIPARTIMENTO DI MATEMATICA, UNIVERSITA' DI TORINO, VIA PRINCIPE AMEDEO 8, 10123 TORINO

