USA 13

Jiř̌í Vinárek
 Productive and inductive constructions of graphs

In: Zdeněk Frolík and Vladimír Souček and Jiří Vinárek (eds.): Proceedings of the 13th Winter School on Abstract Analysis, Section of Topology. Circolo Matematico di Palermo, Palermo, 1985. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 11. pp. [125]--136.

Persistent URL: http://dml.cz/dmlcz/701885

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

PRODUCTIVE AND INDUCTIVE CONSTRUCTIONS OF GRAPHS*

Jǐ̌í Vinárek

O. Introduction

In [5], there is given a characterization of systems of antireflexive graphs in which any induced subgraph of a subdirectly irreducible (SI) graph is again SI. In the present paper we give a full characterization of hereditary subdirect irreducibility for graphs.

Importance of investigation this topic is following : having a list of $S I$ C-graphs one can construct any \underline{C}-graph using only products and restrictions to induced subgraphs. If a class \underline{C} of graphs is hereditary subdirectly irreducible (HSI) then the subdirect dimension coincides with the product dimension (for the definitions see [4]).

1. Notations and known facts
1.1. For the description of HSI graphs we shall use some symbols from [5] and also introduce some new ones.

If A is an induced subgraph of B we shall write $A \longleftrightarrow B$. For an arbitrary graph G denote $V(G)$ its set of vertices and $E(G)$ its set of edges. $L(G) \longleftrightarrow G$ is a graph such that $V(L(G))=$ $=\{V \in V(G) ;(V, V) \in E(G)\} . N(G) \longleftrightarrow G$ is a graph with $V(N(G))=$ $=V(G)-V(I(G))$. (Edges of $L(G)$ are denoted as L亡-edges, edges of $N(G)$ as NN-edges, edges from $L(G)$ to $N(G)$ as $I N$-edges and edges from $N(G)$ to $L(G)$ as NL-edges.)

For any ordinal n denote $K_{n}=(n,\{(i, j) ; i, j \in n, i \neq j\})$ (i.e. the complete antireflexive graph with n vertices) o
$K=(n,\{(i, j) \quad i \quad i, j \in n, i \neq j,(i, j) \neq(0,1)\})$,
$I_{n}^{n}=(n,\{(i, j) ; i, j \in n, i<j\})$ 。 $I_{n}^{+}=(n,\{(i, j) ; i, j \in n, i<j\} \cup\{(1,0)\})$, $I_{n}^{n}=(n,\{(i, j) ; i, j \in n, i>j\} \cup\{(0,1)\})$,
*) This paper is in final form and no version of it will be submitted for publication elsewhere.

$\underline{K}=\left\{K_{n} ; n \in O r d\right\}$,
$\underline{K}^{\prime}=\left\{K_{n}^{\prime} ; n \in\right.$ Ord $\}$,
$\mathrm{I}^{+}=\left\{\mathrm{I}_{\mathrm{n}}^{+} ; \mathrm{n} \in\right.$ Ord $\}$,
$\mathrm{L}^{-}=\left\{\mathrm{I}_{\mathrm{n}}^{-} ; \mathrm{n} \in \operatorname{Ord}\right\}$,
Set $=\{(X, \varnothing) ; X$ is a set $\}$ (the class of sets $=$ discrete graphs),
$\underline{\underline{T}}=\{G ;|\{(x, y),(y, x)\} \cap E(G)|=1$ for any $x \neq y \in V(G)\}$ (the class of all antireflexive tournaments)
$\underline{U}=\left\{(n, R) ; n \leq 6,|R|=\binom{n}{2}+\left[\frac{n}{2}\right], x \neq y \Rightarrow|\{(x, y),(y, x)\} \cap R| \geq\right.$
≥ 1 and (n, R) contains neither K_{3} nor A_{3} as an induced subgraph $\}$,
$\underline{V}=\{(n, R) ; n \leq 4, x \neq y \neq \mid R\lceil\{\mathbb{z}, y\} \geq 1, R \geq\{(0,1),(1,0),(2,3)$,
$(3,2)\} n n \times n$ and (n, R) does not contain K_{3}^{\prime} as an induced subgraph $\}$,
Wi $=\{\mathrm{A}$; any induced subgraph of G with 3 vertices is either isomorphic to A_{3}, or to $\left.\mathrm{I}_{3}\right\}$,
$\underline{X}_{0}=\{X ; V(X)=V \cup\{v\}, E(X)=E \cup\{(v, v)\}$ where $(V, E) \in \underline{X}\}$ for $\underline{\underline{X}} \in\left\{\underline{\underline{K}}, \underline{K}^{-}, \underline{I}^{+}, \underline{\underline{L}}, \underline{\underline{T}}, \underline{U}, \underline{V}, \underline{W}\right\}$,
$\underline{S y m}_{5}=\{A ; A$ is reflexive symmetric, $|V(A)| \leq 5\}$.
1.2. By a product of graphs we mean the categorical product (ie. $\underset{i \in I}{\notin}\left(V_{i}, E_{i}\right)=\left(\underset{i \in I}{\mathbb{X}} V_{i}, E\right)$ where $\left(\left(x_{i}\right)_{I},\left(y_{i}\right)_{1}\right) \in_{E \text { Bf }}$
$\left(x_{i}, y_{i}\right) \in E_{i}$ for any $\left.i \in I\right)$.
1.3. Let \underline{C} be a class of graphs. Then $A \in \underline{C}$ (ie. a \underline{C}-graph A) is said to be subdirectly irreducible if, whenever an isomorphic copy A^{\prime} of A is contained as an induced subgraph in a product $\underset{i \in I}{ } B_{i}$ with $B_{i} \in \underline{C}$ and $p_{j}\left(A^{\prime}\right)=B_{j}$ for all the projections, there
 onto B_{j}. (This formulation is due to AoPultr - see [2].)
1.4. A class \underline{C} of graphs is said to be hereditary with respect to subdirect irreducibility. (HSI) if any induced subgraph of a SI C-graph is again SI (see [5]).
1.5. If $V(A)=V(B)$ then the meat of graphs $A \wedge B$ denotes the graph $(V(A), E(A) \cap E(B))$ If $C=A \wedge B, C \neq A, B$ then C is subdirectly reducible in $\underline{G}($ see [3]).
1.6. Let \underline{D} be a family of graphs. Then $S P(\underline{D})$ denotes (similarly as
in［1］）the class of all the graphs which can be embedded as induced subgraphs into products of graphs from \underline{D} ． 1．7．Theorem（see［5］）．Let \underline{C} be a productive hereditary class of antireflexive graphs（i．e．a class closed to categorical products and to induced subgraphs）．Then \underline{C} is HSI iff either $\underline{C}=\underline{\text { Set }}$ or $\underline{C}=S P(\underline{D})$ where \underline{D} satisfies one of the following conditions ：
（i）$\underline{D} \subseteq K \cup \underline{K}^{\prime}$
（ii）$D \subseteq K \cup\left\{K_{3}^{\prime}, A_{4}\right\}$
（iii）$\underline{D} \subseteq \underline{K} \cup \underline{I}^{+} \cup \underline{I}$
（iv）$\underline{D} \subseteq \underline{K} \cup \underline{I}^{-} \cup \underline{T}$
（v）$D \subseteq \underline{K} \cup \underline{U}$
（vi）$\underline{D} \subseteq \underline{K} \cup \underline{V}$
（vii）$\underline{D} \subseteq \underline{K} \cup \mathbb{W}$

2．Hereditary subdirect irreducibility

Before giving the general characterization theorem for HSI in graphs we shall consider partial cases discussing possibilities for reflexive and antireflexive parts of graphs and for LL－，IN－ and NL－edges．

Throughout this chapter，\underline{C} denotes a productive hereditary class of graphs which is HSI．
2．1．Lemma．If any reflexive subgraph of a SI C－graph A is complete then $|L(A)| \leqslant 2$ ．
Proof。 Since C is HSI，any $L(A)$ is $S I$ whenever A is SI．Any reflex－ ive complete graph is an induced subgraph of a power R_{2}^{k} for some k ．Hence，$|L(A)| \leq 2$ 。
2．2．Lemma．If some LN－edge of a SI O－graph A_{0} is \leftrightarrow then no edge of a SI C－graph A is \leftrightarrow 。Moreover，if some LL－edge of A_{0} is \longrightarrow Qthen no edge of A is \longrightarrow 。
Proof．$\leftrightarrow=\delta \longleftrightarrow \wedge \longleftrightarrow 2$ ，hence it is reducible and it cannot be an induced subgraph of a SI graph A ．If $f_{0} \longrightarrow 2 \in \underline{C}$ then $\longrightarrow=\longleftrightarrow \boldsymbol{\wedge} \boldsymbol{\longrightarrow}$ is subdirectly reducible and hence it cannot be an induced subgraph of A ．
2．3．Lemma．Let A_{0}, A be $S I$ C－graphs．If some LN－edge of A_{0} is $\xrightarrow{\square}$（ any $N \mathbb{N}$－edge of A is \longrightarrow 。
Proof。 $\longrightarrow=\boldsymbol{c} \longrightarrow \wedge \longleftrightarrow=\propto \longleftrightarrow \longleftrightarrow$ and \rightarrow cannot be both SI in C．
2．4．Lemma．If $\longrightarrow \rightarrow$ and \rightarrow ，resp．）are both \underline{C}－graphs then $|N(A)| \leq 1$ for any SI C－graph A．

$=\longleftrightarrow 2 \wedge \sim$, $\quad \cdot=\downarrow \wedge \longleftrightarrow 2=\longrightarrow \wedge_{0} \longleftarrow$, hence any antireflexive graph with at least 2 vertices is subdirectly reducible in \underline{C} and $|N(A)| \leq 1$ for any SI C-graph A.
2.5.Lemma. If $\rightarrow 2$ and \rightarrow are both $\underset{\text { C-graphs then any NN-edge }}{ } \rightarrow$ and of a SI C-graph A is \longleftrightarrow and no LN-edge of a SI C-graph is 2 .
 Hence, any NN-edge of a SI C-graph is \longleftrightarrow. Moreover, $2^{\bullet}=$ $=\mathrm{C} \longrightarrow \wedge \leftarrow$, hence no IN-edge of a SI C-graph is 2 。
2.6.Lemma. If a reflexive tournament A is $S I$ in \underline{C} then A is one of the following graphs :

2

Proof.

is an induced subgraph of

hence it is not SI. Any reflexive tournament with at least 4 vertices contains

as an induced subgraph, hence it is not SI.
2.7.Lemma. If a symmetric reflexive graph A is $S I$ in \underline{C} then $|v(A)| \leq 5$.
Proof. Using Dirichlet principle, one can check that any symmetric reflexive graph G with at least 6 vertices contains either

or
$2 \quad 2$
as an induced subgraph. Since

2.8.Proposition. If a reflexive graph A is $S I$ in C then $|V(A)| \leq 9$. Proof.If A is symmetric then $|V(A)| \leqq 5$ due to Lemma 2.7. If A is not symmetric then it contains $2 \longrightarrow 2$ as an induced subgraph. Hence,
$2 \quad 2=2 \longrightarrow 2 \wedge \longleftrightarrow$ is not SI in C.Therefore, $2 \quad 2$ is not an induced subgraph of A. Using Ramsey theorem one can prove that any reflexive graph with at least 9 vertices which does not contain 22 as an induced subgraph contains either
or a tourmament with 4 vertices as an induced subgraph. Using Lemmas 2.1 and 2.6 one proves that G is not $S I$. 2.9. Lemma. If a reflexive graph A is $S I$ in C and contains G_{5} as an induced subgraph, then $A=G_{5}$

Proof. Using Proposition 4.6 from [3] one can prove that any reflexive graph is a C -graph. Since any reflexive graph with at least 4 vertices is - due to [3] - subdirectly reducible and A is $S I$ in C, there is $A=G_{5}$. 2.10. Lemma. If G_{5} is not a G-graph and G_{2} is a C-graph then any reflexive SI C -graph has the following property : For an (x, y) \notin $\notin E(A)$ define $U(x, y)$ as the smallest subset of $V(A) \times V(A)-E(A)$ containing (x, y) and such that $(V(A), E(A) \cup U(x, y)) \in \mathbb{C}$. Then for any two $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \in(\nabla(A) x \nabla(A))-E(A), U\left(x_{0}, y_{0}\right) \cap$ $\cap U\left(x_{1}, y_{1}\right) \neq \varnothing$, and for every orphism $y: A \longrightarrow B$ with $|V(B)|<|V(A)|$ there is an $(x, y) \in(V(A) x V(A))-E(A)$ with $(\varphi(x), \varphi(y)) \in E(B)$. Proof follows directly from [3], Lemma 6.8.
2.11. Proposition If a reflexive graph A is SI in C then it satisfies one of the following conditions :
(i) $A \in$ Sym $_{5}$
(ii) $A \hookrightarrow G_{5}$
(iii) $|V(A)| \leqslant 9$ and A satisfies the conditions from Lemma 2.10. (Denote this class of graphs by Ref $\underline{\mathrm{R}}_{9}$.)
Proof follows from 2.7-2.10.
2.12. Lemma. The following graphs are subdirectly reducible in \underline{C} whenever they are C-graphs:

Proof.

$\xrightarrow{H_{1}} \rightarrow G_{3} \times R_{2}^{2}, H_{2} \longrightarrow \downarrow \times R_{2}^{2}, H_{3} \hookrightarrow \mathcal{R}_{2}^{2} \times R_{2}^{2}, H_{4} \hookrightarrow ? \times R_{2}^{2}$, $\mathrm{H}_{5} \longrightarrow \uparrow_{2} \times \mathrm{G}_{2}^{2}, \mathrm{H}_{6} \longrightarrow \psi^{2} \times \mathrm{G}_{2}^{2}, \mathrm{H}_{7} \longrightarrow{ }^{2} \times \mathrm{G}_{2}^{2}, \mathrm{H}_{8} \longrightarrow ? ~ \mathrm{x}_{2}^{2}$. 2.13. Proposition If A is $S I$ in $C, L(A) \neq \varnothing$ is a complete graph and $(1, n),(n, l) \in E(A)$ whenever $l \in L(A), n \in N(A)$ then either A is one of the following graphs : G_{1}, G_{3}, G_{4}, or $|L(A)|=1$ and $N(A)$ is an antireflexive toumament. (Denote this class of graphs by $\mathbb{T}_{1}^{\hat{\imath}}$.)
Proof。According to 2.1, $|I(A)| \leq 2$. Hereditary subdirect irreducibility implies that $N(A)$ satisfies conditions of Characterization Theorem 1.7. Consider two cases :

1. $|L(A)|=1$. Consider possibilities for $N(A)$ using 1.7 .
(i) If $N(A) \in K \cup K^{\prime}$ then by 2.2 there is $|N(A)| \leqslant 2$. For the case $|N(A)|=0$ one obtains $A=G_{1}$, for the case $|N(A)|=1$ there is $A=G_{3}$ and for the case $|N(A)|=2$ there is $N(A)=K_{2}^{\prime}$ which is an antireflexive tournament on 2 points.
(ii) If $N(A)=A_{4}$ then one obtains a contradiction using 2.2.
(iii) If $N(A) \in \underline{I}^{+} \cup \underline{T}$ then $N(A)$ is an antireflexive tournament. (iv) If $N(A) \in \underline{I}^{-} \cup \underline{I}$ then $N(A)$ is an antireflexive tournament as well.
(v) If $N(A) \in \underline{U}$ then one obtains \longleftrightarrow as an induced subgraph which contradicts 2.2.
(vi) If $N(A) \in \underline{V}$ then one obtains a contradiction with 2.2 , too. (vii) If $\mathbb{N}(A) \in W$ then using 2.2 one obtains that $N(A)$ is an antireflexive tournament.
2. $|I(A)|=2$.

If $N(A)=\varnothing$ then $A=G_{4}$ -
If $\mathbb{N}(A) \neq \varnothing$ then A contains H_{1} as an induced subgraph which contradicta 2.12.
2.14. Proposition. If A is $S I$ in $C, H(A) \neq \varnothing$ is a complete graph, $\mathbb{N}(A)=\varnothing$ and $(1, n) \in E(A),(n, l) \notin E(A)$ whenever $l \in L(A), n \in \mathbb{N}(A)$, then $|I(A)|=1$ and either
(i) $N(A)=K_{n}$ for some n,
or
(ii) $\mathbb{N}(A)$ is an antireflexive tournament.
(Denote the class of graphs satisfying (i) ((ii), resp.) by $\underline{K}_{1}^{\downarrow}$ ($\underline{-1}_{1}^{\downarrow}$, resp.).
Proof. Lemmas 2.1 and 2.12 imply that $|L(A)|=1$. Using 1.7 and 2.3 one obtains that $N(A)$ is either antireflexive complete or an antireflexive tournament.
2.15. Proposition... If A is $S I$ in $\underline{C}, L(A) \neq \varnothing$ is complete, $\mathbb{N}(A) \neq \varnothing$ and $(1, n) \notin E(A),(n, l) \in E(A)$ whenever $l \in L(A), n \in \mathbb{N}(A)$, then $\| J(A) \mid=1$ and either $\mathbb{N}(A)=K_{n}$ for some n or $N(A)$ is an antireflexlive tournament. (Denote the corresponding class of graphs by $K_{1}^{\top} u$ UT i 。)
Proof is similar to the proof of Proposition 2.14.
2.16. Proposition. If $A_{i}(i=0,1)$ are $S I$ in $\underline{C}, L\left(A_{i}\right) \neq$ are complete, $N\left(A_{0}\right) \neq \varnothing,(I, n) \in E\left(A_{i}\right)$ whenever $I \in L\left(A_{i}\right), n \in N\left(A_{i}\right)$ and if there exist $\mathrm{n}_{1}, \mathrm{n}_{2} \in \mathbb{N}\left(A_{0}\right), I_{1}, I_{2} \in L\left(A_{0}\right)$ such that $\left(n_{1}, I_{1}\right) \in E\left(A_{0}\right)$, $\left(n_{2}, I_{2}\right) \& E\left(A_{0}\right)$ then

Proof．By 2.2 and 2．3，\longrightarrow and \longrightarrow（and also ${ }^{\circ} \cdot=\longrightarrow$（ ） are subdirectly reducible．Hence，$\left|\mathbb{N}\left(A_{i}\right)\right| \leq 1$ ．By． 2.1 and the assumptions of Proposition，$\left|L\left(A_{i}\right)\right| \leq 2$ ．Therefore，

$$
A_{0}=2 \breve{S}^{2}, A_{1} \longleftrightarrow A_{0}
$$

2．17．Proposition．If $A_{i}(i=0,1)$ are SI in $\underline{C}, L\left(A_{i}\right) \neq \varnothing$ are com－ plete， $\mathbb{N}\left(A_{0}\right) \neq \varnothing,\left(n_{0} I\right) \in E\left(A_{i}\right)$ whenever $l \in L\left(A_{i}\right), n \in \mathbb{N}\left(A_{i}\right)$ and if there exist $n_{1}, n_{2} \in N\left(A_{0}\right), I_{1}, I_{2} \in L\left(A_{0}\right)$ such that $\left(I_{1}, n_{1}\right) \in E\left(A_{0}\right),\left(l_{2}, n_{2}\right) \in E\left(A_{0}\right)$ then

Proof is similar to the proof of 2．16．
2．18．Proposition。 If $A_{i}(i=0,1)$ are $S I$ in $C, L\left(A_{0}\right) \neq \varnothing$ is either complete or a toumament，$N\left(A_{0}\right) \neq \varnothing,\left|\{(n, 1),(1, n)\} \quad \cap \quad E\left(A_{1}\right)\right|=$ $=1$ for any $(n, l) \in \mathbb{N}\left(A_{i}\right) \times L\left(A_{i}\right)$ and if there exist $n_{1}, n_{2} \in \mathbb{N}\left(A_{0}\right)$ ， $I_{1}, I_{2} \in L\left(A_{0}\right)$ such that $\left(I_{1}, n_{1}\right) \in E\left(A_{0}\right),\left(n_{2}, I_{2}\right) \in E\left(A_{0}\right)$ then $N\left(A_{i}\right)=K_{n}$ for some $n,\left(I^{\prime}, n\right) \in E\left(A_{i}\right) \longleftrightarrow \quad\left(n, I^{\prime \prime}\right) \in E\left(A_{i}\right)$ whenever $1^{\prime \prime} \neq I^{\prime \prime} \in L\left(A_{1}\right)$ 。（Denote the class of graphs A_{1} satisfy－ ing these conditions by L．）
Proof．By 2．5，any NN－edge of A_{i} is \longleftrightarrow ．Hence，$N\left(A_{i}\right)=K_{n}$ for some n ．By 2．12，A_{i} does not contain neither H_{2} nor H_{3} as an induced subgraph．
2．19．Proposition．If A is $S I$ in $C, L(A) \neq \varnothing, N(A) \neq \varnothing$ and if there are no NL－and LN－edges in A then $\| L(A) \mid=1$ ．
Proof follows from 2.12 because A cannot contain H_{4}, H_{7} and H_{8} as induced subgraphs．
2．20．Proposition。 If $A_{i}(i=0,1)$ are $S I$ in C ，$L\left(A_{i}\right) * \emptyset$ is
 and for any $(1, n) \in L\left(A_{i}\right) \times N\left(A_{i}\right)$ there is $(1, n) \in E\left(A_{i}\right) \Leftrightarrow(n, 1)$ $\in E\left(A_{i}\right)$ ，then $\left|L\left(A_{i}\right)\right| \leq 2$ and $N\left(A_{i}\right)$ is an antireflexive touma－ ment．Moreover，if $\left|I\left(A_{i}\right)\right|=2$ then $L\left(A_{i}\right)=\left\{I^{\prime}, I^{\prime \prime}\right\}_{\text {such }}$ that $\left(I^{\prime}, n\right) \notin E\left(A_{i}\right) \Leftrightarrow\left(I^{\prime \prime}, n\right) \in E\left(A_{i}\right)$ for any $n \in \mathbb{N}\left(A_{i}\right)$ 。
（Denote the class of graphs satisfying these conditions by M_{0} ）
Proof follows from 1．7，2．1，2．2 and 2．12．
2．21．Proposition．If $A_{i}(i=0,1)$ are SI in $\underline{C}, L\left(A_{0}\right) \neq \varnothing, N\left(A_{0}\right) \neq$ $\neq \emptyset, \emptyset \neq L\left(A_{0}\right) \times N\left(A_{0}\right) \cap E\left(A_{0}\right) \neq L\left(A_{0}\right) \times N\left(A_{0}\right)$ and $\mathbb{N}\left(A_{1}\right) \times L\left(A_{i}\right) \cap E\left(A_{1}\right)=\varnothing$ ，then $N\left(A_{i}\right)$ is either an antireflexive tournament or an antireflexive complete graph．Moreover，if $I^{\prime} \neq I^{\prime} \in L\left(A_{i}\right)$ then $\left(I^{\prime}, n\right) \in E\left(A_{i}\right) \Leftrightarrow\left(I^{\prime \prime}, n\right) \notin E\left(A_{i}\right)$ for any
$n \in \mathbb{N}\left(A_{i}\right)$. (Denote the class of graphs satisfying these conditions by \mathbb{N}.)
Proof follows from 1.7,2.3 and 2.12.
2.22. Proposition。 If $A_{i}(i=0,1)$ are $S I$ in $\underline{C}, L\left(A_{0}\right) \neq \varnothing, N\left(A_{0}\right) \neq$ $\neq \emptyset \neq \mathbb{N}\left(A_{0}\right) \times L\left(A_{0}\right) \cap E\left(A_{0}\right) \neq \mathbb{N}\left(A_{0}\right) \times L\left(A_{0}\right)$ and $L\left(A_{i}\right) \times N\left(A_{i}\right) \cap$ $\cap E\left(A_{i}\right)=\varnothing$ then $\mathbb{N}\left(A_{i}\right)$ is either an antireflexive tournament, or an antireflexive complete graph.Moreover, if $I^{\prime} \neq I^{\prime \prime} \in L(A)$ then $\left(n, I^{\prime}\right) \in E\left(A_{i}\right) \Longleftrightarrow\left(n, I^{\prime \prime}\right) \notin E\left(A_{i}\right)$ for any $n \in \mathbb{N}\left(A_{i}\right)$. (Denote the class of graphs satisfying these conditions by \underline{P}_{0})
Proof follows from 1.7,2.3 and 2.12.
2.23.Lemma. If there are $\left(I_{1}, n_{1}\right),\left(I_{2}, n_{2}\right),\left(I_{3}, n_{3}\right) \in L(A) \times N(A)$ such that $\left(I_{1}, n_{1}\right),\left(n_{1}, I_{1}\right),\left(n_{2}, I_{2}\right),\left(I_{3}, n_{3}\right) \notin E(A),\left(I_{2}, n_{2}\right),\left(n_{3}, I_{3}\right) \epsilon$ $\in E(A)$ then A is subdirectly reducible in \mathbf{C}.
Proof. Since $2 \cdot, ~ \longrightarrow \longrightarrow$ and \longleftrightarrow-are induced subgraphs of A,

2.24. Lemma. If $L(A)$ is complete and if there are $\left(I_{1}, n_{1}\right),\left(I_{2}, n_{2}\right)$, $\left(I_{3}, n_{3}\right) \in L(A) \times N(A)$ such that $\left(I_{1}, n_{1}\right),\left(l_{3}, n_{3}\right),\left(n_{3}, I_{3}\right) \in E(A)$ and $\left(n_{2}, I_{2}\right) \notin E(A),\left(l_{2}, n_{2}\right) \in E(A)\left(\left(n_{2}, I_{2}\right) \in E(A),\left(I_{2}, n_{2}\right) \notin E(A)\right.$ resp.) then A is subdirectly reducible in $\underset{\text { C. }}{ }$.
Proof. Suppose A be $S I . T h e n ~ 2.1$ implies that $|L(A)| \leq 2,2.4$
implies that $|N(A)| \leq 1$ and there are at most 2 LN - and $2 N L$-edges which contradicts assumptions of Lemma.
2.25. Proposition. If A is a SI C-graph which contains G_{2} as an induced subgraph, $L(A) \times \mathbb{N}(A) \subset E(A), N(A) \times L(A) \subset E(A),{ }^{2}$ then $|\mathbb{N}(A)| \leq 1$. (Denote the class of graphs satisfying these conditions by Q_{0})
Proof. Lemma 2.2 implies that no edse of A i's neither \longleftrightarrow nor
\longrightarrow. Since $\cdot \quad=\longrightarrow \boldsymbol{\sim} \longleftarrow$ there is $|\mathbb{V}(A)| \leq 1$ 。
2.26.Corollary. For the case that $L(A)$ is a tournament we obtain the following SI graphs :

2.27.Lemma. If $G 2 \longleftrightarrow A, N(A) \neq \varnothing, L(A) \times \mathbb{N}(A) \subseteq E(A)$, $N(A) \times L(A) \cap E(A)=\varnothing(L(A) \times N(A) \cap E(A)=\varnothing, N(A) \times L(A) \leq E(A)$ resp.), then A is subdirectly reducible in \mathbf{C}.
Proof follows from 2.12.
2.28. Lemma. If A contains G_{2}, G_{3} and $\rightarrow(\longrightarrow 2$ resp. $)$ as induced subgraphs then A is not $S I$ in $\underset{\text {. }}{ }$.
 in C ．
2．29．Propositiono If $A_{i}(i=0,1)$ are $S I$ in $\underline{C}, G_{2} \longrightarrow A_{0}, \varnothing \neq$ $\pm L\left(A_{0}\right) \times \mathbb{N}\left(A_{0}\right) \cap i \neq L\left(A_{0}\right) \times N\left(A_{0}\right)$ and if for any（ $\left.1, n\right) \in L\left(A_{i}\right)$ $x \mathbb{N}\left(A_{i}\right)$ there is $(1, n) \in \mathbb{B}\left(A_{i}\right) \Leftrightarrow(n, 1) \in \dot{D}\left(A_{i}\right)$ then

Proof follows from 2.12 and 2．2．
2．30．Lemma．If a reflexive graph A is $S I$ in \underline{C} and 22 is also $S I$ in \underline{C} then A is symmetric．
Proof． $2,2=8 \longrightarrow \rho \wedge \mathcal{C} \leftarrow$ ，hence A cannot contain G_{2} as an induced subgraph．
2．31．Proposition If $A_{i}(i=0,1)$ and $2{ }^{2}$ are SI in \underline{C} ，
 for any $(n, I) \in L\left(A_{i}\right) \times \mathbb{N}\left(A_{i}\right)$ then $L\left(A_{i}\right) \times \mathbb{N}\left(A_{i}\right) \subseteq E\left(A_{i}\right)$ and $N\left(A_{i}\right)$ is an antireflexive tournament．Moreover，$L\left(A_{i}\right) \longleftrightarrow 22$ （Denote the class of graphs satisfying these conditions by $\mathbb{T}_{2}{ }^{\circ}$ ） Proof．According to 2．30，$L\left(A_{i}\right)$ is symmetric．By $2.2, N\left(A_{i}\right)$ is an antireflexive tournament．Since $2 \cdots 2,2 \wedge$ there is $L\left(A_{i}\right) \times N\left(A_{i}\right) \subseteq E\left(A_{i}\right)$ 。Lemma 2.12 implies that A_{i} cannot contain H_{1} as an induced subgraph．Hence，any LL－edge

there is $L\left(A_{i}\right) \longleftrightarrow 22$ ．
2．32．Proposition。 If A and 22 are SI in $\underline{C}, L(A) \times N(A) n$
$\cap E(A) \neq \emptyset$ and $N(A) x L(A) \cap E(A)=\varnothing(L(A) \times N(A) \cap E(A)=\varnothing$
and $N(A) \times L(A) \cap E(A) \neq \emptyset$ ，resp．$)$ then $L(A) \times \mathbb{N}(A) \subseteq E(A)$ $(N(A) \times L(A) \subseteq E(A)$ resp．$)$ and either $N(A)=K_{n}$ for some n or $N(A)$ is an antireflexive tournament and $L(A) \longleftrightarrow 22$ ． （Denote the class of graphs satisfying these conditions by $\underline{K}_{2}^{\downarrow} \cup \mathbb{T}_{2}^{\downarrow}\left(\underline{K}_{2}^{\uparrow} \cup \mathbb{T}_{2}^{\top}\right.$ resp．）．）
Proof。 By 1.7 and 2．3，$N(A)$ is either complete or a tournament． Since $2 \geqslant=22 \wedge O=2 \downarrow \wedge \leftarrow$ ，there is $L(A) \times N(A) \subseteq E(A)(N(A) \times L(A) \subseteq E(A)$ resp。）．Lemma 2.12 implies that A cannot contain neither H_{5} nor H_{6} as an induced subgraph． Hence，any LL－edge of A is 22 and $L(A) \longleftrightarrow 2$ ．
2.33. Proposition. If $A_{i}(i=0,1)$ are $S I$ in $\underline{C}, 22 \longleftrightarrow A_{0}$, $\leftrightarrow \longleftrightarrow A_{0},\left(I\left(A_{0}\right) \times N\left(A_{0}\right), \cup N\left(A_{0}\right) \times L\left(A_{0}\right)\right) \cap E\left(A_{0}\right) \neq E\left(A_{0}\right)$, $\left|\{(1, n),(n, 1)\} \cap E\left(A_{i}\right)\right| \geq 1$ for any $(1, n) \in L\left(A_{i}\right) \times N\left(A_{i}\right)$, then $\left|N\left(A_{i}\right)\right| \leqslant 1,\left|L\left(A_{i}\right)\right| \leqslant 5, L\left(A_{i}\right)$ is symmetric and for any $n \in N\left(A_{i}\right)$ and $I^{\prime}, I^{\prime} \in L\left(A_{i}\right)$ such that $\left(I^{\prime}, I^{\prime \prime}\right) \in E\left(A_{i}\right)$ there does not hold both $\left(I^{\prime}, n\right) \in E\left(A_{i}\right) \Longleftrightarrow\left(I^{\prime \prime}, n\right) \in E\left(A_{i}\right)$ and $\left(n, I^{\prime}\right) \in E\left(A_{i}\right) \Leftrightarrow$ $\Leftrightarrow\left(n, 1^{\prime \prime}\right) \in E\left(A_{i}\right)$. (Denote the corresponding class of graphs by R.)
Proof。 By 2.30, $L\left(A_{i}\right)$ are syminetric. By 2.7, $\left|L\left(A_{i}\right)\right| \leq 5$. Lemma 2.4 implies that $\left|N\left(A_{i}\right)\right| \leqslant 1$. Lemma 2.12 - which implies the A_{i} cannot contain $H_{1}, \mathrm{H}_{2}, H_{3}$ as induced subgraphs - finishes the proof.
2.34. Proposition If A and $2 \quad 2$ are $S I$ in \underline{C} and if for any $(1, n) \in L(A) \times N(A)$ there is $(1, n) \in E(A) \Leftrightarrow(n, I) \notin E(A)$ then $L(A)$ is symmetric, $|L(A)| \leq 5, N(A)=K_{n}$ for some n and for any $I^{\prime}, I^{\prime \prime} \in L(A)$ such that $\left(I^{\prime}, I^{\prime \prime}\right) \in E(A)$ there is $\left(I^{\prime}, n\right) \in E(A) \Leftrightarrow$ $\Leftrightarrow\left(n, 1^{\prime \prime}\right) \in E(A)$ for any $n \in N(A)$. (Denote the corresponding class of graphs by S .)
Proof. By 2.30, $I(A)$ is symmetric. By 2.7, $|I(A)| \leqslant 5$. Lemma 2.5 implies that $N(A)$ is a tournament and 2 is not an induced subgraph of $A . B y$ 2.12, for any $n \in N(A)$ and $I^{\prime}, I^{\prime \prime} \in L(A)$ such that $\left(I^{\prime}, I^{\prime \prime}\right) \in E(A)$ there is $\left(I^{\prime}, n\right) \in E(A) \Leftrightarrow\left(n, I^{\prime \prime}\right) \in E(A)$ 。

3. Characterization Theorem

Now, we can prove the following :
3.1. Theorem. Let C be a productive hereditary class of graphs. Then \underline{C} is HSI jiff either $\underline{C}=\underline{\text { Set }}$ or $\underline{C}=S P(\underline{D})$ where \underline{D} satisfies the following conditions :
(i) $\underline{D} E K \cup K^{\prime} \cup \underline{K}_{0} \cup \underline{K}_{0}^{\prime}$
(ii) $D \subseteq K \in\left\{K_{3}^{\prime}, A_{4}\right\} \cup \underline{K}_{0} \cup\left\{\left(K_{3}^{\prime}\right)_{0},\left(A_{4}\right)_{0}\right\}$
(iii) $D \leq K \cup I^{+} \cup T \cup K_{0} \cup I_{0}^{+} \cup \underline{I}_{0}$
(iv) $D \subseteq K \cup I^{-} \cup T \cup K_{0} \cup \underline{L}_{0}^{-} \cup \mathbb{T}_{0}$
(v) $\underline{D} \subseteq \underline{K} \cup \underline{U} \cup \underline{K}_{0} \cup \underline{U}_{0}$
(vi) $D \subseteq \underline{K} \cup \underline{V} \cup \underline{K}_{0} \cup \underline{V}_{0}$
(vii) $\underline{D} \subseteq \underline{K} \cup \underline{W} \cup \mathbb{K}_{0} \cup \underline{W}_{0}$
(viii) $D \subseteq \underline{S y m}_{5} \cup\left\{G_{5}\right\} \cup \operatorname{Ref}_{9}$
(ix). $D \subseteq\left\{G_{1}, G_{3}, G_{4}\right\} \cup \frac{T \hat{\sim}}{1}$
(x) $\underline{D} \underline{c T}_{1}^{\downarrow} \cup \mathbb{K}_{1}^{\downarrow}$
(xi) $D \leq T_{i}^{\uparrow} \cup K_{1}^{\uparrow}$
(xii) $D \subseteq\{\underset{G L}{\longrightarrow}\}$

Proof。 I_{\star} If \underline{C} is HSI then we can consider the following cases :
a) All \underline{C}-graphs are antireflexive. Then by $1.7, \underline{C}=S P(\underline{D})$ where D satisfies one of the conditions (i)-(vii).
b) All \underline{C}-graphs are reflexive. Then by $2.11, \underline{C}=\operatorname{SP}(\underline{D})$ where \underline{D} satisfies (viii).
c) There exist C-graphs with loops and also C-graphs without loops. Then we can divide the proof of Theorem discussing possibilities for LL-,IN- and NL-edges of SI C-graphs:

LL-edges	IN-and NL-edges	see	$\begin{aligned} & \underline{C}=S P(D) \text { where } \\ & \text { satisfies : } \end{aligned}$
$N \longleftrightarrow$	${ }^{2} \longleftrightarrow$	2.13	(ix)
$Q \longleftrightarrow \sim$	$\xrightarrow{2}$	2.14	(${ }_{\text {(}}$)
$\sim \longleftrightarrow \sim$	$\xrightarrow{2}$	2.15	(xi)
$\xrightarrow{\sim}$	$2 \longleftrightarrow \sim$	2.16	(xii)
$\stackrel{\sim}{\bullet}$	$\xrightarrow{2} \longleftrightarrow \stackrel{3}{4}$	2.17	(xiii)
$\leftrightarrow \leftrightarrow \sim$ Orn \longrightarrow O	$\xrightarrow{2+}$	2.18	(xiv)
arbitrary	\wedge	2.19	(i)-(vii)
$\xrightarrow{\sim} \longrightarrow \Omega$	$\xrightarrow{\sim}$	2.20	(xv)
arbitrary	$\xrightarrow{\longrightarrow}$ s	2.21	(xvi)
arbitrary	$\cdots \longleftrightarrow 2$	2.22	(xvii)
arbitrary	$\Omega \leftrightarrow \sim \sim \sim$	2.1	contradiction
arbitrary	$\xrightarrow{2}$ a 2	2.23	contradiction
arbitrary	$\xrightarrow{\longrightarrow} \xrightarrow{2} \sim$	2.24	contradiction
arbitrary	$\sim \longleftrightarrow \sim$ s	2.24	contradiction
$\downarrow^{2}\left(\mathcal{N}_{2}^{2},{ }_{2}^{2}\right)$	\longrightarrow	2.25	(xviii)
成 (${ }^{\text {SNO}}$	$\xrightarrow{\longrightarrow}$	2.27	contradiction

II. One can check that systems satisfying one of the conditions (i)-(xxiv) are hereditary.Hence, systems $S P(\underline{D})$ are HSI.

REFERENCES

[1] NEŠETRIIL J. - PUITR A. "On classes of relations and graphs determined by subobjects and factorobjects", Discr.Math. 22 (1978),287-300。
[2] PULTR A. "On productive classes of graphs determined by prohibiting given subgraphs", Colloq.Math.Soc.J.Bolyai 18(1976),805-819.
[3] PULTR A. - VINAREK J. "Productive classes and subdirect irreducibility, in particular for graphs", Discr. Math. 20(1977), 159-176.
[4] VINAREK J. "Remarks on dimensions of graphs", Abstracta Eighth Winter School on Abstract Analysis, Praha 1980, 180-193.
[5] VINAREK J. "Hereditary subdirect irreducibility in graphs", Acta Univ. Carolinae - Math. et Phys.25, 2 (1084) , 3-10.

JIRI VINAREK
MATH.-PHYS. FACULTY,
CHARLES UNIVERSITY,
SOKOLOVSKA 83,
18600 PRAHA 8,
CZECHOSLOVAKIA
Knihovne mat.-fyz. fakulty UK
odd. matematicke
18600 Praha-Karlin, Sckolowskó 83

