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PRODUCTIVE AND INDUCTIVE CONSTRUCTIONS OF GRAPHS*" 

Jiří Vinárek 

Q« Introduction 

-~n [5] , there is given a characterization of systems of anti-

reflexive graphs in which any induced subgraph of a subdirectly 

irreducible (SI) graph is again SI. In the present paper we give 

a full characterization of hereditary subdirect irreducibility for 

graphs* 

Importance of investigation this topic is following : having 

a list of SI C-graphs one can construct any C-graph using only 

products and restrictions to induced subgraphs* If a class C of 

graphs is hereditary subdirectly irreducible (HSI) then the subdi­

rect dimension coincides with the product dimension (for the defi­

nitions see [4] )o 

1o Notations and known facts 

1 o1 o For the description of HSI graphs we shall use some symbols 

from [5] and also introduce some new ones. 

If A is an induced subgraph of B we shall write A *—*-B. 

For an arbitrary graph G denote V(G) its set of ve.rti.ces and E(G) 
its set of edges., L(G) *—* G is a graph such that V(L(G)) « 
- iv€ V(G) 1 (v,v) € E(G)}o N(G) «—*G is a graph with V(N(G)) = 

s v(G) - V(L(G))* (Edges of 1(G) are denoted as LL-edges, edges of 

N(G) as NN-edges, edges from L(G) to N(G) as LN-edges and edges 

from JT(G) to L(G) as NL-edgeso) 

For any ordinal n denote K^ =- (n,£(i,,j)$ i|j€n, i * i}) 
(i.e. the complete antireflexive graph with n vertices), 

. '- (n, {(i,j) ; i,d€n, i * 3, (i,J) * (0,1))), 

6} - (n, { ( i ,d ) I ±,ien , i « d j ) f 

I-* * (n, {(±9i) * i , j e n , i ^ j j u{(1,0)}), 
l£ - (n, {(i»J) I ±,ien , ±> i\ uUo,1))) , 

* ) This paper is in final form .and no version of it will be 

submitted for publication elsewhere, 
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A 3 = 

GQ - . G. - % G. 

G5 "g-*̂  ^ft Rn = (n,n x n) (the complete reflexive graph) 
Further, put 

K = {K^ ; n ̂  Ord}, 
K # = {K£ ; n € Ord) , 

L+ = {L+j n € Ord}, 

L" =* {L~J n ^ Ord}, 

Set = {(X,0) ; X is a set} (the class of sets = discrete graphs), 

T = {G ; l{(x,y),(y,x)}nE(G)| =1 for any x * y e V(G)} (the 

class of all antireflexive tournaments) 

U = {(n,R) ; n £ 6, U| = (g) + [§], x * y ^lgx,y), (y,x)J f\ R\ S 
£1 and (n,R) contains neither K-fnor A~ as an induced subgraph} , 

V = {(n,R) ; n£ 4, x * y*|R(M K,^l>1, R 2 {(0,1), (1,0), (2,3), 

(3*2)} n n x n and (n,R) does not contain K~ as an induced 

subgraph} , 

W a {A ; any induced subgraph of G with 3 vertices is either 
isomorphic to A^, or to L J , 

XQ = {X i V(X) = Vu£v} , E(X) = Eut(v,v)} where (V,E) € x} 

for X e {K, K', L+, L", T, U, V, w) , 
Symc- = { A ; A is reflexive symmetric, JV(A)| =» 5}. 

1»2> By a product of graphs we mean the categorical product (i.e. 

^ (V±9E±) = ( X v ± , E) where (U .^-- , (y±J>6 E iff 

(xi,yi)€ Ei for any ie I )• 

1 o3# Let C be a class of graphs. Then Ac 0 (i»e0 a C-graph A) is 

said to be subdirectly irreducible if, whenever an isomorphic 

copy A' of A is contained as an induced subgraph in a product 

^ B. with B. € C and p.(A*) = B. for all the projections,there 

ie l i — j j ^ 
s'a j such that the restriction of p. to A is an isomorphism 
onto B.. (This formulation is due to A.Pultr - see £2].) 

1o4> A class C of graphs is said to be hereditary with respect to 

subdirect irreduoibility (HSI) if any induced subgraph of a SI 

C-graph is again SI (see [53 )• 

1 »5« If V(A) = V(B) then the me&t of graphs A A B denotes the graph 

(V(A),E(A)n E(B)).If C = A / \ B , C * A , B then C is subdirectly 

reducible in C(see [3j). 

106. Let D be a family of graphs.Then SP(D) denotes (similarly as 
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in CO) the class of all the graphs which can be embedded as 
induced subgraphs into products of graphs from D. 
1o7* Theorem (seeQ53 ). Let C be a productive hereditary class of 

antireflexive graphs (i.e. a class closed to categorical products 
and to induced subgraphs). Then C is HSI iff either C = Set or 

C = SP(D) where D satisfies one of the following conditions : 

(i) £ £ K u K' 
(ii) D c K olK' ,A4} 
(iii) D c K o IV o T 
(iv) D c K o L" o T 
(v) D S K v U 
(vi) D £ K o v 
(vii) D S. K ^ W 

2o Hereditary subdirect irreducibility 

Before giving the general characterization theorem for HSI 

in graphs we shall consider partial cases discussing possibilities 
for reflexive and antireflexive parts of graphs and for LL-,LN-

and NL-edgeSo 
Throughout this chapter, C denotes a productive hereditary 

class of graphs which is HSI. 
2o1oLemmao If any reflexive subgraph of a SI C-graph A is complete 

then lL(A)l ̂  2. 
Proofo Since C is HSI, any L(A) is SI whenever A is SI.Any reflex-
ive complete graph is an induced subgraph of a power Rp for some 

ko Hence, U(A)| £ 2o 

2.2oLemma<, If some LN-edge of a SI C-graph AQ iŝ -%—> then no 
edge of a SI C-graph A is <—* « Moreover, if some LL-edge of AQ 

is £—i^then no edge of A is —>o 

Proof. <-> = fr*—>A -*—*£ , hence it is reducible and it cannot 

be an induced subgraph of a SI graph Ao If#—=»a 6 Q then 
— > =- < >A p >a is subdirectly reducible and hence it cannot be 

an induced subgraph of A0 
2o3oLemmao Let A ,A be SI C-graphs. If some LN-edge of AQis 

9—> (e*— ,resp») then either any NN-edge of A is **—=> or 
any NN-edge of A is — > 0 
Proofo — > = 5—> A <—> =- #«— A ŝ—>>• Hence, graphs ^—> 

and — > cannot be both SI in Co 

2o4oLemmao If 0*—^ and a—*• ( —»2 »resp.) are both C-graphs 

then lN(A)l £1 for any SI C-graph A. 

Proofo There is •*—"> = B«—> A 
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*^<— , hence any 
antireflexive graph with at least 2 vertices is subdirectly reduc­
ible in C and |N(A){£ 1 for any SI C-graph A<» 
2050Lemma0 If —^2 an<i a—> are both C-graphs then any Mr-edge 

of a SI C-graph A is «-• ••> and no LN-edge of a SI C-graph is ̂  0 

Proof o fchere is — > = ^ A ^ > 9 • • = — > A < — . 

Hence, any OT-edge of a SI C-graph is<-—5> 0 Moreover, ̂  * = 

«• 2 — * A ^ — , hence no LN-edge of a SI C-graph is 3* ° 

2060Lemma0 If a reflexive tournament A is SI in C then A is one 
of the following graphs : 

A 
3 *>1 is an induced subgraph of L * lj 

hence it is not SI0 Any reflexive tournament with at least 4 ver­

tices contains ^i^ 

as an induced subgraph, hence it is not SI. 

2o7»Lemma» If a symmetric reflexive graph A is SI in C then 

lv(A)k 5. 
Proof 0 Using Dirichlet principle, one can check that any symmetric 
reflexive graph G with at least 6 vertices contains either 

3& . ^ 5 or . * * 
as an induced subgraph. Since 

G is ntrst\n Co * * * 

2080Proposition.If a reflexive graph A is SI in C then \V(A)) ̂  9 . 
Proof 0If A is symmetric thenJV(A)|^ 5 due to Lemma 2o7» If A is 
not symmetric then it contains i—>2, as an induced subgraph,Hence, 

b i> s j—»JA j<—£ is not SI in C .Therefore, ^ ^ is not 
an induced subgraph of A« Using Ramsey theorem one can prove that 
any reflexive graph with at least . 9 vertices ?*ich does nqt 
contain j, ^ as an induced subgraph contains either 

A 
a£ \u» or a tournament with 4 vertices as an induced 

subgraph. Using Lemmas 2#1 and 2.6 one proves that G is not SI. 

209# Lemma0 If a reflexive graph A is SI in C and contains G--

as an induced subgraph, then A » Gc. 
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Proofo Using Proposition 4«6 from [3] one can prove that any 

reflexive graph is a C-graph.Since any reflexive graph with at 

least 4 vertices is - due to [ y\ - subdirectly reducible and 

A is SI in C, there is A =- Gc# 

2o10oLemmao If G<- is not a C-graph and Qt^ is a C-graph then any 
reflexive SI C-graph has the following property : For an (x,y) £ 

£ E(A) define U(x,y) as the smallest subset of V(A) x V(A) - E(A) 

containing (x,y) and such that (V(A),E(A) \j U(x,y))s C, Then for 
any two (x0,yQ) , (x^y^g (7(A) x 7(A)) - E(A), U(x0,yQ) o 

n Utx^y-j) + 0, and for every morphism y: A ?B with \V(B)l<lv(A)| 

there is an (x,y) e (V(A) x V(A)) - E(A) with (^(x),y(y))fi E(B)o 

Proof follows directly from Q3]> Lemma 6080 

2o11o Propositiono If a reflexive graph A is SI in C then it satis­

fies one of the following conditions : 

(i) A6 Symg 

(ii) A*-*G5 

(iii) |V(A)I--? 9 and A satisfies the conditions from Lemma 2.10o 

(Denote thip class of graphs by Refq •) 

Proof follows from 2o7-2o10o 
2o12oLemmao The following graphs are subdirectly reducible in C 

whenever they are ̂ -graphs: 

ter->a 

t 
*x R2 

2, ПQ *-» . X ^ 

2o 13 oPropositiono If A is SI in C , L(A) -f 0 is a complete graph 

and (l,n),(n,l)€ E(A) whenever lc L(A), n e N(A) then either 

A is one of the following graphs : CpG-^G, , or \L(A)l = 1 

and N(A) is an antireflexive tournamento (Denote this class of 

graphs by ̂  o) 

Proofo According to 2o1, |L(A)l£ 2O Hereditary subdirect irreduck-

bility implies that N(A) satisfies conditions of Characterization 

Theorem 1,7o Consider two cases : 

1o [L(A)l = 1.Consider possibilities for N(A) using 1*7o 
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(i) If N(A)C Ko K* then by 2.2 there is |N(A)I^ 2. For the case 

lN(A)l = 0 one obtains A = G.j , for the case |N(A)1 = 1 there 
is A = G3 and for the case |N(A)l =- 2 there is N(A) = K2 which 

is an antireflexive tournament on 2 points. 

(ii) If U(A) = A, then one obtains a contradiction using 202. 

(iii) If N(A) Q L+ u £, i^8-1 N(A) is an antireflexive tournament. 

(iv) If N(A) Q L" cJ T then N(A) is an antireflexive tournament 

as well* 

(v) If N(A) € U then one obtains ^ *» as an induced subgraph 

which contradicts 2.2. 

(vi) If N(A) € V then one obtains a contradiction with 2.2, too. 

(vii) If N(A)^ 1 then using 2.2 one obtains that N(A) is an anti-

reflexive tournament o 

2. lL(A)l =- 2* 

If H(A) = 0 then A = G+ • 

If H(A) j- 0 then A contains H.. as an induced subgraph which contra­

dicts 2.12« 

2o14* Proposition. If A is SI in C , ,L(A) fr 0 is a complete graph, 

H(A) - 0 and (l,n)€ E(A), (n,l) £ E(A) whenever l^L(A), ne. N(A), 
then lL(A)I = 1 and either 

(i) N(A) » K^ for some n, 

or 

(ii) H(A) is an antireflexive tournament. 

(Denote the class of graphs satisfying (i) ((ii),resp.) by K-j 

(T^resp.). 

Proof. Lemmas 2.1 and 2012 imply that jL(A)l=- 1. Using 1.7 and 2*3 

one obtains that H(A) is either antireflexive complete or an anti-

reflexive tournament. 

2o15o Proposition If A is SI in C, L(A) * 0 is complete, N(A) #0 
and (l,n) 4 E(A), (n,l)€ E(A) whenever le L(A), n€N(A), then 
\L(A)| a 1 and either N(A) « K for some n or N(A) is an antireflex­
ive tournament.(Denote the corresponding class of graphs by K.- *-# 
ulf •) 
Proof is similar to the proof of Proposition 2.14» 

2.16.Propositi.on. If Ai(i=0,1) are SI in C, L(Ai) =^0 are complete, 

N(AQ) + 0, (l,n)€ E(Ai) whenever 1 c. L(Ai), n<s N(A±) and if there 
exist n-,n2€ N(AQ) , l.j,l2 € L(AQ) such that (^,1^4 E(AQ), 

(n2,l2)/6 E(AQ) then 

^кr 
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Proof oBy 2o2 and 2.3* **~* and — 9 (and also ° * - -—-* A < — ) 
are subdirectly reducible. Hence, llKA.̂ )! <\. By 2.1 and the 
assumptions of Proposition, |L(Av)| < 2. Therefore, 

Ao = \f/ * A1 < * Ao* 

2.17oPropositiono If Ai(i =0,1) are SI in C, L(Ai) ¥ 0 are com­
plete, N(AQ) f 0, (nol) € E(A±) whenever 1 6 L(A ), n e N(A.) 
and if there exist n.,n2 <s N(A Q) , 1.-, 12 <s L(AQ) such that 
(l^n^ ^ E(AQ) , (l2,n2) «r E(AQ) then 

Proof is similar to the proof of 2.16. 

2.18.Proposition. If Ai(i = 0,1) are SI in C, L(AQ) * 0 is either 
complete or a tournament, N(A ) * 0, | £(n,l), (l,n)} C\ E(Aj)l «• 
= 1 for any (n,l)c N(Ai) x L(A^) and if there exist n.j,n2€-N(A ), 
llfl2« L(AQ) such that (l^n^C E(AQ), (n2,l2)s E(A0) then 
N(A±) = K^ for some n, (l',n) e E(A±) ̂ > (nfl")£EU±) 
whenever l' * l " e L(A.). (Denote the class of graphs A.-satisfy­
ing these conditions by L.) 

Proof. By 2.5» any NN-edge of A± is «*—* o Hence, N(A^) • It for 
some n. By 2.12, A. does not contain neither H2 nor H~ as an 
induced subgraph. 

2o 19.Proposition. If A is SI in C, L(A) * 0 , N(A) * 0 and if 
there are no NL- and LN-edges in A then lL(A)l =1. 
Proof follows from 2.12 because A cannot contain H., H^ and HQ 

as induced subgraphs. 

2o20.Proposition. If A. (i = 0,1) are SI in C, L(A.) * 0 is 
complete, N(A ) * 0t 0 * -&U0) X N(A Q) r*~-3(A6)

x *- L(A0)xN(Ao), 
and for any \l9n) € L(Ai) x N(A.̂ ) there is (l,n) e E(Ai)<-=^ (n,l) 
€ E(Ai), then 1L(A^)|^ 2 and N(Ai) is an antireflexive tourna­
ment. Moreover, if jL(Ai)| = 2 then L(A$) = {l',l")such that 
(l',n)£ E(Ai)<f=5> (l", n) € B(A±) for any n ^ N(A±). 
(Denote the class of graphs satisfying these conditions by M.) 
Proof follows from 1.7,2.1,2.2 and 2.12. 
2o21 .Proposition. If A±(± = 0,1) are SI in C, L(AQ) * 0, N(AQ) * 
+ 0, 0 * L(AQ) x N(AQ) n E(AQ) * L(AQ) x N(A0) and 
N(A^ ) x L(Ai) n E(.lL ) = 0, then N(Ai) is either an antireflexive 
tournament or an antireflexive complete graph. Moreover, if 
1'* l'iL(A±) then (l',n) 6 E(A±)<$> (l",n)£ E(A±) for any 
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n 6 IKA.^). (Denote the class of graphs satisfying these conditions 

by £.) 

Proof follows from 1.7,2.3 and 2.12. 

2.22.Proposition. If A±(± =0,1) are SI in C, L(AQ) # 0, N(AQ) 4 
* 0 * H(A0) x L(AQ)n E(AQ) * N(AQ) x L(AQ) and L(A±) x N(A±) A 

fiE(A..) =* 0 then N(A^) is either an antireflexive tournament, or 

an antireflexive complete graph.Moreover, if l' * l"€ L(A) then 

(n,l') £ E(Ai) <±s$> (n,l") ̂  E(A±) for any ne^C-^). (Denote the 
class of graphs satisfying these conditions by P.) 

Proof follows from 1.7,2.3 and 2.12. 

2.23oLemmao If there are (l-j>n.j), (l2,n2), (l3,n.-.) G. L(A) x N(A) 
such that (l^n-j), (n^l-j), (n2,l2)f (l3fn3)jfe E(A), (l2,n2), (n3,l3)€ 

C B(A) then A is subdirectly reducible in G. 
Proof. Since * * , J—^ and£<— -are induced subgraphs o^ A, . 

*• # = a—•> A C* and C is HSI, A cannot be SI. 

2.24.Lemma. If L(A) is complete and if there are (l^n^), (l2,n2), 

Q3,n3)s 1(A) x N(A) such that (l^n^,!^,^),^,^)
 € B(A) 

and (n2,l2) £ E(A), (l2,n2)c E(A) ((n2fl2)« B(A), (l2,n2)*t B(A) 

respo) then A is subdirectly reducible in C. 

Pro of» Suppose A be SI.Then 2.1 implies that lL(A)I --* 2, 2.4 

implies that l.H"(A)l ̂  1 and there are at most 2 LN- and2NL-edges 
which contradicts assumptions of Lemma. 

2.25.Proposition. If A is a SI C-graph which contains Gp as an 
induced subgraph, L(A) x N(A) c ETA), H(A) X L(A) C E(A), then 

1U(A)l£1. (Denote the class of graphs satisfying these conditions 

by£.) 

Proof. Lemma 2.2 implies that no edge of A is neither--*—> nor 

— > . Since ° # =- — > A < — there is lfT(A)| < 1. 
2.26.Corollary. For the case that L(A) is a tournament we obtain 

the following SI graphs : 

V 9<І—9 9 

2.27.Lemma. If G
g
 *—» A, tt(A) * 0, L(A) x N(A) c E(A), 

N(A) x L(A) f\ E(A) =- 0 (1(A) x N(A) n E(A) = 0
f
H(A) x 1(A) <E(A) 

resp.), then A is subdirectly reducible in C. 

Proof follows from 2.12. 

2.28.Lemma. If A contains G
2
,G- andp—5> ( —?g resp.) as induced 

subgraphs then A is not SI in C. 
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Proof. ^—•> = e<r->A 3—>f » — ^ ~ ̂ r^^X^l ' hence A is not SI 
in C. 

2.29.Proposition. If A
±
(i = 0,1) are SI in C, Gg *—> AQ , 0 =* 

=1 L(A
Q
) x N(A

0
) n E * L(A

Q
) x N(A

Q
) and if for any (l,n)€ l(A±) 

x N(Ai) there is (l,n) €E(A±>«>(n,l) ̂ E(A ±) then 
a> 

j / \ , A1 W A Q or A1 <-> *T+* 

v % 
Proof follows from 2.12 and 2.2. 

2o30oLemrna. If a reflexive graph A is SI in C and 3* a- is 

also SI in C then A is symmetric. 

Proof. v v = d—$j* A g< •>, hence A cannot contain Gp 
as an induced subgraph. 

2.31»Propositiono If A. (i = 0,1) and ̂  * are SI in C, 
L(A ) x N(A }r\ B ( A o ) * 0 a n d ^'V.G B(A±)4^>(l.n) <i E(A±) 

for any (n,l) <£ L(Ai) x N(A±) then L(A±) x K A - J c E t A ^ and 

N(A ) is an antireflexive tournament. Moreover, L(A.) c—> i- 1, 

(Denote the class of graphs satisfying these conditions by Tp.) 

Proof. According to 2.30, L(Ai) is symmetric. By 2.2, N(A±) is 

an antireflexive tournament. Since *- ° = ** ^ A 0«r---> 

there is L(Ai) x N(A;.) £ E(Ai). Lemma 2.12 implies that A. 
cannot contain H- as an induced subgraph. Hence, any LL-edge 

of A. is ^ a • Since 
x 4. , ^ 3- i 

there is L(AJL) «—5> ^ a, 

2.32.Proposition. If A and &- j, are SI in C, L(A) x N(A) t\ 

0 E(A) * 0 and N(A)x L(A) f\ E(A) =- 0 (L(A) x N(A)n E(A) * 0 

and N(A) x L(A) nB(A) # 0, resp.) then L(A) x N(A)C E(A) 

(N(A) x L(A) c 2(A) resp.) and either N(A) « K^ for some n 

or N(A) is an antireflexive tournament and L(A) *—* A* 3, # 
(Denote the class of graphs satisfying these conditions by 

K^i; T * ( K * U T^resp.).) 

Proof. By 1.7 and 2.3t N(A) is either complete or a tournament. 

Since J, i « 2 £ A 0 — * =2- A A c < — 1 there is 

L(A) x N(A)C E(A) (N(A) x L(A) gS(A) resp.). Lemma 2.12 implies 

that A cannot contain neither H-- nor Hg as an induced subgraph. 

Hence, any LL-edge of A is X I and L(A) 
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2o33>Proposition. If A±(± = 0,1) are SI in C, ̂  a <—> A , 
**-* *-* AQ, (L(A0) x 1T(A0)$ ̂ N(A0) x L(AQ)) O E(AQ) =» B(AQ), 
|{(l,n),(n,l)} n B(A±)l > 1 for any (l,n) € L(A±) x N(A±)f then 
|N(Ai)l £ 1, lL(Ai)|^ 5fL(Ai) is symmetric and for any n<sN(A.) 
and l'.l'fe L(Ai) such that (l',l")e E(Ai) there does not 
hold both (l',n)€ E( A± )<*£<>( l",n) c B(A±) and (n,l')<£ E(A±)-
<^=J>(n,l")^ E(Ai). (Denote the corresponding class of graphs 
byR.) 
Proofc By 2.30, L(A±) are symmetric. By 2.7, \L(A±)\^ 5o Lemma 
2*4 implies that IN(A^)\ ̂  1. Lemma 2.12 - which implies that 
A^ cannot contain H-.Hp.H- as induced subgraphs - finishes 
the proof* 
2 ̂ •Proposition. If A and ^ 3- are SI in C and if for any 
(l.n) e L(A) x N(A) there is (l,n) € E(A)<s=>>(n,l) <£ E(A) then 
L(A) is symmetric, lL(A)l-£ 5* N(A) » K^ for some n and for any 
l',l"e L(A) such that (l',l") c E(A) there is (l',n) ̂  E(A)<^> 
<c=>(n,l")^ E(A) for any n ^ N(A). (Denote the corresponding 
class of graphs by S.) 
Proof* By 2*30, L(A) is symmetric0By 2.7. lL(A)\£ 5. Lemma 2.5 
implies that N(A) is a tournament and ^ ° is not an induced 
subgraph of A*By 2.12, for any n^N(A) and l',l"^L(A) such 
that (l',l")^E(A) there is (l',n) <£ E(A)<s=> (n,l") € E(A). 

3o Characterization Theorem 

Now, we can prove the following : 

3o 1 o Theorem. Let C be a productive hereditary class of graphs. 

Then C is HSI iff either C = Set or C = SP(D) where D satisfies 

the following conditions z 

D S K u{K3',A^ u KQ v, L(K3')of(A4)0} 
• n C t r . . T + . . m . . .w- . _ T + . i m 

(ii 

(iii 
(iv 
(v 

(vi 

(vii 

(viii 

(ix 

(x 

(xi 

(xii 

D S K u l 

D -= K «-»L"u T uK_ o Ľ 
<J T LřK u L^ — —o —o 

— - — o 
D £ K o U t ^ K 0 ^ U o 

D £ K v̂ V yjK0 KJ VQ 

D S K UW ^ K Q ^ WQ 

D £ Syny L> {GA U Ref Q 

D S l^.GyGfiu T* 
D STJ' u K* 
D 2 T * v; K* 

- <-> T -=o —o 

D CÍ^4—5>0-\ 



PRODUCTIVE AND INDUCTIVE CONSTRUCTIONS OF GRAPHS 135 

( x i i i ) 

(xi v) 
(xv) 

(xvi) 
(xvii) 

(xviii) 
(xix) 

ч°x?i 
D £ L 
D c M 
D c N 

£ s I 
D £ _ 

- • ř чfbґv 

V 

(xx) 
(xx i ) 

(xxii) 
(xxiii) 
(xxiv) 

Proofo 

£ £ £.2 

D c K£ „ T * 
D c R 

D sS 

I* If C is HSI then we can consider the following cases : 

a) All C-graphs are antireflexive<> Then by 1 o7, C » SP(D) where 

D satisfies one of the conditions (i)-(vii)# 
b) All C-graphs are reflexive. Then by 2«11, C =- SP(D) where D 

satisfies (viii)« 

c) There exist C-graphs with loops and also C-graphs without loops. 

Then we can divide the proof of Theorem discussing possibilities 

for LL-,LN- and NL-edges of SI C-graphs* 

LL-edges LN-and NL-edges see £=SP(£) where 

__ D satisfies : 

*<—>* '-•«_-> 
&<. ?0/ <V » 

*'<г-*Ъ' л>< 

^A—ўгЛ/ '-.___-> Лť ^ 

Ч-*'* &.___-> ч -
ft^ yi/ OГ (V y ь л

 ?
 Лц^-_ 

arbitrary <v » 

(V^^/î, •Ч 5> ^ t 

arbitrary Л ţ, ъ ' 
ařbitrary &.£ <v , • 

arbitrary a^-> л—ÿ fl^— 
arbitrary o, ? <•£ (V * 
arbitrary *<—> * — * (V 

arbitrary i v . 4 - 9 *•<; <v « 

4(ť.ľ) <>.*—-> 
í (ţ.V o. *p 

2,13 (ix) 

2.14 (x) 
2.15 (xi) 

2.1б (xii) 

2.17 (xiii) 

2.18 (xiv) 

2.15 (i)-(vii) 

2.20 (xv) 

2.21 (xvi) 

2.22 (xvii) 

2.1 oontradìction 

2.23 contradiction 

2.24 contradiction 

2.24 contradiction 

2.25 (xviii) 

2.27 contradiction 
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ґ\ß ґ\, 1 * 

Ł < W 
«<€..£> 

£;<£.!.: 
-.ФWJ: 
*<£.&: 
* <t> ,£' 

S<tf.Ç: 

9 ь -
1 .v*_^ љ_^ 

ґ\ß ґ\, 1 * 

Ł < W 
«<€..£> 

£;<£.!.: 
-.ФWJ: 
*<£.&: 
* <t> ,£' 

S<tf.Ç: 

1 ^É—? Ч — 

* Qҳ v (o* • ) 

> a ^ ( ^ •) 
> a ^ _ ( * •) 
) я ^ . •> ^ 5> ( < ^ — ) 

' Q, ^ %& 

2.27 contradiction 
2.28 contradiction 
2.28 contradiction 

2.29 (xix) 
2.31 (xx) 
2.32 (xxi) 
2.32 (xxii) 
2.33 (xxi i i) 
2.34 (xxiv) 

II. One can checls that systems satisfying one of the conditions 

(i)-(xxiv) are hereditary.Hence, systems SP(D) are HSI. 
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