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PRODUCTIVE AND INDUCTIVE CONSTRUCTIONS OF C-RAPHS*

Jiri Vindrek
1)

0., Introduction

In [5], there is given a characterization of systems of anti-
reflexive graphs in which any induced subgraph of a subdirectly
irreducible (SI) graph is again SI. In the present paper we give
a full characterization of hereditary subdirect irreducibility for
graphs.

Importance of investigation this topic is following : having
a list of SI C-graphs one can construct any C-graph using only
products end restrictions to induced subgraphs. If a class C of
graphs is hereditary subdirectly irreducible (HSI) then the subdi-
rect dimension coincides with the product dimension (for the defi-
nitions see [4] ).

1. Notations and known facts

1.1. For the description of HSI graphs we shall use some symbols
from [5] and-also introduce some new ones.

If A is an induced subgreph of B we shall write A «— B,
For an arbitrary graph G denote V(G) its set of vertices and E(G)
its set of edges. L(G) «—> G is a graph such that V(L(G)) =
={ve V(G) ; (v,v) €« B(G)}. N(G) &> G is a graph with V(N(G)) =
= V(@) - V(L(G)). (Edges of L(G) are denoted as Li-edges, edges of
N(G) as NN-edges, edges from L(G) to N(G) as ILN-edges and edges
from N(G) to L(G) as NL-edges.)

For any ordinal n denote K, = (n,{(i,J)s i, & n, 1 # J})

(i.e. the complete antireflexive graph witp n vertices),
. = (n, {(isj) ; i,jen, 1+ J, (1,7) # (0a1)}):

Ly = (n, {(i,J) 5 1,jen , 1<3}),

I-'n = (n, {(i,J) 5 i,Jen , 1< ]} vi(1,0)}),

I'; = (n, {(ivj) ; i,jen, 1> j} U{(0s1)})a

® ) This paper is in final form end no version of it will be
submitted for publication elsewhere, '
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s -—
: Q 2
G, = o G =4 G, = 1:? Gy = % G, = @’
[
Gg =@/\@q R, = (n,n x n) (the complete reflexive graph)

" Further, put

K ={K, ; n¢e ord},
K" =1{K ;s n e Ord,
+ +

L' = {Ln; n e Ord},
L™ = {L;; n € Ord},

Set = [(X,ﬁ) 3 X is a set} (the class of sets = discrete graphs),
2 =G ; H{(x3),(y,x)}a EG)] =1 for any x + y € V(G)} (the
class of all antireflexive tournaments)
U={nR) ;ns6, |R= (121) + [%], x4y 2xy),(y,x)inR]|>
21' and (n,R) contains neither K nor A, as an induced subgraph} s
Y ={n,R) ; n<4, x3ylRbLr,3lz1, r2 {(0,1),(1,0),(2,3),
(3,2)Y A n xn and (n,R) does not contain K:,: as an induced
subgraph} ’
_V_V; = {A 3 any induced subgraph of G with 3 vertices is either
isomorphic to AB’ or to LB} N
Z, ={X 3 V(X) =Vu{v}, B(X) = Evi (v,v)} where (V,E)€ _X_:}
for £ €{K, K L L, 1, U, ¥, ¥3,
Symg = {A ; A is reflexive symmetric, |V(A)]l = 5}.
1.2, By a product of graphs we mean the categorical product (i.e.
i‘;xl(vi,Ei) = ( eri’ E) where ((Xi)I ’(yi})GE iff

i
(xi,yi)e E; for eny i€ I ).
1.3, Let C be a class of graphs. Then Ag¢ C (i.e. a C-graph A) is
said to be subdirectly irreducible if, whenever an isomorphic
copy A” of A is contained as an induced subgraph in a product
X Bi with Bie C and pj(A') = Bj for all the projections, there
se"g. J such that the restriction of p:j to A" is an isomorphism
onto Bj. (This formulation is due to A.Pultr - see [2].)
1.4, A class C of graphs is said to be hereditary with respect to
subdirect irreducibility (HSI) if any induced subgraph of a SI
C-graph is again SI (see [5] ). '
1.5. If V(A) = V(B) then the meét of graphs AAB denotes the graph
(v(A),E(A)n E(B))JIf C =AA B, C# A,B then C is subdirectly ’
reducible in C(see [3]).
1.6. Let D be a family of graphs.Then SP(D) denotes (similarly as
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in [1]) the class of all the graphs which can be embedded as
induced subgraphs into products of graphs from D.

1.7. Theorem (see[5] ). Let C be a productive hereditary class of
entireflexive graphs (i.e. a class closed to categorical products
end to induced subgraphs). Then C is HSI iff either C = Set or

C = SP(D) where D satisfies one of the following conditions :
(1) Dg Ku K

(i) D e K U{Ki ,A4}
(iii) DER Vv LT v
(iv) Dex v L vl
(v) Dex vy
(vi) DEK v Y
(vii) DSK Vv ¥

2., Hereditary subdirect irreducibility

Before giving the general characterizaetion theorem for HSI
in graphs we shall consider partial cases discussing possibilities
for reflexive and antireflexive parts of graphs and for LL-,LN=-
and NL-edges.

Throughout this chapter, C denotes a productive hereditary
class of graphs which is HSI.
20.1.Lemma, If any reflexive subgraph of a SI C-graph A is complete
then lL(A)l < 2.
Proof, Since C is HSI, any L(A) is SI whenever A is SI.Any reflex-
ive complete graph is an induced subgraph of a power Rg for some
k. Hence, |L(a)| € 2,
2.2.Lemma, If some ILN-edge of a SI C-graph Ao isw-_.—b then no
edge of a SI C-graph A is «—» . Moreover, if some LL-edge of Ao

is &—3then no edge of A is —>».
Proof, «>» = p&>AN a2 , hence it is reducible and it cannot

be an induced subgraph of a SI graph A. Ife—2 € (C then

—_— =<-;-)Ag—>; is subdirectly reducible and hence it cannot be
an induced subgraph of A. ‘
2+3.Lemma. Let AO,A be SI C-graphs. If some LN-edge of Aois
‘a=—>» (a«— ,resp.) then either any NN-edge of A is <«—w» or

any NN-edge of A is —» . '

Proofy —» = 3—P»A <> = p&— A <>, Hence, graphs «—>
and -—>» cannot be both SI in C.

2.4.Lemma, If pa—» and p—v»- ( —2 ,resp.) are both C-graphs
then IN(A) 21 for any SI C-graph A.

Proof, There is *«—9= pe—P» A €N, ¢— Z &> AL =
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= - Age— , ° ° =g—> A €—= —3 A,&— , hence any
entireflexive graph with at least 2 vertices is subdirectly reduc-
ible in C and |N(A)|< 1 for any SI C-graph A.

2.5.Lemma, If —2 and 3—> are both C-graphs then any NN-edge
of a SI C-graph A is &= and no IN-edge of a SI C-graph is 3 .
Proof, Bhere is —»= —pAgy—>, ° C = —> A — .
Hence,any NN-edge of & SI C-graph is<—» . Moreover, 3 ° =

= @—» A g¢&— , hence no IN-edge of a SI C-graph is & °

2.6 .Lemma, If a reflexive tournament A is SI in C then A is one
of EE Tollowing graphs :

/K
L e— v<—0
Proof. / 2 Q2
2~—>3 1is an induced subgraph of TQ x 1\2
hence it is not SI. Any reflexive tournament with at least 4 ver-
tices contains /|

-as an induced subgraph, hence it is not SI.

2,T.Lemma. If a symmetric reflexive graph A is SI in C then
[veal= 5. v

Proof. Using Dirichlet principle, one can check that any symmetric

reflexive graph G with at least 6 vertices contains either

. (3
a2 5 or v 3
as en induced subgraph. Since
Q S b] 2 2
— x
/ x t x i and . 2 —p N N ,

G is not 5% n [ g 4

2.,8,Propogition.If a reflexive graph A is SI in C then lV(A)lﬁ 9 .
Proof.If A is symmetric then|V(A)l§ 5 due to Lemma 2.7, If A is
not symmetric then it contains 2—>3 as an induced subgraph.Hence,
¥ ¢ = 2—MA g(——j is not SI in C.Therefore, ¥ ¥ 1is not
en induced subgraph of A. Using Ramsey theorem one can prove that

any reflexive graph with at least 9 vertices Viich does nat
contain 2 as an induced subgraph contains either

Q
a& or a tournament with 4 vertices as an induced
subgraph. Using Lemmas 2.1 and 2.6 one proves that G is not SI,
2.9. Lemma. If a reflexive graph A is SI in C and contains G5
es an induced subgraph, then A = G5.
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Proof. Using Proposition 4.6 from [3] one can prove that any

reflexive graph is a C-graph.Since any reflexive graph with at

least 4 vertices is - due to [3] - subdirectly reducible and

A is SI in C, there is A = G5.

2,10.Lemma., If G5 is not a C-graph and G, is a C-graph then any

reflexive SI C-graph has the following property : For an (x,y) ¢

¢ E(A) define U(x,y) as the smallest subset of V(A) x V(A) - E(4)

containing (x,y) and such that (V(4),E(4) v U(x,y)) & C. Then for

any two (x,,¥,) » (x9,¥4) € (V(A) x V(4)) - E(A), U(x,,y,) n

A U(x1,y1) $+ @, and for every morphism y: A —53B with \V(B)l<lV(A)]

there is an (x,y) € (V(4) x V(4)) - E(A) with (¢(x), ¢(y)) e E(B).

Proof follows directly from [3], Lemma 6.8,

20,11, Proposition. If a reflexive graph A is SI in C then it satis-

fies one - of the following conditions : '

(1) Ae Symg

(ii) Ae> G

(1ii) lv(aA)l =9 and A satisfies the conditions from Lemma 2.10.
(Denote thig class of graphs by _Iﬁg .)

Proof follows from 2.7-2.10.

2.12.Lemma, The following graphs are subdirectly reducible in C

whenever they are C-graphss '

l?a 1\?1 v 1 K-.—>l

H

4
—1 _ )’-i—-) ) ™ v b}
\/ / . .
H- Hg H7 H8
Proof.

2 2 o 2 2
H1=—>G3 sz N H2¢——>.c’x R2 s H3‘—>4}"- xR2, H4f—>'3'x R2,

Hs"'"'BXGg » Hg <> 'PXGS ’ H7=->~}ng’ Hg => x3.
2.13.Propogition, If A is SI in C , L(A) # # is a complete graph
and (1,n),(n,1) € E(A) whenever 1 L(A), n & N(A) then either

"A is one of the following graphs : G1,GB,G , or Vo)l =1

end N(A) is an antireflexive tournament. (Denote this class of
grephs by 2, .)

Proof. According to 2.1, lL(A)lf. 2. Hereditary subdirect irreduci .
bility implies that N(A) satisfies conditions of Characterization
Theorem 1.7. Consider two cases :

1. |L(A)] = 1.Consider possibilities for N(A) using 1.7.
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(1) If N(A)€ Kv K° then by 2.2 fhere is | N(A)l = 2. For the case
I¥(a)] =0 one obtains A = G, , for the case | ¥(a)) = 1 there
is A = Gy and for the case IN(A)l = 2 there is N(4) = K; which
is an antireflexive tournament on 2 points.

(i1) If N(A) = A, then one obtains a contradiction using 2.2.
(iii) If N(A) € LY v T then N(A) is an antireflexive tournament.
(iv) 1£ N(A) e L- v T then N(A) is an antireflexive tournament
as well.

(v) If N(A)G U then one obtains <—» as an induced subgraph
which contradicts 2.2,

(vi) If N(A) € ¥V then one obtains a contradiction with 2.2, too.
(vii) If N(A)e ¥ then using 2.2 one obtains that N(A) is an anti-
reflexive tournament.

2. lua)l = 2.

If N(A) = @ then A = Gy o

If N(A) & ¢ then A contains H, as an induced subgraph which contra-
dicts 2.12, _
2.14. Proposition., If A is SI in C ,,L(A) ¢ # is a complete graph,

N(4A) = § and (1,n) & E(A), (n,1) ¢ E(A) whenever le L(A), ne N(4),

then JL(A) = 1 and either

(1) nN(A) = K, for some n,

or
(ii) N(A) is an antireflexive tournament. "
(Denote the class of graphs satisfying (i) ((ii),resp.) by )%
(T1,resp ).
Proof. Lemmas 2.1 and 2.12 imply that |L(A)}= 1. Using 1.7 and 2.3
one obtains that N(A) is either antireflexive complete or an anti-
reflexive tournament.
2,15, Proposition., If A is SI in G, L(4A) % # is complete, N(A) 3¢

_and (l n) ¢ E(A), (n,1) € E(A) whenever 1 e L(A), n€éN(A), then
\L(4)] = 1 and either N(A) = K, for some n or N(A) is an antireflex-

ive tournament.(Denote the corresponding class of graphs by K‘r v
vI? .)

Proof is similar to the proof of Proposition 2.14.

2,16 .Proposition. If 4,(1=0,1) are SI in C, L(4;) £ ¢ are complete,
N(A)) 4+ @, (L,n)e E(A; ) whenever 1€ L(4;), n& N(A;) and if there
e:n.st n,,n,6& N(A, ), 11,12 € L(A,) such that (n1,l )c E(A,),
(ny;,1,) ¢ E(A) then

&

Ay > 3(&/
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Proof.By 2.2 and 2.3, «—» and —> (and also ° * = —3 A &— )
are subdirectly reducible. Hence, lN(Ai)I <£1. By 2.1 and the
assumptions of Proposition, lL(Ai)I < 2, Therefore,

A, = R 7 » Ay —> AL
2.17.Proposition. If A;(i = 0,1) are SI in C, L(4;) # # are com-
plete, N(A)) # #, (n,1) @ E(4,) whenever 1 € L(A)), ne N(4.)
end if there exist n,n, G N(Ao) » 1 L @ L(Ao) such that
(1,5n4) € E(4,) » (15,n,) @ E(4,) then

La—p L

BTN/

Proof is similar to the proof of 2.16.

2,18, Progositlon. It Al(i = 0,1) are SI in G, L(A ) # @ is either
complete or a tournament, N(A ) % 6, l{(n,l) (l,n)} N E(Ai)f a
= 1 for any (n,1) € N(4;) x L(A ) and if there exist n,n,& N(4,),
1,51, € L(4,) such that (11,n1)€ E(4,)s (0,1, )e E(4,) then
N(Ai) Kn for some n, (1°,n) € E(A ) <> (n,l )EE(A )
whenever 1° #1°" € L(Ai)° (Denote the class of graphs A.I satisfy—
ing these conditions by L.)

Proof. By 2.5, any NN-edge of A; is «—> . Hence, N(Ai) = K, for
some n. By 2.12, Ai does not contain neither H2 nor H3 as an
induced subgraph.

2,19,Proposition. If A is SI in G, L(A) # @ , N(A) + @ and if
there are no NL- and LN-edges in A then |L(A)l = 1,

Proof follows from 2.12 because A cannot contain H4, H.7 and HB

as induced subgraphs.

2,20, Proposition. If A;(i = 0,1) are SI in (, L(44 X X B
complete, N(A, ) 4 9 [ L(A,) x N(A)) nTE(A4 1w L(A )xii (4 )

and for any {'l,n) € L(A ) x N(A ) there is (l,n) € E(Ai)cp (n,l)
€ E(4;), then lL(Ai)ls 2 and N(Ai) is an entireflexive tourna-
ment. Moreover, if lL(A )l = 2 then L(4) = {1° »1°"}such that
(1%,n) ¢ E(A)) <= (x°’, n) € E(4;) for any ne N(4;).

" (Denote the class of graphs satlsfying these conditlons by M.)
Proof follows from 1.7,2.1,2.2 and 2.12.

2.21.Proposition, If A; (1 = 0,1) are SI in G, L(A ) ¢. N(A ) ¥
+ 9, ¢*L(A)xN(A)n E(4,) #L(A)xN(A)end

N(A ) x L(A ) n E(Al_) = @, then N(A;) is either an antireflexive
tournament or an antireflexive complete graph. Moreover, if

1°% 1"eL(4;) then (1%,n) € E(A;)e» (1°7,n) ¢ E(4;) for any
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ne N(Ai).(Denote the class of graphs satisfying these conditions

by N.)

Proof follows from 1.7,2.3 and 2.12.

2.22.Propogition., If Ai(i = 0,1) are SI in G, L(Ao) + 0, N(Ao) 3

# 0+ N x LA )N E(4)) # N(A)) x L(A)) and L(4;) x N(4;) N

NE(A{) = ¢ then N(A ) is either an ant:.re:t‘lexive tournament, or

an antireflexive complete graph.Moreover, if 1° & 1°°€ L(A) then

(n,17) e E(Ai) > (n,17°7) ¢ E(Ai) for any neN(Ai),. (Denote the

class of graphs satisfying these conditions by P.)

Proof follows from 1.7,2.3 and 2.12.

2.23.Lemma, -  If there are (1,,1,),(1;,n5),(15,03) € L(A) x N(4)

such that (1 19890 (14514)5 (n,,1,), (13,n g: E(4), (1,,n5),(n3,15)€

e E(4) then A is subdlrectly reduclble in C.’

Proof, Since 3 °*, yJ—>» and@<— -are induced subgraphs of A, .
&  * =3 AS— and( is HSI, A cannot be SI. |
«24.Lemma. If L(A) is complete and if there are (11,11 ), (lz,nz),

(1 ,n3) G L(A) x N(A) such that (1;,n,), (13,n3) (n3,13) € E(4)

and (nys15) ¢ EW), (155m,)€ E(A) ((nz,l )& E(4),(1,,n, )¢ E(A)

resp.) then A is subdirectly reducible in (.

Proof, Suppose A be SI.Then 2.1 implies that IL(A) £2, 2.4

implies that |N(A)= 1 and there are at most 2 LN- and2NL-edges

which contradicts assumptions of Lemma.

2.25.Propositions. If A is a SI C-§raph which contains (}2 as an
induced subgraph, L(A) x N(A) ¢ ETA), N(A) x L(A) < E(A),“then

1§(A)l £1. (Denote the class of graphs sat:.sfylng these conditions
. by Q.)

Proof. Lemma 2.2 implies that no edge of A i's neither«—> nor

" —> . Since ° * = —>» A <€— there is W)l < 1.
2.26,Corollary., For the case that L(A) is a tournament we obtain
the following SI grephs :

R
A S
Y
o27.Lemma. If G, <> 4, N(A) ¥ §, L(A) x N(A) ¢ E(4),
N(A) x L(A)n E(A) = 8 (L(A) x N(A) A E(A) = §,0(A) x L(A) <E(4)
resp.), then A is subdirectly reducible in cC.
Proof follows from 2.12.

2,28,Lemma, If A contains G2,G3 e.ndp——)( — resp .) as :Lnduced
subgraphs then A is not SI in cC.
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Proof. g—> =& PA g —¥ =<PAJ—% » hence A is not SI
in Ce.

20,29.Proposition, If A (i = 0,1) are ST in C, G ¢-——>A° » 0 %

3 L(A)) x N(A)) n B % L(A ) x N(A)) and if for any (L,n)e L(4;)
x N(A ) there °1s (1,n)eL(A )<$=>(n 1)<=(4;) then

A, > /\a Ay @A or A, >
R A

Proof follows from 2.12 and 2.2,

- 2:30.Lemma, If a reflexive graph A is ST in C and 2 2 is
also SI in C then A is symmetric. ’
 Proof. ¥ W = @—35 A @¢—», hence A cannot contain G2
as an induced subgraph.
2.31.Proposition, If A.(i = 0,1) and ¥* ¥+ are
L(A) = N(a e E(A)) ¥ ¢ end (n,1) eE(Ai)<—>(1 n) ,5 E(Ai)
for any (n,1) € L(4;) x N(A;) then L(A;) x N(Ai)E-_E(Ai) and
N(Ai) is an antireflexive tournament. Moreover, L(Ai) > ¥ 2
(Denote the class of graphs satisfying these conditions by T2.)
Proof, According to 2,30, L(Ai) is symmetric. By 2. 2, N(A ) is
an antireflexive tournament., Since + ° = ¥ ¥ A 04—9
there is L(A;) x N(4;) € E(A;). Lemma 2.12 implies that A;
cannot contain H1 as an induced subgraph. Hence, any Ll-edge
ofAi is ¥ 3 t.,Sinc.',e 2 X
X 3 — s s
there is L(Ai) “—> 3 2
2,32.Propogition, If A and & g are SI in G, L(A) x N(A) p
. n E(A) # @ and N(A)x L(A) n E(A) = ¢ (L(A) x N(A)n E(A) = ¢
and N(A) x L(A) @E(A) # @, resp.) then L(A) x N(A)G E(A)
(N(A) x L(A) < E(A) resp.) and either N(A) = K, for some n
or N(A) is an “entireflexive tournament and L(A) «—> & 3 .
(Denote the class of graphs satisfying these conditions by
K2 v 2y (& v T3 resp.).)
Proof, By 1.7 and 2.3, N(A) is either complete or & tournament.
Since 3 2 =2 2 A O—> =L & A pe— , there is
L(A) x N(A)g E(A) (N(A) x L(A) g E(A) respe). Lemma 2.12 1mplies
that A cannot contain neither Hs‘nor H6 as an induced subgraph.
Hence, any Ll-edge of A is 2 3 and L(A) &> 2 o
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2.33.Proposition. If A;(i = 0,1) are SI in G, > 2 <« 4,
ae> —» 4, (L(a) xl\T(A ), UN(A ) x L(Ay)) n E(A)) 4E(A )
1{(1,n), (n, l)} A E(A )N >1 for any (1,n) G L(A ) x N(Al), then
lN(Ai)\ £1, lL(Ai)lé S,L(Ai) is symmetric and for any ne N(Ai)
and 1°,1°& L(A;) such that (1°,1°") € E(A;) there does not
hold both (1%,n) € E(A;)=>(1"",n) & E(4;) and (n,1°) & E(4;)=>
&>n,1 e E(Ai). (Denote the corresponding class of graphs
by R.)
Proof, By 2. 30, L(A ) are symmetric. By 2.7, \L(Ai)\ss Lemma
2.4 implies that lN(A N <1. Lemma 2.12 - which implies thet
Ai cannot contain H1,H2.H3 as induced subgraphs - finishes
the proof,
2+34.Proposition. If A and ¥ 2 are SI in C and if for any
(1,n) 6 L(A) x N(A) there is (1,n) € E(A)<=>(n,1) ¢ E(A) then
L(A) is symmetric, |L(A)|=5, N(A) = K, for some n and for any
1°,1"%e L(A) such that (1°,1°") € E(A) there is (1%,n) € E(A)<=>
<> (n,1°°) € E(A) for eny n € N(A). (Denote the corresponding
class of graphs by S.)
Proof. By 2.30, L(A) is symmetric.By 2.7, |L(A)\£ 5. Lemma 2.5
implies that N(A) is a tournament and ¥ ° is not an induced
subgraph of A.By 2.12, for any n€ N(A) and 1°,1°°€ L(A) such
that (1°,1°°) € E(A) there is (1°,n) € E(A)e> (n,1°") € E(4).

3o Characterization Theorem
Now, we can prove the following :
3.1, Theorem. Let C be a productive hereditary class of graphs.
Then G is HSI iff either C = Set or C = SP(D) where D satisfies
the following conditions :

(i) _]_)_'iKuKuKouK
(11) DS K v{Kp4,} v K,V (x5 ) o2 (44),3
(iii) gs_zgux,*ufruxoux, UT
(iv) DS K vl~ ugugougougo
(v) DEX ol uKouI}_o
(vi) DX VY vk v V|
(vii) D sK vl VK v W,
(viii) D = Symg u{G} v Refg
(ix) D S {6,365, 43u i
(x) D sg*ux“
(x1) D 52'1" )i
(xii) _I_),g

LWa
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(xiii)
AV
(xiv) D€L
(xv) DelM
(xvi) D eX
(xvii) DR
(xviii) De Q
(xix) . a
Ds { S %’*}
Ve
(xx) 2€ E—’f
(zxi) D SKFvI)
(xxii) D €K vIJ
(xxiii) D eR
(xxiv) D =8

Proof, Ie¢ If C is HSI then we can consider the following cases :
a) All C-graphs are antireflexive. Then by 1.7, C = SP(D) where

D satisfies one of the conditions (i)-(vii).

b) All C-graphs are reflexive. Then by 2,11, C = SP(D) where D
satisfies (viii),

¢) There exist C-graphs with loops and also C-graphs without loops.
Then we can divide the proof of Theorem discussing possibilities
for LL-,IN- and NL-edges of SI C-graphss

LL-edges IN-and NL-edges see C=SP(D) where
i D satisfies
° ix

Me s Le> 2.13 ( \)
A@q{v 4-._—.) 2914 (x)

, n 2,15 (xi)
30 - i
Q 0. 2016 (Xli)
&y b O .

%qq (LH A‘_ 2017 (Xlli)

P OTO s Ay O 2,18 (xiv)
arbitrary o e 2,19 (1)-(vii)
Y Y WG 2.20 (xv)
arbitrary s & 2,21 (xvi)
arbitrary ag o . 2,22 (xvii)
arbitrary le—y By O 2.1 contradiction

. 2.23 contradiction
e v ) v 2,24 contradiction
arbitrary Ve Vs & - ° :
arbitrary o, og a 2.24 contradiction
A : 2,25 (xviii)
(ff, ;) Q 2.27 contradiction.
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vo ke p o CORRERN D

JIRL VINAREK

A A
(I;a\r) o 2.27 contradiction
&, 3) by D 2.28 contradiction
(és :) Ge—> g 2,28 contradiction
&, D > T - 2.29 (xix)
8 aes (@ ) | 2.31 (xx)
(13.1%) sy (@ ) 2,32 (xxi)
@.5) e (R ) 2.32 (xxii)

3,8) ey 4> (o) 2.33 (xxiii)
(sz:{%)" s W 2.34 (xxiv)

ITI. One can check that systems satisfying one of the conditions

(1)=(xxiv) are hereditary.Hence, systems SP(D) are HSI,

.ﬁ]
[2]
(3]
L4]

[5]
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