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CONJUGATION IN SPINOR SPACES 

MAJORANA AND WEYL SPINORS. 

by A. Crumeyrolle. 

Preamble. 

This subject is a relatively old subject, but according my experience 

there is any systematic and rigourous development of these topics, par-

ticulary in dimension different of 4. Usually these notions are derived 

from the Pauli-Dirac tricks and are presented in ffpatch-work" form, I 

intend to expose a complete and (I hope) satisfying solution using the 

modern approach in spinor theories initiated by Chevalley in the famous 

book "The Algebraic theory of spinors" [2] and some results of mv own 

tracts and papers [3]. 

1. Conjugations and group representations. 

T is a group, (W,p) a complex representation space 

p : (g,x) e r * W —*g.x e W, 

W is called a T-module. 

Definition 1, 

A conjugation J is a r-module homomorphism : 

J(g.x) -- g.J(x) , g e T, x e W 

J(Xj+x2) - J(Xj)+J(x2), Xj, x2 t- W, 

such that : 

(1) J (ax) - aJ(x), a e <C, 

(U) J2 = ±Id. 

One immediatly sees that the product of two conjugations is a linear 

isomorphism. 
2 

If J = -Id, W posseses a quaternionic structure (vector space over H) 

(quaternionic case). 

2 

If J • Id, we can associate with (W,p) two real equivalent representa­

tions (real case). 

The precedent results are well known. 
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2. Recalls about the spinors [2,3] 

Consider first, a real vector space with n = 2r dimensions - the even 

dimensions are the most important for geometrical and physical applica­

tions - and construct the Clifford algebra C(Q) of (E,Q) provided with 

a non degenerated quadratic form with (p,q) signature, B is the bilinear 

symmetrie associated form ; we can suppose first p < q. 

(Ef,Qf) is the complexified space of (E,Q). 
2 

Let (e.,e2...e ) an orthonormed frame of (E,Q) with (e^) =-1, i < p 
2 

and (e.) = -1, i > p. 

We construct a Witt decomposition Ef = F © Ff, 
e +e e +e ** ie ,+e ie +e . . 

F-fx - * n x - P
 n"p+1

 x --••P+1 n"P x -* r n"r+1 

F-(x.j—,...,x p- 2 > Xp+1 2 Xr 2 

e,-e e -e . ie ̂  -e ier-~en-T-+i 

F',( y = '
 U,.. y -, P n"P+1 y °+1 ""? y ̂  * ? *+] 

r Ky\ 2 yp 2 ' yp+l 2 9 yr 2 

B(x.,Vj) = ^ £ j , B(x.,Xj) = B(y.,yj) = 0. 

{x.,y.} constitutes a "real" Witt frame. 
Note : x.y. + y.x. = 6... 

-• J J i iJ 

We put : yiYo'-'y =f> a n d call f an isotropic r-vector ; classically, 

C(Qf) f is a standard spinor space, viz. a minimal left ideal in C(Qf). 

If f. is another isotropic r-vector, and f. C(Qf) the corresponding 

right ideal, any element in f. C(Qf) and C(Qf) f is called a pure spi­

nor. 

Fixing the standard spinor space, any maximal totally isotropic subspace 

(m.t.i.s.) characterizes, modulo a scalar factor, a pure spinor [l,3bj. 

For example x.x«...x f is a pure spinor. 

In the complexified Clifford algebra C(Qf) there exists a complex-

conjugation, it is a* semi-linear isomorphism commuting with the main 

involution a and with the main anti-involution 3. 

3. The pure spinor of conjugation yf. [3j . 

Consider again an isotropic r-vector f, 

f = x.*.'x * ... x *, where x.*, x̂ *,..,. x * are r linearly independant 

isotropic vectors. According the classical Witt theorem there exists 

Y e Pin Qf sending every x * over x *, a = 1, 2,..,r, 
a a 

x * = YX *Y ; 

a* ' a f ' 

then we have : yf = fY, and Yf is a pure spinor, we can suppose 

Y e G (Qf), i.e. N(Y) • 1, where N is the spinorial norm. Neverthless 

we can choose several elements in G (Qf) sending also f over f, if 
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Y
f
 is a such one element : 

15 

ү ' f Y 
,-1 

g f g , with g = Y Y« 

We give now a very important lemma : 

Lemma 1 : 

I f g be longs to the Cl i f ford group of C(E,Q) dim E - 2 r , with n e u t r a l 

form Q, and i f : 

g f g = Xf, f i s o t r o p i c r -vec tor , 

X scalar, X £ 0, there exists a scalar y such that gf „ uf and converse-
2 ly ; moreover X = y N(g). 

We remark that gf = Xfg is a pure spinor yf, applying g we 0btaj.n : 

fg"1 N(g) = yf 

Xf - y N(g) gf 

gf = yf, X = y2 N(g). 

Reciprocally, if gf = yf, applying (3, we get : 

gfg"1 = y2 N(g)f. 

Coming back to f = gfg" , g e G Q ( Q
T ) = G^, we have gf - ±f. Then g be­

longs to the subgroup HT of GT with elements g such that gf = ±f, final­

ly Yf - XI* T e HT» 

We define now p = YY> anc- from the lemma 1, we obtain : pf = eTf, 

eT * ±1. 

The scalar eT such that pf =.yyf = eTf, with 

f = Y-̂ Y 9 Y e GT, does not depend : 

neither of the choice of Y e G? sucn tnat YfY " = f ; 

neither of the factorisation of f in product of r isotropic vectors ; 

neither of the choice of the isotropic r-vector f. 

The proof is easy. 

The lemma 2 displays some geometric meaning for eT, also we develop now 

several lemmas and propositions leading to the checking of £T. We gave 

these results in the paper [3,a] and the tract [3,bJ where the reader 

can find the proofs. 

Lemma 3 

If yf is a pure spinor defining F*1, Y <- pin Qf> x belongs to FT, if and 

only if xYf - 0, V x e FT. If y - Pin QT and if xyf ^ 09 ^ x e l \ then 

Yf is a pure spinor defining FT. 
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Lemma A : 

If B is the real, symmetric, bilinear form associated to Q, and if 

B(y,y) = 0, V y e Ff, then B(y,x) - 0, V x e Ff and Ff - Ff. 

Lemma 4 : 

If B(y,y) £ 0, ¥ y e Ff, y £ 0, there exists a Witt frame 

(x.,x2,...xr, y.,y2,...yr) such that : 

y. = 6x., 6 = ±\9 i = l,2,...r, 

FfO Ff = 0 and 6 does not depend of i. 

Proposition 1. 

Let Ff be a m.t.i.s. of E^ = Ef, with dim(Ff n Ff) = r-h. 

st 

1 ) . We can construct a Witt frame : 

(Xj,x2,...,xr, yj,y2,...,yr) 

such that the r isotropic vectors y , , y . - . , . . . y generate Ff, 
yi_ ,, y. o,»««y constitute a frame of F' n Ff and Jh+\' Jh+2* Jv 

y i = 6 x i " - » y
h
 = 6 v 6 = ± 1-

2 ), If yf is a pure spinor representing Ff, we can choose, modulo a 

scalar factor : 

Y - (x,+y,) (x2+y2)...(xh+yh), 

Yf = xJx2...xhf, f = yiy2...:yr. 

If W is a complex vector subspace (dim W = h) in the m.t.i.s. Ff, such 

that W = W, there exists a W-frame y^y^,..^^ with y^y-, • • •Yu^Yx.9 

Lemma 5 

Proposition 2. 

If Ff is a m.t.i.s. of E • Ef, with dim(Ff n Ff) • r-h, we can cons­

truct a special Witt frame : 

(x.,x2,...xr, y.,y2...yr) 

such that y..y2,...y generate F1 with : 

( l ) yh+l
 = y

h+l«
 yh+2

 = y h + 2
 yr = yr ; 

(.3) yj - 6x., y2 - 6x2 yfa = 63^, 6 - 1 or(-l) ; 

(1,,) V l " V . Xr " V 

Corollary 1 : 

In any m.t.i.s. F? belonging to the complexified of a real space Ef, 
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we can find r isotropic vectors and adding them r isotropic vectors in 

Ef, we can obtain a "real" Witt frame. 

Corollary 2 : 

If f is a r-isotropic vector defining the m. t.i.s. Ff in Ef, ff ?- 0 is 

equivalent with Q definite and Ff n Ff = 0. 

Finally we eXplain the calculus of e
f such that 

pf • eff, p = YY. 

If 6 = 1, in the proposition 2 above, we consider : 

e. • x. + X., e! = i(X.-X.), j = l,2,...h. 
J J J' J J J J 

fj - (Xj + y.), f\ = (Xj - y.), j = k+l,...,r. 

(ej)
2 • 1, (e\)2 • 1, (f^2 • 1, (fj)2 • -1. 

The Sylvester decomposition contains h+r "positive" squares and r-h 

"negative11 squares. If p is the number of the positive squares p • h+r. 

If 6 • -1, a analogous method gives h+r negative squares, and there are 

p • r-h positive squares. Note that (p, n-p) is the signature of Q with 

p positive terms, h = p-r if 2p > n, and r-p if 2p < n. 

We take Y - CXJ+YJ) (x2+y2)... (\+Yh)y N(y) - 1, 

Yf = X]X2...Xhf, h(h-l) 

;7yf - V.2...XJ. Xlx2'--V = ("° 2 *lV"*h VW'-xi f-
If 6 • 1, y - x ,... y - ^ , h - p-r * 

h<h-l) (p-r) (p-r-1) 

YYf - (-0 2 f. .sT - (-D. 2 

If 6 • -1, yj • -Xj,... yh • -xh, h • r-p , 

h(h+l) (p-r) (p-r-1) 

Theorem 

(-1) 2 • (-1) 2 

Thus, we obtain 

If Yf is the pure spinor of conjugation, 

Y <- Pin Qf, pf • YYf ° £ff> 

(p-r)(p-r-1) j 

ef - (-0 2 , [3,a]. 

where p is the number of positive squares in the Sylvester decomposi­

tion of Q, 0 £ p <, 2r. 

We can choose Yf " xix9,,,xh^» h B IP"rl* 

4* The charge conjugation and the Dirac adjunction. 

We put, if uf is any spinor ; as ufY • uYf : 



18 by A. CRUMEYROLLE 

Remark 1 

1ff(uf = exp i9(uYf) 

6 is a real arbitrary coefficient, and modulo a constant scalar factor, 

any Y choice in Pin Qf, does not modify u(uf). 

^commutes with the G-action (G real Clifford group). 

)? is semi-linear, and 

S 2 -E'Id. 
*>2 

Then G = Id, iff p-r = 0 or. 1, mod 4, (or p-q = 0 or 2 mod 8). 

The Dirac adjunction (X is defined according : 

a o « = 3/s 

where 3 / s i s the main a n t i - i n v o l u t i o n i n the sp inor . space S. 

GMuf) = e f 3 ( « ( u f ) ) 

Gt o $ = ^ o Ct 

are immediate. 

The particular case ff >-= 0 is obtained when p = 0. 

fff = Af, A j- 0, A e m*. 

Note that fff ?- 0, according anterior results means that Ff n Ff • 0. 

If we replace f by af, a e C , we can consider only two cases X =- 1 or 

A = -1. 

Because If belongs to C(Qf)f n 1 C(Qf), 

ff = aYf, a e C 

and aa = Xef, 

X and ef possess the same sign. 

When ff 7- 0, we can define a conjugation )? according : 

tf(uf) = /X exp (iO)uf f , (/X = 1 or i). 

tf2 = Id, if X = 1 

tf2 = -Id, 'if X = -1. 

We shall examine below if there exists another conjugations in the spi­

nor spaces commuting with the G (or G )-action. 

Remark 2 

We can define a hermitian sesquilinear form 3i on the spinor space ac­

cording : 6(uf)vf - a W(uf,vf) Yf> a2 = eef, 

e such that 3(f) = ef. 

3£ owns interesting property connected with the conjugation o : 

# ( £(uf), vf) = e #(!f(vf), uf) 

and also : 

# ( tf(uf, tf(vf) = eef#(uf, vf). 

The reader can consult [3,a] for more details about hermitian forms and 

conjugation. 
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5. Majorana spinors. 

We consider spinor spaces such that the ef constant is 1, with a conju-

gation E» defined in 4 above, then c? = Id. The spinor space S is the 

direct sum of two real spaces S. and S« such that : 

S. = (I +tf)(rS), S 2 = (I - g)(rS) . 

I is the identity and rS the realification of S. If we call ty any spinor 

in S, ̂  is the sum of two spinors ip. and if̂ , with : 

The spinors t̂. \oio ty ) are called Majorana spinors ; the product by i 

exchange these spinors and : 

tfljl! - •,, t^2 = -*2. 

If the dimension of S is 2 r on <C, the Majorana spinors ty. (or ty ) gene­

rate a real 2 -dimensional space. Because If commutes with the G-action 

S. and S« are globally invariant for this action and the representation 

of G in S splits in two real representations. 

We obtain this situation when p-q =-0,2, (mod 8). 

Remark 
2 

If t = -Id, according the 1 above, the spinor representation of G is 

th quaternionic. 'It is possible writing, unically ty = t|J. t tyj* w^ 

^ j = i * 2 , \?*2 = - i ^ r 

Naturally there not exist a decomposition of S in direct sum of two com­

plex spaces, because 

1+ig 1-iff 
2 2 

any element ip is written : 

-->•-« ( J 4 . t w 2 v 2 

1-iČ 1+itf 

- > 

1+itf 
2 ••• <*. f orm), 

1-itf 
2 

. ф" (*2 
f orm). 

4,6 (mod 8 ) . 
r 2 2

 r 

We meet this situation if p-q 

6. Weyl spinors. 

Consider the product e.e^.-.e = e.^, of the n elements (e.) belonging 

to a orthonormal frame of E, If n = 2r, we know that e^ anticommutes 

with any x e E. If we change the orthonormed frame into (e!), we obtain 

the product le^. The classical result vp (x) = gxg-1, x e E, g e G, 

gives easely if (e^) = -Id_ and *f(^
N
) extends naturally to the main 

involution of the Clifford algebra. 

We can sea immediately that : 

*N
f
 - <-»'' * 
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eNf 6 N ' * (_I)rf • ° ' ( f ) 

and ^ f is a pure spinor defining a(f) (here a plays a role liking com­

plex conjugation above). 

But a(eN) = ( " 0 % 

a ( eN ) eN f = fif' £ = ±!' 

with (eN)
2 = 2 , (n=2r). 

2 = (-Dr'P. 

According an evident analogy with the Tt?-definition, we could call 

"Weyl conjugation" : 

^(uf) = eN uf, 

obtained from the sequence of transformations : 

uf —• a(uf)—•a(uf)eN = a(u) eNf = ̂  uf 

(liking : uf— y iif—y ufy = uyf). 
2 However, we wish obtain Vf = Id, also, taking account of 

(eN) = (-1) P = (-1) , we introduce r\ e C , such that 
9 "h 

r) = (-1) and define, "Weyl conjugation" by : 
^r(uf) = n ^ uf. 

ite 

Taking 

Vr commutes with the G - a c t i o n . 

] + <W 1 - \M 

*1 =-LV*' 2̂ - • S - * i 
one writes any spinor as a direct sum of two "Weyl spinors", vp and 

if 2 with : 

t^Ctf,) " ¥,. t^(^2>
 = " ^ 2 -

It is easy seeing that a spinor is a Weyl and Majorana spinor in the 

precedent meaning iff % commutes with ne>,- viz. p = r, mod 2, but as 

p = r or r+1, mod 4, for a Majorana spinor, this condition give final­

ly : 

p=r, mod. 4 or p-q = 0, mod 8. 

(We recall that n = 2r, here). 

7. Weyl-Dirac charge conjugation (Chiral conjugation) and generalizations. 

e-g defines a Clifford algebra automorphism, of which the product with 

the usual complex conjugation gives a new complex conjugation. With 

the notationUsed in 3, we must change £T into 

e ,(-l) r _ p 

and a conjugation (called Weyl-Dirac conjugation) is coming from there 

if you are using a(u). The Majorana condition is e ' ( - 1 ) * 1 

p « r (or r-1), mod 4 
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p-q = 0 , 6 (mod 8). 

Note this conjugation commutes only with the G -action. 

Ending our study in even dimension, we are looking for the conjugations^ 

commuting with the G-action or the G -action in spinor spaces. 

Given a conjugation \? , one obtains any conjugation by product of #with 

a linear isomorphism commuting with G(or G ) . 

According the classical properties .of Clifford algebras in even dimen­

sion and neutral signature any linear morphism of C(Qf)f is a left pro­

duct by a regular element of C(Qf) ; but G is generated by non isotropic 

vectors of E, If a linear isomorphism of C(Q') f commutes with any ele-
2 

ment of G, it is necessarly a scalar, as J s ±Id, this scalar will be-

exp(i9), 9 € 1R, but we find again the conjugation H? obtained in 4 above. 

Now, we change G into G , the linear isomorphism is the left product by 

a central element of C (Qf), because G is generated by a even number 

of non isotropic vectors. One can obtain a conjugation J, applying £ 

(defined in 4 above) followed by a product X + y^, with \9 y c C : 
r X2 + y2(-l)h * 0 

|X|2 + | U | 2 C - O h = ±1 
Xy + yT - 0 

We have obtained thus : 

Proposition 3 : 

In even dimension n • 2r : 

a) The conjugations Y» , commuting with the G-action take the following 

form : 

«(uf) = exp(iO)(uYf),. 6 eH, 

where yt is the pure spinor of conjugation. 

If the Sylvester decomposition of Q , contains p positive terms and q 

negative terms (p+q = n) there exists Majorana spinor iff p • r, r+1, 

(mod 4) (or p-q =0,2, mod 8). 

There exists Majorana-Weyl spinors iff p=r, mod 4, 

(or p-q - 0, mod 8)* 

b) The conjugations J commuting with the G -action are the product of 

by the left action of X + yeN, eN - e.e2...e , X and y satisfying to 

the conditions * above. 

J2 - e» (|X|2 + |u|2(-l)h)ld 

ef is defined in the theorem above, h • |r-p|. 

Remarks 

If h is even, J • £fId, then if h - |r-p| is even it is impossible to 

define Majorana spinors for a conjugation commuting with G if |r-p|«£> 
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mod.4, (or p-q = 4, mod 8). 

These representations are always quaternionic, but they are real for 

the other cases. 

Note that for the precedent generalized conjugations there exist Dirac-

adjunctions. 

8. The odd dimensions. 

The real space E, dim E =- n • 2r+l, is endowed with a quadratic form Q 

with (p,q) signature. 

According a classical result [l,3b], if z € E, Q(z ) » a f4 0 ; C (Q) 

is isomorphic with the Clifford algebra C(Q.) of (z ) - E., endowed 

with the quadratic form Q. = -aQ ; thus C (Q) is a central simple alge­

bra. 

Consider now the space (Ef,Qf) complexified of (E,Q) with the Witt de­

composition : 

Ef - F © Ff ® (z ), 

F ® Ff, also is a Witt decomposition for (E!,QJ) complexified space of -

(Ej} Q.,) and we can choose S - {x. x. ...x. f, f -* y,y9...y } as a spi-
1 ! , xl x2 Xh ] Z r 

4* 

nor space for the algebra Cf(Q1) - C (Q
f) and a -- ±1 is permissible. 

We define f = YfY with Y <- Pin Qf, and we take : f.(uf) • uYf» and we 

see immediately that H =- efId, ef is calculated with (E.,Q ) (hence­

forth the coefficient exp i0 used above is choosed equal to 1). 

With %. we can define Majorana spinors iff ef = 1, this condition gives 

p _ £^3— (or IL-3— +1)^ mo<j 4^ v-[z. 

p - q - ±1, mod 8. 

One defines a conjugation^ in the spinor space of C (Qf), carrying &--

by the isomorphism j : 
j : C(Q1)—> C

+(Q) 

a s s o c i a t i n g to y e E . , z y e C (Q) , [ i j ; 
1 

then one sets : 

tf(j(uf) - j(^,(uf)). 

We carry also, using j, the definition of Weyl spinors. 

We can give a second method for define a conjugation in the odd dimen­

sion case. 

We write : u+f - (u+ + ZQ u~)f € C
+(Qf)f, 

(+ and (-) denote the parity). 
+ + 

According a classical result C (Q) et C (-Q) are isomorphic algebras, 

also q >'l is permissible. 

We choose Q(z ) - -1, (z ) X is a vector space with (p,q-l) signature, 
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and if 7 = YfY > there exists Y e p--n Qf> whose the parity is the one 

of |r-p| (theorem above). 

a) If h = |r~p| is even, we take : 

t (u+f) = "u~\f 
-1 r 

b) If h is odd, Y? " Y z is such that Y?fYf< " (""-) f-

We have two subcases : 

r even, we take : 

t(u f) =uyz f 

r odd, we consider in (z ) the orthonormed frame e.,e2,.,.,e? , 
Y n = Y z e.e 2...e 2 is such that Y " fY" = "? > and we define : 

£ ( u f) = u Yz Q e Je 2...e 2 rf. 

X commutes with the G -action. 

There exists Majorana spinors iff p - q = ±1, mod 8. 

Finally, we are taking account of the isomorphism of C (Qf) onto the 

central simple algebra C(Q]), so that conjugations which commute with 

G (which contains a group isomorphic with G., C l i f f o r d group of C(Q.)) 

are, modulo exp(i9), the conjugations above (accorjding 7). 

Puting together the preceden t results we obtain the final table giving 

the existence of G-Majorana spinors, or G -Majorana spinors : 

(p-q) 
. .mod.8 

0 1 2 3 4 5 6 7 

G-Maj orana 
spinors exist exist not 

exist 
not 

exist 

G -Majorana 
spinors exist exist exist not 

exist 
not 

exist 
not 

exist 
exist exist 

Remark : 

The classical results about the " p e r i o d i c i t y 1 1 of C l i f f o r d algebras 

[3.yb] are perfectly coherent with our s tudy if we c o n s i d e r G-Majorana 

spinors when p - q = 0, 2 (real case) or when p - q =4,6 (quaterniomic 

case) ; likely when p - q = 1, if we con s ider G -Majorana spinors. 
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