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NATURAL TRANSFORMATIONS OF AFFINE CONNECTIONS ON 

MANIFOLDS TO METRICS ON GOTANGENT BUNDLES 

Masami Sekizawa 

Dedicated to Professoг Shun-ichi Tachibana on the 

occasion of his бOth birthday 

Let M be a smooth manifold and T*M its cotangent bundle. 

There is a well-known "natural" construction which yields, for any 

affine connection v on M
f
 a pseudo-Riemannian metric g on 

T*M
f
 the so called Riemann extension of V (see [63 - [10]). If 

a local coordinate system is given in M then the components of 

the metric g at each point (x,w) £ T*M depend only on the 

symmetrized components of the connection V and the components of 

the given co-vector w. The more detailed analysis shows that this 

construction involves the geometry of the second orderf and thus we 

can consider the Riemann extension as an example of "natural trans

formation of the second order". 

The aim of this paper is to describe explicitly all second 

order natural transformations of a symmetric affine connection on 

a manifold into a metric(not necessarily regular) on its cotangent 

bundle. To solve this problem, we shall use the precise definitions 

as well as the general method established by D.Krupka[2] - [4lf 
which reduces our geometric problem to the classification of corre

sponding "differential invariants" and then to solving a system of 

partial differential equations. The main result of this paper is 

the following 

Theorem 1. A pseudo-Riemannian metric G (not necessarily 

regular) on T*M comes from a second order natural transformation 

of a symmetric connection V on M if and only if G = ag + bO f 
where g is the Riemann extension of V, 0 is the tensor 

square of the canonical 1-form of T*Mf and a, b are constants. 
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— 2 
Let us notice that the.metric G = ag + Ь is regular (of 

the signature (n,n)) if and only if a f 0-

O.Kowalski and the pгesent author[l] have recently classified 

all second ordeг natuгal tгansformations of a Riemannian metгic g 

given on a base manifold M into a pseudo-Riemannian metric G 

given on the tangent bundle TM. Since the cotangent bundle T*M 

over (M,g) is dual to TM, the analogous problem for T*M is 

automatically settled thгough this duality. 

Acknowledgements . I would like to thank to Professor 

O.Kowalski (Charles University in Prague) and Professor D.Krupka 

(Puгkyně University in Brno) for their helpful discussions. I 
also thank to the Department of Mathematical Analysis, Charles 
University in Prague which pгovided convenience for my research 
stay in Prague. 

1. Canonical 1-form and Riemann extension 

We shall adopt the Einstein summation convention in sections 

1 and 2. 

Let (U;x ,x ,...,x
n
) and (Öjx x2, ... ,xn) be two systems 

of local coordinates in a smooth manifold M of dimension n 
such that the domain ü П ö is not empty. The coordinate vector 
fields E^ = Э/ðx1 and E^ = Ъ/Ъ*1

 ( U i < n) are related by 

the transformation formulas 

(1.1) E
t
 = A^Êa or Ë± = B^Ea (1 < i < n) 

where (A?) = anđ (в|) = Ъ a 

L Ъx -1 
are the (mutually 

inverse) Jacobi matrices. If w = w^dx = w,dx is a 1-form on 

U A O then we get by (l.l) 

(1.2) w
h
 = B*w

Q
 (1 < h < n). 

Further if V is an affine connection on M then its components 

l*, and f*. (l£h.i,rj4n)(i.e., Vx^ - T ? ^ , Vj^-j -

= f^JL) are related by 
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(1.3) f*, - AjCBjBjrJc + B?j) (1«M,J *n;f 

where we put B^. = ̂ 2x h/Sx 1bx^ (1 ̂ h,i,j <kn). 
Now let us denote p:T*M—>M the natural projection of the 

cotangent bundle. Let (p U;x fx ,...,x fw,,w0f...,w^) and 
(p~ U;x ,x ,.#.fx fw, fw 2 f.•• fw ) be two systems of local coordinates 
in T*M induced from (Ujx^x f... fx

n) and (Ujx 1,^ 2,... fx
n), 

respectively* Then, whenever U/°\U f 0, the transformation law 
on p~ (U/^U) is given by 

X *"" X ^X ,X ,...,X J, 

"i = Bi wa' C 1 S 1 - n ) ' 

We set X t

 2 ^ x 1 , X 1 = 'B/dwi and X± = "9/dx
1, X 1 = ^/d^± for 

1 ̂  i ̂  n; then the two bases (x, fX 9 ,... ,X .X^X
2 ,... ,Xn ) and 

t -»T O mmY\ •» 

jX,fX2f..«,X fX ,X ,...,X } are related to each other by 

(1.4) 
X1 

- B aX a • B Í A
b X w d X

a , 

khŕ, ( l < i < n ) , 

where we put A^. = ^ x V ^ x ^ x ^ (l ̂  h fi f j < n). 
Let now G±. = G(X i fX.) f G^ = G(x i fX

h) f G 1^ = G(Xi,X^) be 
the local components of a symmetric (0,2)-tensor field G on 
T*M. We shall always write such components in the block matrix 
form 

(1.5) 0 = 
'ij 

Д 

*ì 

,-d 

Using (1.4), we obtain the following transformation formulas: 

d.б) 

'iá 

-Һ 
G
i 

i"d-a.
 + B

?
B
c a

B
b

w
d

B
j

G в = B
8
B!G 

-ij = A M G
8 3

, (1 šh,i,j %n). 
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(in section 2f we shall show that the formulas (1.2)f (1.3) and 

(1.6) define actions of the second order differential group I/: 

on some vector spaces). 

Let F^:T(T*M)—> TM be the differential of the natural projec

tion p:T*M—>M and let q be the natural projection of T(T*M) 

to T*Mf where stands for the tangent bundle. Then the 

canonical 1-form Q on T*M is defined by 

0(X) = q(X)Cp^) 

Tor all X €T(T*M). The exterior derivative dp of 9 is called 

the canonical 2-form on T*M. In terms of the induced system of 

local coordinates in T*M, 0 and d9 are expressed as 

0 • w.dx and d& = dw.A dx . 

Let V be an affine connection on the base manifold M. This 

induces a unique connection in the vector bundle T*Mf and thus 

each tangent space (T*M),__ w* splits into the horizontal and the 
Q x f w j 

vertical subspace: 

(т*м) (x,w) 
H
(x,wJ®

 V
(x,w)' 

Let 5f = hX + v3£ be the decomposition of a vector field X on 

T*M into the horizontal and the vertical part. The Riemann 

extension g of the affine connection V on M to T*M is a 

pseudo-Riemannian metric defined by 

t*±+ \ x i . 

i(X,Y) = (de)(vX,hY) + (dG)(vYfhX) 

for all vector fields X and Y on T*M. If X 

then we obtain easily 

hX = \ \ + w J ^ V and vX = (̂  - w J ^ ^ X 1 . 

Thus the components of g with respect to the induced system of 

local coordinates are 

-VrVlli) s d 

. S S 
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where $. denotes the Kronecker'S symbol. This shows that the 
components of g depend only on the symmetrized components of the 
affine connection and on the components of the co-vector w, and 
they do not depend on the local coordinates (x^x2,... ,xn) in M. 
In case of a symmetric connection we get 

8* o 

Obviously, g is a pseudo-Riemannian metric with the signature 
(n,n).(See C6l - ClOl for more information about Riemann extensions). 

2. Differential invariants 
Let us now recall the general theory of natural transformations 

due to D.Krupka. We refer to [2] - [4l for more details, and to 
[5] for the general philosophy of naturality. 

Let L r be the r-th order differential group of the n-dimen-
sional Euclidean space Rn, that is, the Lie group of all r-jets 
of local diffeomorphisms of Rn with source and target at the 
origin o € Rn, here r is any non-negative integer. Let P, Q 
be smooth manifolds on which the group Lr acts to the left. An 
r-th order differential invariant f:P->Q is an Lr-equivariant 
map of the left Lr-space P to the left L^-space Q, i.e, a map 
satisfying fCjJfc.p) • DoOt.f(p) for all jjx e L j and all pGP. 
Here the dot . denotes the action of Lr on P (or on Q, 
respectively). 

Further let FrM denote the bundle of all frames of r-th 
order over M which carries a natural structure of a principal 
Lr-bundle FrM(M,Lr

fic
r). We get a natural functor Fr from the ni * n' n ° 

category D of n-manifolds and infective immersions into the 
n r u..-, ,

 т
r category of principal L -bundles and L^-bundle morphisms. Here, 

for a given morphism y>:M^—>M
2
 of D

R
 the corresponding morphisr 

F̂ > i F ^ — > F
r
M

2
 is given in a familiar wa

y
(see [5]). 

Finally, for a left L^-space P, let FpM denote the fibre 

bundle with fibre P, associated to the principal L^-bundle F
r
M. 

We obtain a natural functor F£ from the category D into the 
category of fibre bundles and their morphisms. Here, for any 
morphism (piM-j—>M2 of D n the corresponding morphism Fp^'.FpM, 
— * F £ M 2 is given by 
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FpSKry.PD - CFr3>(y),pl 

for any [y,pl € Fp^i ( Cy,P-I is the equivalence class of a pair 

(ytP) € FrM-.XP with respect to the equivalence relation defined 

by the right action (y-p).^* = Cy<>j£* > j£of ̂ p ) of L^ on 

F ^ X P ) . n 

For each manifold M 

we can define a morphism 

id:M—»M by 

and each differential invariant f:P-»Q 

f
м
:FpM- over the identity map 

-мССу.рЗ) - Су,1?<р)3 

for all Cy
f
P] € F^M. This morphism fM 

of a differential invariant f on the manifold 

is called the realization 

M. Further, an 

r-th order natural transformation T of the functor F£ into the 

functor FQ is a collection of bundle morphisms l
м 

over the 

identity map, where M is an object of 

ing diagram is commutative 

such that the follow-

Fp% 

ғpV 

ғ j м 2 

Aм. 

->ғ; 

ғfø 

->ғŞл2 

for every morphism (j>
:M
i—

>M
?
 OJL> D

n
# 

The following theorem due to Krupka[2] says that a problem to 

find all r-th order natural transformations of Fp to F~ is 

equivalent to a problem to find all r-th order differential 

invariants f from P to Q. 

Theorem A. Let f :P—>Q be an r-th order differential 

Then the correspondence T
f
:M- L

M' 
where M is an 

is a natural transformation of the functor 
-,r 

ғ
г 

invariant. 

object of D . 
n* 

to the functor F~. Moreover, the correspondence f—»T
f
 is a 

bijection between the set of all r-th order differential invariants 

from P to Q and the set of all r-th order natural transformations 

of Fj to Fj. 
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Remark. Often P and Q are vector spaces and thus FpM 
and FQM are vector bundles. Jet, a morphism T M:FpM—*FQM need 
not be a morphism in the category of vector bundles because it may 
be non-linear on fibres. 

In order to apply the method by Krupka to our problem, we 
shall restrict ourselves to second order differential invariants. 
We define functions A^, A £ . (l ̂  h ̂ n , 1 ̂  i < j ̂  n) on L2 by 

AÍ(á0<^) = D-O^Co), Ah Q2
oCi) = D^-ořCo) 

for any local diffeomorphism Gt= (oc^cx?,... f0-?J with Qfi(o) = o G 
Rn, here D. denotes the partial derivative with respect to the 
i-th variable in Rn. The system of the canonical (global) coordi
nates of I? is a system of coordinates {B?, B|? .$ (l ̂  h <L ri, i •< 

n p 1 ij 

i < j < n) of L* which are defined by 

B^d^-A^a 1), Bj^dJ*)-^^*1) • 

(1 < h <,n, 1 <ii •g.d'^n). 

The multiplication law doW-'dofi = Jo^'P) i n L

n

 i s d e s c i*i Ded in 
terms of the canonical coordinates as 

' B i 0 & - ^ ) - Bh(d0a)Bf(d^)f 

B i d ^ 4 ) - BhbCa^)B?(D0p)B
b(d0e) + B

h(d^B;.(d^), 

(1 ̂  h <, n, 1 <, i ̂  d <• n). 

Since Bh(d^(id)) = gh, B ^ d ^ i d ) ) = 0 (l <, h <, n, 1 <, i < j < n) 
for the identity map id of Rn, we obtain that 

(2.1) Bh(d2a)A?(d^)= S
h ( U h , i i n ) , 

(2.2) A5b(dJt)Bf(d^)B5(dJcO + ̂ (j^Bj^dJcO- 0, 

(1< h<.n, U i ^ D ^ n ) 

2 2 for all 3Q0C GLn« These formulas will be used in section 3. 
Let us consider the vector space P = Rn*©(Rr^(Rnb Rn*)) (of 
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Rn and 

on 

dimension n+n (n+l)/2) where Rn* is the dual space to 

© denotes the symmetric product. We denote by [w,} (l ̂  h < n) 

and l̂ -i-jK1 ~ h ^ ni 1 S i "S D S n) the canonical coordinates 

Rn* and R^R^OR 1*) , respectively. Then {wh, V^Ml ^ h ̂  n, 

1 ̂  i =£ j *^n) form a canonical system of coordinates on P. We 
2 

define an action of L~: on P by the formulas 

(2 .3) 
"h = - f o 

ř?á - Aa(B?Bártc + B ?A (1 £ * S n , 1 * i * j < n), 

which are modelled according to (1.2) and (1.3). 

Further, consider the vector space Q = Rn)f:@((Rr5©Rn*)0(RrteRn*)) 

(of dimension 2n(n+l)). Here we can define a canonical system of 

coordinates on Q in the form {zh, G^, G?, G
i3i(l < h < n, 1 ^ 

i ^ j ̂ n ) . Then we define an action of L on Q by 

5h = Bhza» 

G4 • = BaBÍfo + BaA^QB?zHB^Ga 
13 1 3 as i ca b a 3 s 

+ BaBuAť BTZ G S + B?Bb B ^ B V BYZ G a s , i 3 us t v a i ca b d 3 us t v ' 

Gh = AhB?G8 + A W BYZ G a s , i a i s a i us t v ' 

Giá = A^A^Gas, (1 ̂  h < n, U l á d S n ) , 

(2.4) 

which is in the agreement with (1.2) and CU6). 
One can see easily that, for the corresponding associated 

2 2 2 
L^-bundles F.£M and F~M over a manifold M, we always have 

(2.5) F£M = T*M ©J^, F* = T*M © O^, 

where tfVI and Q^. are some vector bundles over M. (Here ]p̂  is 

an associated bundle to iTM but Q^ is not, as we see from the 

transformation rules (2#3) and (2.4)) • 

Now, we define the problem to find all second order natural 

transformations of a symmetric afflne connection on a manifold to 

a metric on its cotangent bundle as the problem to find all those 
2 2 

natural transformations of F| to Ft which, with respect to the 

splittings (2.5). Induce the identity map id:T*M-*T*M for each M. 



NATURAL TRANSFORMATIONS 137 

According to Theorem A, our main Theorem 1 is reduced to the 

following 

Theorem 2. All differential invariants f :(
w
h»P? .)*—*(z

h
, 

G
ij'

G
i'

G i J
)
 f r o m P

 ' R ^ ( R ^ ( R
n
W * ) ) into Q = R^SftRW

1
*) 

O C R ' W
1
* ) ) such that z

h
 = w

h
 (1 < h ̂  n) are given, in the 

canonical coordinates, by 

G
ij

 =
 "

 2aw
sPij *

 b w
i

w
j
 ( l

 =
i
 ~

 j
 =

n )
' 

GJ = agf (1 ̂  h,i S n), 

G
i j
 = 0 (1 ̂ i < j ̂ n ) , 

where a and b are constants. 

1. Proof of Theorem 2 

The method of the proof is that we attach to each equivariant 

map P—>Q the corresponding Lie algebra homomorphism for the 

fundamental vector fields. These Lie algebra homomorphisms are 

then characterized by a system of differential equations to solve. 

We find all solutions and decide which of them really represent 

differential invariants. 

First of all, it will be useful to extend the symbols VIAI 

A
ij

f B
ij»

 G
ij

f Q±^ a l s o f o r t h e c a s e i
 - ̂  by putting f*j = Tji» 

v. v̂  
A. • = A.^, and so on. Thus the range of all indices will be {1,2, 

...,n}, and all indices will be independent. We note that, under 

this notation, we have to use the following conventions (cf. Krupka 

Dl): 

01
 qr o

D
qr 

^GiL.i = IfCQcr + cqcr) ' dG1^ = Ifcicj + pied) 

qг Ò G ^ 

for 1 j£h,i , j ,p fq,r < n . 
The fundamental vector fields on P relative to the action 

(2.3) are 



138 MASAMI SEKIZAWA 

5q " Z _ —fr5 w-3- + *- 7_S« > >P a ^ c ЬBP ð î t c a ôßP *Wa 

> ( (-ZвpЧ + C P̂® + S^Г0 ï 5 + w 5 
a f Df c

 v ôp1 ђc Oьl pc ° c - b p ' > г a P д w

n

f 

< c 

-a 
Г
= _ _ ^ ( Є ) V - - V . (lžP,q,Гšn), P a,b,cðвP -ôГte ð Г ^ 

where e denotes the identity element j (id) of L . Here we 

also used the formula 

*>A
h
 *B

h .^ 
—£(e) = - r - | ( e . ) = -ShSj (l<,h,i,p,q<n) 
fcBj bBP P -

which is derived from (2.1) by differentiation with respect to BP. 
The corresponding fundamental vector fields on Q relative 

to the action (2.4) are given by 

a V ^ Y d G a b O d Ga <> ° G , ̂  \ V7 

3 • £é W1 le,^í * 2i#<V+ i r f " 1 " ^ tjBS*. 
q q a q q 

= 2 /"(O * + Ga—- - Gq__ - Gaq__)+ z & 

-—-* an -v.- D a _ / a a P S G a q PbGa % 0 j bG
aP ? d z q 

- , J - f__b ( e ) __ + 2 - L ) _ - + ^(e)*- ^ 
* W W P *»b aoPpV bBPCe)bGaV 

• qr ab qr a , qr 
- - «p Z CG2-- - Gaf- + G^_- + O* _ - ) , 

P a ^ar P d Gq SGaq . *Ga 

(l < p,q,r < n ) . 

Here we also used the formula 

ðAҺ
. ðBҺ 

l_
(
e) - --Í-fe,= -|b^(S?^ + Sj6_) (l_h,i,d,p,q,r<n) 

*$- Kv 
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which is derived from (2.2) by differentiation with respect to B ^ . 

Since any L -equivariant map f of P to Q satisfies 

we get 

\g(Z*.f) - *J(Z*) and ^gr(Z«.f) - Sjr(Z*), (1 < p.q.r < n), 

06 

where Z denotes any canonical coordinate on Q. We have to use 

also the conditions zh©f = w^ (l <i h l£n). Hence we obtain an 

explicit system of partial differential equations: 

(3-D I T f- SJS. • S&*. • « 1 P ) ^ 1 * » P ^ - °ip8§ * °dpS?. 

ЪG? ЪG; 
(3.2) УZ(- S5гgc + Sъrte +8ггtp)-å- + ' p ^ - - - ̂  - GgsŞ, 

a f D t c 0\ c q 

(3.3) TZ(- spr?c * s&t *«%$-£ + »j£- - -^sp * ^%, 
a, D,C °« be ^ 

( 3 . 4 ) 5 ^ 1 . . l w p ( G ? s ; • o j j j + G r s , . G r % q ) | 

o\ qr 

°l qr 

(3.6) £ 2 J . = 0, ( 1 < i , j ,p ,q,r-Sn) . 

We shall solve the system (3.1) - (3.6) step by step. To 

avoid confusion, we do not use the Einstein summation convention 

up to the end of this section. 

(3.6) implies that Q1^ (l S.ifD ̂  n) do not depend on |*
r 

( l ^ P t Q t
r
S n ) . Hence G

1
^ = A,

 D
(w

l f
w

2 f
... ,w

n
) for l < i , j ^ n . 

Then we get from (3.3) 

(3.7) wp*Xij/*wq = -J^gjj - XJQSj (1 ^ itDtPtQ ^ n). 
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Nowf if n j>3, we can always choose p f i,j and we get, at any 
generic point (for w1w2####wn / o), ^^/iw =- 0 for all i,j,q. 

Then (3.7) reduces to >£q&j + ^ S ^ = 0, and contracting with 

respect to i=pf we get (n+l)Apq = 0, i.e#, 

(3.8) Gid = X1^ = 0 

Tor all ifj € {l,2,...,n}. 
Let now n = 2. Putting i=j=p=q in (3.7), we get, at a 

generic point 

X11 = c11/(w1)
2 (i = l,2)f 

where c does not depend on w.# Further, putting isl, j=2, 

p=q in (3.7), we obtain the equations 

w 1 b ^ 2 / a w 1 = w2bX
12/6w2 = - X

12
# 

B(y an elementary calculation we get 

A* *~ c /W-| Wp f 

12 where c is a constant. Summarizing, we get, at a generic point, 

Gi0 = c ^ / w ^ (i,j * 1,2) 

where c 3 (i,j = 1,2) are constants* But G 3 and wi must 

satisfy the transformation laws (2#3) and (2#4). This is possible 

if and only if ci3 = 0 (i,j = 1,2). Thus we get again 

(3.9) Gi;j = 0 (i,j = 1,2) 

at a generic point, and hence at any point by continuity. 

Substitution of (3.8) into (3.5) implies 

^i^rSr • 0 (1 £ i,d,P,q,r S. n), 

hence p^ ( l ^ i f j ^ n ) do not depend on f̂  (1 % P fq fr 4 n ) , 
Put G;j| = ^^(w l fw2f # # # fwn) # Then we get from (3.2) 

(3.10) wptyj/dwq » - )ij8j + >Ĵ S? d £ i .d .p.q ^ n ) -
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Using (3.1O) for isj=p=q and also for i-j/*p=q, we see that, at 
a generic point, y ± (l <£ i < n) are constants. Putting i=j=q^p 
in (3.10), we obtain jx^ =- 0. Thus JU^ = O for 1-g i,j ̂ n , i^j. 
Putting i=q^j=p in (3.10), we get immediately JJL*}, - )A± = 0 (l % 
i,D =&nf i j* d)»

 This can be written in the form u^ = aS? (l ^ 
i,j-g£n) for some constant a, i.e., at a generic point, 

(3.11) G^ = aSj (1 % i , j ^ n ) , 

where a is a constant. (3.1l) then holds at any point. 
Substituting (3.1l) into (3.4), we get 

(3.12) dGi;j/dr5r
 s - awp(

SJ8i + S?Sjp (1 ̂ i,j,P,q,r ^ n ) 

from which we get by integration with respect to Y^T9 

(3.13) Gi;j « - S a J ^ w ^ j + \>±i (1 ̂  i,D ̂ n ) , 
s 

where lA . (l ̂  i, j ti. n) do not depend on [* (l ̂  p,q,r ^ n). 
Substituting (3.13) into (3.1) and using (3.12), we obtain, after 
some calculations, 

(3.14) w pHj/dw q
 s 4p£j + %*i ^ = i.d.-P.Q ̂ * 0 -

By calculations similar to those for solving (3.7) in the case 
n = 2 we get from (3.14), at a generic point, 

(3.15) ^ « b ^ w j (1 < i,j ^ n), 

where b*, (l 1̂  i, j Is n) are constants. 
Substitute (3.15) into (3.14) for i=q/j. We get ^.w,w 

s b . w .w (l*gi,j,p<n, i ^ j ) and hence, at a generic point, 
bii = N D w^eneyer i^j, p arbitrary. Hence all b.. are equal 
to the same constant b. Thus we get 

Gij = ~ 2 a Z w
a r J d + b w ^ (1 ̂  l,d ̂  n) 
s 

at a generic point, and hence at any point. 
This completes the proof of Theorem 2. 
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