USA 14

Masami Sekizawa

Natural transformations of affine connections on manifolds to metrics on cotangent bundles

In: Zdeněk Frolík and Vladimír Souček and Marián J. Fabián (eds.): Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 14. pp. [129]--142.

Persistent URL: http://dml.cz/dmlcz/701892

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NATURAL TRANSFORMATIONS OF AFFINE CONNECTIONS ON MANIFOLDS TO METRICS ON COTANGENT BUNDLES

Masami Sekizawa

> Dedicated to Professor Shun-ichi Tachibana on the occasion of his 60 th birthday

Let M be a smooth manifold and $T^{*} M$ its cotangent bundle. There is a well-known "natural" construction which yields, for any affine connection ∇ on M, a pseudo-Riemannian metric \bar{g} on $T^{*} \mathrm{M}$, the so called Riemann extension of ∇ (see [6] - [10]). If a local coordinate system is given in M then the components of the metric \bar{g} at each point $(x, w) \in T^{*} M$ depend only on the symmetrized components of the connection ∇ and the components of the given co-vector w. The more detailed analysis shows that this construction involves the geometry of the second order, and thus we can consider the Riemann extension as an example of "natural transformation of the second order".

The aim of this paper is to describe explicitly all second order natural transformations of a symmetric affine connection on a manifold into a metric(not necessarily regular) on its cotangent bundle. To solve this problem, we shall use the precise definitions as well as the general method established by D.Krupka[2] - [4], which reduces our geometric problem to the classification of corresponding "differential invariants" and then to solving a system of partial differential equations. The main result of this paper is the following

Theorem 1. A pseudo-Riemannian metric G (not necessarily regular) on $T^{*} M$ comes from a second order natural transformation of a symmetric connection ∇ on M if and only if $G=a \bar{g}+b \theta^{2}$, where $\overline{\mathrm{B}}$ is the Riemann extension of ∇, θ^{2} is the tensor square of the canonical l-form of $T^{*} M$, and a, b are constants.

Let us notice that the metric $G=a \bar{g}+b \theta^{2}$ is regular (of the signature (n, n)) if and only if $a \neq 0$.
O.Kowalski and the present author[l] have recently classified all second order natural transformations of a Riemannian metric g given on a base manifold M into a pseudo-Riemannian metric G given on the tangent bundle $T M$. Since the cotangent bundle $T^{*} M$ over (M, g) is dual to $T M$, the analogous problem for $T^{*} M$ is automatically settled through this duality.

Acknowledgements. I would like to thank to Professor O.Kowalski (Charles University in Prague) and Professor D.Krupka (Purkyně University in Brno) for their helpful discussions. I also thank to the Department of Mathematical Analysis, Charles University in Prague which provided convenience for my research stay in Prague.

1. Canonical l-form and Riemann extension

We shall adopt the Einstein summation convention in sections 1 and 2.

Let $\left(U ; x^{1}, x^{2}, \ldots, x^{n}\right)$ and ($\left.\bar{U} ; \bar{x}^{1}, \bar{x}^{2}, \ldots, \bar{x}^{n}\right)$ be two systems of local coordinates in a smooth manifold M of dimension n such that the domain $U \cap \bar{U}$ is not empty. The coordinate vector fields $E_{i}=\partial / \partial x^{i}$ and $\bar{E}_{i}=\partial / \partial \bar{x}^{i}(1 \leqq i \leqq n)$ are related by the transformation formulas
(1.1) $E_{i}=A_{i}^{a} \bar{E}_{a}$ or $\bar{E}_{i}=B_{i}^{a} E_{a} \quad(1 \leqq i \leqq n)$
where $\left(A_{i}^{a}\right)=\left[\frac{\partial \bar{x}^{a}}{\partial x^{i}}\right]$ and $\left(B_{i}^{a}\right)=\left[\frac{\partial x^{a}}{\partial \bar{x}^{i}}\right]$ are the (mutually inverse) Jacobi matrices. If $w=w_{h} d x^{h}=\bar{w}_{h} \mathrm{dx}^{\mathrm{h}}$ is a 1-form on $\mathrm{U} \cap \bar{U}$ then we get by (1.1)
(1.2) $\quad \bar{w}_{h}=B_{h}^{a} w_{a} \quad(1 \leqq h \leqq n)$.

Further if ∇ is an affine connection on M then its components $\Gamma_{i j}^{h}$ and $\Gamma_{i j}^{h}(1 \leqq h, i, j \leqq n)\left(i . e ., \quad \nabla_{X_{i}} X_{j}=\Gamma_{i j}^{a} X_{a}, \nabla_{\bar{X}_{i}} \bar{X}_{j}=\right.$ $\left.=\Gamma_{i j}^{a} \bar{X}_{a}\right)$ are related by
(1.3) $\quad \Gamma_{i j}^{h}=A_{a}^{h}\left(B_{i}^{b} B_{j}^{c} \Gamma_{b c}^{a}+B_{i j}^{a}\right) \quad(1 \leqq h, i, j \leqq n)$,
where we put $B_{i j}^{h}=\partial^{2} x^{h} / \partial \bar{x}^{i} \partial \bar{x}^{j} \quad(1 \leqq h, i, j \leqq n)$.
Now let us denote $p: T^{*} M \rightarrow M$ the natural projection of the cotangent bundle. Let ($p^{-1} \mathrm{U}_{\mathrm{x}}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{n}$) and ($\mathrm{p}^{-1} \overline{\mathrm{U}} ; \overline{\mathrm{x}}^{1}, \overline{\mathrm{x}}^{2}, \ldots, \overline{\mathrm{x}}^{\mathrm{n}}, \overline{\mathrm{w}}_{1}, \bar{w}_{2}, \ldots, \bar{w}_{n}$) be two systems of local coordinates in $T^{*} M$ induced from ($\mathrm{U} ; \mathrm{x}^{1}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{n}}$) and ($\left.\overline{\mathrm{U}} ; \overline{\mathrm{x}}^{1}, \overline{\mathrm{x}}^{2}, \ldots, \overline{\mathrm{x}}^{\mathrm{n}}\right)$, respectively. Then, whenever $U \cap \bar{U} \neq \phi$, the transformation law on $\mathrm{p}^{-1}(\mathrm{U} \cap \overline{\mathrm{U}})$ is given by

$$
\left\{\begin{array}{l}
\bar{x}^{i}=\bar{x}^{i}\left(x^{1}, x^{2}, \ldots, x^{n}\right), \\
\bar{w}_{i}=B_{1}^{a} w_{a}, \quad(1 \leqq i \leqq n) .
\end{array}\right.
$$

We set $x_{i}=\partial / \partial x^{i}, \quad x^{i}=\partial / \partial w_{i}$ and $\bar{x}_{i}=\partial / \partial \bar{x}^{i}, \quad \bar{x}^{i}=\partial \partial \bar{w}_{i}$ for $1 \leqq 1 \leqq n$; then the two bases $\left\{x_{1}, x_{2}, \ldots, x_{n}, x^{1}, x^{2}, \ldots, x^{n}\right\}$ and $\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}, \bar{x}^{1}, \bar{x}^{2}, \ldots, \overline{\mathrm{x}}^{n}\right\}$ are related to each other by
(1.4) $\left\{\begin{array}{l}\bar{X}_{1}=B_{1}^{a} X_{a}+B_{1}^{c} A_{c a}^{b} B_{b}^{d} w_{d} X^{a}, \\ \bar{X}^{i}=A_{a}^{i} x^{a}, \quad(1 \leqq i \leqq n),\end{array}\right.$
where we put $A_{1 j}^{h}=\partial^{2} \bar{x}^{h} / \partial x^{i} \partial x^{j} \quad(1 \leqq h, i, j \leqq n)$.
Let now $G_{i j}=G\left(X_{i}, X_{j}\right), \quad G_{i}^{h}=G\left(X_{i}, X^{h}\right), \quad G^{i j}=G\left(X^{i}, X^{j}\right)$ be the local components of a symmetric $(0,2)$-tensor field G on $T^{*} M$. We shall always write such components in the block matrix form
(1.5) $\quad G=\left[\begin{array}{cc}G_{i j} & G_{i}^{j} \\ G_{j}^{i} & G^{i j}\end{array}\right]$.

Using (1.4), we obtain the following transformation formulas:
(1.6)

$$
\left\{\begin{aligned}
\bar{G}_{i j}= & B_{i}^{a} B_{j}^{s} G_{a s}+B_{i}^{c} B_{c a}^{b} B_{b}^{d} w_{d} B_{j}^{s} G_{s}^{a} \\
& +B_{i}^{a} B_{j}^{u} B_{u s}^{t} B_{t}^{v} w_{v} G_{a}^{s}+B_{i}^{c} B_{c a}^{b} B_{b}^{d} w_{d} B_{j}^{u} A_{u s}^{t} B_{t}^{v} w_{v} G^{a s}, \\
\bar{G}_{i}^{h}= & A_{a}^{h_{i} B_{j}^{s} G_{s}^{a}}+A_{a}^{h_{a} B_{j}^{u} A_{u s}^{t} B_{t}^{v} w_{v} G^{a s}}, \\
\bar{G}^{i j}= & A_{a}^{i} A_{s}^{A_{G}}{ }_{c}^{a s}, \quad(1 \leqq h, 1, j \leqq n) .
\end{aligned}\right.
$$

(In section 2, we shall show that the formulas (1.2), (1.3) and (1.6) define actions of the second order differential group L_{n}^{2} on some vector spaces).

Let $p_{*}: T\left(T^{*} M\right) \longrightarrow T M$ be the differential of the natural projection $p: T^{*} M \rightarrow M$ and let q be the natural projection of $T\left(T^{*} M\right)$ to $T^{*} M$, where " T " stands for the tangent bundle. Then the canonical l-form θ on $\mathrm{T}^{*} \mathrm{M}$ is defined by

$$
\theta(\tilde{X})=q(\tilde{X})\left(p_{*} \tilde{X}\right)
$$

for all $\tilde{X} \in T\left(\mathbb{T}^{*} M\right)$. The exterior derivative $d \theta$ of θ is called the canonical 2-form on $T^{*} M$. In terms of the induced system of local coordinates in $T^{*} \mathrm{M}, \quad \theta$ and $\mathrm{d} \theta$ are expressed as

$$
\theta=w_{i} \mathrm{dx}^{i} \text { and } \mathrm{d} \theta=\mathrm{d} w_{i} \wedge \mathrm{dx} .
$$

Let ∇ be an affine connection on the base manifold M. This induces a unique connection in the vector bundle $T^{*} M$, and thus each tangent space $\left(T^{*} M\right)_{(x, w)}$ splits into the horizontal and the vertical subspace:

$$
\left(\mathbb{T}^{*} u\right)_{(x, w)}=H_{(x, w)}^{\oplus v_{(x, w)}}{ }^{-}
$$

Let $\tilde{X}=h \tilde{X}+\nabla \tilde{X}$ be the decomposition of a vector field \tilde{X} on $T^{*} \mathrm{M}$ into the horizontal and the vertical part. The Riemann extension \bar{g} of the affine connection ∇ on M to $T^{*} M$ is a pseudo-Riemannian metric defined by

$$
\bar{g}(\tilde{X}, \tilde{Y})=(d \theta)(v \tilde{X}, h \tilde{Y})+(d \theta)(v \tilde{Y}, h \tilde{X})
$$

for all vector fields \tilde{X} and \tilde{Y} on $T^{*} M$. If $\tilde{X}=\xi^{i} X_{i}+\xi_{1} X^{i}$, then we obtain easily

$$
h \tilde{x}=\xi^{i} x_{1}+w_{a} \Gamma_{i b}^{a} \xi^{b} x^{i} \text { and } v \tilde{x}=\left(\xi_{i}-w_{a} \Gamma_{1 b}^{a} \xi^{b}\right) x^{i}
$$

Thus the components of \bar{g} with respect to the induced system of local coordinates are

$$
\bar{g}=\left[\begin{array}{ll}
-w_{a}\left(\Gamma_{i j}^{a}+\Gamma_{j i}^{a}\right) & \delta_{i}^{j} \\
\delta_{j}^{i} & 0
\end{array}\right],
$$

where δ_{j}^{i} denotes the Kronecker's symbol. This shows that the components of \bar{g} depend only on the symmetrized components of the affine connection and on the components of the co-vector w, and they do not depend on the local coordinates ($x^{1}, x^{2}, \ldots, x^{n}$) in M. In case of a symmetric connection we get

$$
\bar{g}=\left[\begin{array}{ll}
-2 w_{a} \Gamma_{i j}^{a} & \delta_{i}^{j} \\
\delta_{j}^{i} & 0
\end{array}\right]
$$

Obviously, \bar{g} is a pseudo-Riemannian metric with the signature (n, n). (See [6] - [10] for more information about Riemann extensions).

2. Differential invariants

Let us now recall the general theory of natural transformations due to D.Krupka. We refer to [2] - [4] for more details, and to [5] for the general philosophy of naturality.

Let L_{n}^{r} be the r-th order differential group of the n-dimensional Euclidean space R^{n}, that is, the Lie group of all r-jets of local diffeomorphisms of R^{n} with source and target at the origin $o \in R^{n}$, here r is any non-negative integer. Let P, Q be smooth manifolds on which the group L_{n}^{r}. acts to the left. An r-th order differential invariant $f: P \rightarrow Q$ is an L_{n}^{r}-equivariant map of the left L_{n}^{r}-space P, to the left L_{n}^{r}-space Q, i.e, a map satisfying $f\left(j_{o}^{r} \alpha \cdot p\right)=j_{0}^{r} \alpha . f(p)$ for all $j_{0}^{n} \alpha \in L_{n}^{r}$ and all $p \in P$. Here the dot - denotes the action of L_{n}^{r} on P (or on Q, respectively).

Further let $F^{r} M$ denote the bundle of all frames of r-th order over M which carries a natural structure of a principal L_{n}^{r}-bundle $F^{r} M\left(M, L_{n}^{r}, \pi_{n}^{r}\right)$. We get a natural functor F^{r} from the category D_{n} of n-manifolds and injective immersions into the category of principal L_{n}^{r}-bundles and L_{n}^{r}-bundle morphisms. Here, for a given morphism $\varphi: M_{1} \rightarrow M_{2}$ of D_{n} the corresponding morphism $\mathrm{F}^{\mathrm{r}} \varphi: \mathrm{F}^{\mathrm{r}} \mathrm{M}_{1} \rightarrow \mathrm{~F}^{\mathrm{M}_{2}}$ is given in a familiar way (see [5]).

Finally, for a left L_{n}^{r}-space P, let $F_{P}^{r}{ }_{M}$ denote the fibre bundle with fibre P, associated to the principal L_{n}^{r}-bundle $F^{r} M$. We obtain a natural functor F_{P}^{r} from the category D_{n} into the category of fibre bundles and their morphisms. Here, for any morphism $\varphi: M_{1} \rightarrow M_{2}$ of D_{n} the corresponding morphism $F_{P}^{r} \varphi: F_{P} M_{1}$ $\rightarrow \mathrm{F}_{\mathrm{P}} \mathrm{M}_{2}$ is given by

$$
\mathrm{F}_{\mathrm{P}}^{\mathrm{r}} \varphi([\mathrm{y}, \mathrm{p}])=\left[\mathrm{F}^{\mathrm{r}_{\varphi}}(\mathrm{y}), \mathrm{p}\right]
$$

for any $[y, p] \in F_{P}^{M_{l}} \quad([y, p]$ is the equivalence class of a pair $(y, p) \in F^{r} M_{1} \times P$ with respect to the equivalence relation defined by the right action $(y, p) \cdot j_{o}^{r} \alpha=\left(y \cdot j_{o}^{r} \alpha, j_{o}^{r} \alpha^{-1} \cdot p\right)$ of L_{n}^{r} on $\mathrm{F}^{\mathrm{r}} \mathrm{M}_{1} \times \mathrm{P}$).

For each manifold M and each differential invariant $f: P \rightarrow Q$ we can define a morphism $f_{M}: F_{P} r_{M} \rightarrow F_{Q} r_{M}$ over the identity map id: $M \rightarrow M$ by

$$
f_{M}([y, p])=[y, f(p)]
$$

for all $[y, p] \in F_{P}^{r} M$. This morphism f_{M} is called the realization of a differential invariant f on the manifold M. Further, an r-th order natural transformation T of the functor F_{P}^{r} into the functor F_{Q}^{r} is a collection of bundle morphisms T_{M} over the identity map, where M is an object of D_{n}, such that the following diagram is commutative

for every morphism $\varphi: M_{1} \longrightarrow M_{2}$ of D_{n}.
The following theorem due to Krupka[2] says that a problem to find all roth order natural transformations of F_{P}^{r} to F_{Q}^{r} is equivalent to a problem to find all roth order differential invariants f from P to Q.

Theorem A. Let $f: P \rightarrow Q$ be an r-th order differential
invariant. Then the correspondence $T_{f}: M \rightarrow f_{M}$, where M is an object of D_{n}, is a natural transformation of the functor F_{p}^{r} to the functor $F_{Q^{-}}^{r}$ Moreover, the correspondence $f \rightarrow T_{f}$ is a bijection between the set of all roth order differential invariants from P to Q and the set of all roth order natural transformations of $\mathrm{F}_{\mathrm{P}}^{\mathrm{r}}$ to F_{Q}.

Remark. Often P and Q are vector spaces and thus $F_{P}^{r} M$ and $F_{Q}^{r_{M}}$ are vector bundles. Yet, a morphism $T_{M}: F_{P} r_{M} \rightarrow F_{Q}^{r_{M}} P_{\text {need }}$ not be a morphism in the category of vector bundles because it may be non-linear on fibres.

In order to apply the method b户ं Krupka to our problem, we shall restrict ourselves to second order differential invariants. We define functions $A_{i}^{h}, A_{i j}^{h}(1 \leqq h \leqq n, 1 \leqq i \leqq j \leqq n)$ on L_{n}^{2} by

$$
A_{i}^{h}\left(j_{0}^{2} \alpha\right)=D_{i} \alpha^{h}(o), \quad A_{i j}^{h}\left(j_{0}^{2} \alpha\right)=D_{i} D_{j} \alpha^{h}(0)
$$

for any local diffeomorphism $\alpha=\left(\alpha^{1}, \alpha^{2}, \ldots, \alpha^{n}\right)$ with $\alpha(0)=0 \in$ R^{n}, here D_{i} denotes the partial derivative with respect to the $i-t h$ variable in R^{n}. The system of the canonical (global) coordinates of L_{n}^{2} is a system of coordinates $\left\{B_{i}^{h}, B_{i j}^{h}\right\}(1 \leqq h \leqq n, l \leqq$ $i \leqq j \leqq n)$ of L_{n}^{2} which are defined by

$$
\begin{aligned}
& B_{i}^{h}\left(j_{0}^{2} \alpha\right)=A_{i}^{h}\left(j_{0}^{2} \alpha^{-1}\right), \quad B_{i j}^{h}\left(j_{0}^{2} \alpha\right)={ }^{-1} A_{i j}^{h}\left(j_{0}^{2} \alpha^{-l}\right) \\
& (1 \leqq n \leqq n, 1 \leqq i \leqq j \leqq n)
\end{aligned}
$$

The multiplication law $j_{0}^{2} \alpha \cdot j_{o}^{2} \beta=j_{o}^{2}(\alpha \circ \beta)$ in L_{n}^{2} is described in terms of the canonical coordinates as

$$
\left\{\begin{array}{l}
B_{i}^{h}\left(j_{o}^{2} \alpha \cdot j_{o}^{2} \beta\right)=B_{a}^{h}\left(j_{o}^{2} \alpha\right) B_{i}^{a}\left(j_{o}^{2} \beta\right) \\
B_{i j}^{h}\left(j_{o}^{2} \alpha \cdot j_{o}^{2} \beta\right)=B_{a b}^{h}\left(j_{o}^{2} \alpha\right) B_{i}^{a}\left(j_{o}^{2} \beta\right) B_{j}^{b}\left(j_{o}^{2} \beta\right)+B_{a}^{h}\left(j_{o}^{2} \alpha\right) B_{i j}^{a}\left(j_{o}^{2} \beta\right) \\
(1 \leqq n \leqq n, 1 \leqq 1 \leqq j \leqq n)
\end{array}\right.
$$

Since $B_{i}^{h}\left(j_{o}^{2}(i d)\right)=\delta_{i}^{h}, \quad B_{i j}^{h}\left(j_{0}^{2}(i d)\right)=0(1 \leqq h \leqq n, 1 \leqq i \leqq j \leqq n)$ for the identity map id of R^{n}, we obtain that
(2.1) $B_{a}^{h}\left(j_{o}^{2} \alpha\right) A_{i}^{a}\left(j_{0}^{2} \alpha\right)=\delta_{i}^{h} \quad(1 \leqq n, i \leqq n)$,
(2.2) $A_{a b}^{h}\left(j_{0}^{2} \alpha\right) B_{i}^{a}\left(j_{0}^{2} \alpha\right) B_{j}^{b}\left(j_{0}^{2} \alpha\right)+A_{a}^{h}\left(j_{0}^{2} \alpha\right) B_{i j}^{a}\left(j_{0}^{2} \alpha\right)=0$,

$$
(1 \leqq n \leqq n, 1 \leqq i \leqq j \leqq n)
$$

for all $j_{0}^{2} \alpha \in L_{n}^{2}$. These formulas will be used in section 3 . Let us consider the vector space $P=R^{n *} \oplus\left(R^{n} \otimes\left(R^{n *} \odot R^{n *}\right)\right)$ (of
dimension $n+n^{2}(n+1) / 2$) where $R^{n *}$ is the dual space to R^{n} and \odot denotes the symmetric product. We denote by $\left\{w_{h}\right\}(1 \leqq h \leqq n)$ and $\left\{\Gamma_{i j}^{h}\right\}(1 \leqq h \leqq n, 1 \leqq i \leqq j \leqq n)$ the canonical coordinates on $R^{n *}$ and $R^{n} \otimes\left(R^{n *} \odot R^{n *}\right)$, respectively. Then $\left\{w_{h}, \Gamma_{i j}^{h}\right\}(1 \leqq n \leqq n$, $1 \leqq 1 \leqq j \leqq n$) form a canonical system of coordinates on P. We define an action of L_{n}^{2} on P by the formulas
(2.3) $\left\{\begin{array}{l}\bar{w}_{h}=\mathcal{B}_{h}^{a} w_{a}, \\ \bar{\Gamma}_{i j}^{h}=A_{a}^{h}\left(B_{i}^{b} B_{j}^{c} \Gamma_{b c}^{a}+B_{i j}^{a}\right) . \quad(1 \leqq h \leqq n, 1 \leqq i \leqq j \leqq n),\end{array}\right.$
which are modelled according to (1.2) and (1.3).
Further, consider the vector space $Q=R^{n *} \oplus\left(\left(R^{n} \oplus R^{n *}\right) \odot\left(R^{n} \oplus R^{n *}\right)\right)$ (of dimension $2 n(n+1)$). Here we can define a canonical system of coordinates on Q in the form $\left\{z_{h}, G_{i j}, G_{i}^{h}, G^{i j}\right\}(1 \leqq h \leqq n, l \leqq$ $i \leqq j \leqq n$). Then we define an action of L_{n}^{2} on Q by

which is in the agreement with (1.2) and (1.6).
One can see easily that, for the corresponding associated L_{n}^{2}-bundles $F_{P}^{2} M$ and $F_{Q}^{2} M$ over a manifold M, we always have (2.5) $F_{P}^{2} M=T^{*} M \oplus P_{M}^{\prime}, \quad F_{Q}^{2}=T^{*} M \oplus Q_{M}^{\prime}$,
where P_{M}^{\prime} and Q_{M}^{\prime} are some vector bundles over M. (Here P_{M}^{\prime} is an associated bundle to $F^{2} M$ but Q_{M}^{\prime} is not, as we see from the transformation rules (2.3) and (2.4)).

Now, we define the problem to find all second order natural transformations of a symmetric affine connection on a manifold to a metric on its cotangent bundle as the problem to find all those natural transformations of F_{P}^{2} to F_{Q}^{2} which, with respect to the splittings (2.5), induce the identity map $1 \mathrm{~d}: \mathbb{T}^{*} M \rightarrow T^{*} M$ for each M.

According to Theorem A, our main Theorem 1 is reduced to the following

Theorem 2. All differential invariants $f:\left(w_{h}, \Gamma_{j}^{h}\right) \longmapsto\left(z_{h}\right.$, $\left.G_{1 j}, G_{i}^{h}, G^{i j}\right)$ from $P=R^{n *} \oplus\left(R^{n} \otimes\left(R^{n *} \odot R^{n *}\right)\right)$ into $Q=R^{n *} \oplus\left(\left(R^{n} \oplus R^{n *}\right)\right.$ $\odot\left(R^{n} \oplus R^{n *}\right)$ such that $z_{h}=w_{h}(1 \leqq h \leqq n)$ are given, in the canonical coordinates, by

$$
\begin{aligned}
& G_{i j}=-2 a w_{s} P_{i j}^{s}+b w_{i} w_{j} \quad(l \leqq i \leqq j \leqq n), \\
& G_{i}^{h}=a \delta_{i}^{h} \quad(l \leqq h, i \leqq n), \\
& G^{i j}=0 \quad(l \leqq i \leqq j \leqq n),
\end{aligned}
$$

where a and b are constants.

3. Proof of Theorem 2

The method of the proof is that we attach to each equivariant map $P \rightarrow Q$ the corresponding Lie algebra homomorphism for the fundamental vector fields. These Lie algebra homomorphisms are then characterized by a system of differential equations to solve. We find all solutions and decide which of them really represent differential invariants.

First of all, it will be useful to extend the symbols $\Gamma_{i j}^{h}$ $A_{i j}^{h}, B_{i j}^{h}, G_{i j}, G^{i j}$ also for the case $i \geqq j$ by putting $\Gamma_{i j}^{h} \stackrel{i j}{=} \Gamma_{j i}^{h}$, $A_{i j}^{h}=A_{j i}^{h}$, and so on. Thus the range of all indices will be $\{1,2$, $\ldots, n\}$, and all indices will be independent. We note that, under this notation, we have to use the following conventions (cf. Krupka [3]):

$$
\begin{aligned}
& \frac{\partial \Gamma_{i, j}^{h}}{\partial \Gamma_{q r}^{p}}=\frac{1}{2} \delta_{p}^{h}\left(\delta_{i}^{q} \delta_{j}^{r}+\delta_{j}^{q} \delta_{i}^{r}\right), \frac{\partial B_{i, j}^{h}}{\partial B_{q r}^{p}}=\frac{1}{2} \delta_{p}^{h}\left(\delta_{i}^{q} \delta_{j}^{r}+\delta_{j}^{q} \delta_{i}^{r}\right), \\
& \frac{\partial G_{i j}}{\partial G_{q r}}=\frac{1}{2}\left(\delta_{i}^{q} \delta_{j}^{r}+\delta_{j}^{q} \delta_{i}^{r}\right), \quad \frac{\partial G^{i j}}{\partial G^{q r}}=\frac{1}{2}\left(\delta_{q}^{i} \delta_{r}^{j}+\delta_{r}^{i} \delta_{q}^{j}\right) .
\end{aligned}
$$

for $l \leqq h, i, j, p, q, r \leqq n$.
The fundamental vector fields on P relative to the action (2.3) are

$$
\begin{aligned}
\xi_{p}^{q} & =\sum_{a, b, c} \frac{\partial \Gamma_{b c}^{a}}{\partial B_{q}^{p}}(e) \frac{\partial}{\partial \Gamma_{b c}^{a}}+\sum_{a} \frac{\partial \bar{w}_{a}}{\partial B_{q}^{p}}(e) \frac{\partial}{\partial w_{a}} \\
& =\sum_{a, b, c}\left(-\delta_{p}^{a} \Gamma_{b c}^{q}+\delta_{b}^{q} \Gamma_{p c}^{a}+\delta_{c}^{q} \Gamma_{b p}^{a}\right) \frac{\partial}{\partial \Gamma_{b c}^{a}}+w_{p} \frac{\partial}{\partial w_{q}}, \\
\xi_{p}^{q r} & =\sum_{a, b, c} \frac{\partial \Gamma_{b c}^{a}}{\partial B_{q r}^{p}}(e) \frac{\partial}{\partial \Gamma_{b c}^{a}}=\frac{\partial}{\partial \Gamma_{q r}^{p}}, \quad(1 \leqq p, q, r \leqq n),
\end{aligned}
$$

where e denotes the identity element j_{o}^{2} (id) of L_{n}^{2}. Here we also used the formula

$$
\frac{\partial A_{i}^{h}}{\partial B_{q}^{p}}(e)=-\frac{\partial B_{i}^{h}}{\partial B_{q}^{p}}(e)=-\delta_{p}^{h} \delta_{i}^{q} \quad(1 \leqq h, i, p, q \leqq n)
$$

which is derived from (2.1) by differentiation with respect to B_{q}^{p}.
The corresponding fundamental vector fields on Q relative to the action (2.4) are given by

$$
\begin{aligned}
& \underset{\mathrm{E}}{\mathrm{q}}=\sum_{\mathrm{a}, \mathrm{~b}}\left(\frac{\partial \bar{G}_{\mathrm{ab}}}{\partial \mathrm{~B}_{\mathrm{q}}^{\mathrm{p}}}(\mathrm{e}) \frac{\partial}{\partial \mathrm{G}_{\mathrm{ab}}}+2 \frac{\partial \bar{G}_{a}^{\mathrm{b}}}{\partial \mathrm{~B}_{\mathrm{q}}^{\mathrm{p}}}(\mathrm{e}) \frac{\partial}{\partial \mathrm{G}_{\mathrm{a}}^{\mathrm{b}}}+\frac{\partial \overline{\mathrm{G}}^{\mathrm{ab}}}{\partial \mathrm{~B}_{\mathrm{q}}^{\mathrm{p}}}(\mathrm{e}) \frac{\partial}{\partial \mathrm{G}^{\mathrm{ab}}}\right)+\sum_{\mathrm{a}} \frac{\partial \bar{z}_{\mathrm{a}}}{\partial \mathrm{~B}_{\mathrm{q}}^{\mathrm{p}}} \frac{\partial}{\partial z_{a}} \\
& =2 \sum_{a}\left(G_{a p} \frac{\partial}{\partial G_{a q}}+G_{p}^{a \partial} \frac{\partial}{\partial G_{q}^{a}}-G_{a}^{q} \frac{\partial}{\partial G_{a}^{p}}-G^{a q \partial} \frac{\partial}{\partial G_{a p}^{a p}}\right)+z_{p} \frac{\partial}{\partial z_{q}}, \\
& \Xi_{\mathrm{p}}^{\mathrm{qr}}=\sum_{\mathrm{a}, \mathrm{~b}}\left(\frac{\partial \bar{G}_{\mathrm{ab}}}{\partial \mathrm{~B}_{\mathrm{qr}}^{\mathrm{p}}}(\mathrm{e}) \frac{\partial}{\partial \mathrm{G}_{\mathrm{ab}}}+2 \frac{\partial \mathrm{G}_{\mathrm{a}}^{\mathrm{b}}}{\partial \mathrm{~B}_{\mathrm{qr}}^{\mathrm{p}}}(\mathrm{e}) \frac{\partial}{\partial \mathrm{G}_{\mathrm{a}}^{\mathrm{b}}}+\frac{\partial \mathrm{G}^{\mathrm{ab}}}{\partial \mathrm{~B}_{\mathrm{qr}}^{\mathrm{p}}}(\mathrm{e}) \frac{\partial}{\partial \mathrm{G}^{\mathrm{ab}}}\right) \\
& =-z_{p} \sum_{a}\left(G_{a}^{q} \frac{\partial}{\partial G_{a r}}+G_{p}^{a \partial} \frac{\partial}{\partial G_{q}^{a}}+G_{a}^{r} \frac{\partial}{\partial G_{a q}}+G^{a r} \frac{\partial}{\partial G_{q}^{\mathrm{a}}}\right), \\
& (1 \leqq p, q, r \leqq n) .
\end{aligned}
$$

Here we also used the formula

$$
\frac{\partial A_{i j}^{h}}{\partial B_{q r}^{p}}(e)=-\frac{\partial B_{i j j_{k}}^{h}}{\left.\partial B_{q r}^{p}\right)}=-\frac{1}{2} \delta_{p}^{h}\left(\delta_{i}^{q} \delta_{j}^{r}+\delta_{j}^{q} \delta_{i}^{r}\right) \quad(1 \leqq h, i, j, p, q, r \leqq n)
$$

which is derived from (2.2) by differentiation with respect to $\mathrm{B}_{\mathrm{qr}}^{\mathrm{p}}$ • Since any L_{n}^{2}-equivariant map f of P to Q satisfies

$$
f_{*}\left(\xi_{p}^{q}\right)=\Xi_{p}^{q} \text { and } f_{*}^{f}\left(\xi_{p}^{q r}\right)=\Pi_{\square}^{q r} \quad(1 \leqq p, q, r \leqq n) \text {, }
$$

we get

$$
\xi_{p}^{q}\left(z^{\alpha} \circ f\right)=\nabla_{p}^{q}\left(Z^{\alpha}\right) \quad \text { and } \quad \xi_{p}^{q r}\left(Z^{\alpha} \circ f\right)=\Gamma_{p}^{q r}\left(Z^{\alpha}\right),(1 \leqq p, q, r \leqq n) \text {, }
$$

where Z^{α} denotes any canonical coordinate on Q. We have to use also the conditions $z_{h} \circ f=w_{h}(l \leqq h \leqq n)$. Hence we obtain an explicit system of partial differential equations:
(3.1) $\sum_{a, b, c}\left(-\delta_{p}^{a} \Gamma_{b c}^{q}+\delta_{b}^{q} \Gamma_{p c}^{a}+\delta_{c}^{q} \Gamma_{b p}^{a}\right) \frac{\partial G_{i j}}{\partial \Gamma_{b c}^{a}}+w_{p} \frac{\partial G_{i, j}}{\partial w_{q}}=G_{i p} \delta_{j}^{q}+G_{j p} \delta_{i}^{q}$,
(3.2) $\sum_{a, b, c}\left(-\delta_{p}^{a} \Gamma_{b c}^{q}+\delta_{b}^{q} \Gamma_{p c}^{a}+\delta_{c}^{q} \Gamma_{b p}^{a}\right) \frac{\partial G_{i}^{j}}{\partial \Gamma_{b c}^{a}}+w_{p} \frac{\partial G_{i}^{j}}{\partial w_{q}}=-G_{i}^{q} \delta_{p}^{j}+G_{p}^{j} \delta_{i}^{q}$,
(3.3) $\sum_{a, b, c}\left(-\delta_{p}^{a} \Gamma_{b c}^{q}+\delta_{b}^{q} \Gamma_{p c}^{a}+\delta_{c}^{q} \Gamma_{b p}^{a}\right) \frac{\partial G^{i j}}{\partial \Gamma_{b c}^{a}}+w_{p} \frac{\partial G^{i j}}{\partial w_{q}}=-G^{i q} \delta_{p}^{j}+G^{j q} \delta_{p}^{i}$,
(3.4) $\frac{\partial G_{i j}}{\partial \Gamma_{q r}^{p}}=-\frac{1}{2} W_{p}\left(G_{i}^{q} \delta_{j}^{r}+G_{j}^{q} \delta_{i}^{r}+G_{i}^{r} \delta_{j}^{q}+G_{j}^{r} \delta_{i}^{q}\right)$,
(3.5) $\frac{\partial G_{i}^{j}}{\partial \Gamma_{q r}^{p}}=-\frac{1}{2} w_{p}\left(G^{j q} \delta_{i}^{r}+G^{j r} \delta_{i}^{q}\right)$,
(3.6) $\frac{\partial G^{i j}}{\partial \Gamma_{q r}^{p}}=0, \quad(1 \leqq i, j, p, q, r \leqq n)$.

We shall solve the system (3.1) - (3.6) step by step. To avoid confusion, we do not use the Einstein summation convention up to the end of this section.
(3.6) implies that $G^{i j}(1 \leqq i, j \leqq n)$ do not depend on $\Gamma_{\mathrm{qr}}^{\mathrm{p}}$ ($1 \leqq p, q, r \leqq n$). Hence $G^{i j}=\lambda^{i j}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ for $1 \leqq i, j \leqq n$. Then we get from (3.3)
(3.7) $\quad w_{p} \partial \lambda^{i j} / \partial w_{q}=-\lambda^{i q} \delta_{p}^{j}-\lambda^{j q} \delta_{p}^{i} \quad(1 \leqq i, j, p, q \leqq n)$.

Now, if $n \geqq 3$, we can always choose $p \neq i, j$ and we get, at any generic point (for $w_{1} w_{2} \ldots w_{n} \neq 0$), $\partial \lambda^{i j} / \partial w_{q}=0$ for all $1, j, q$. Then (3.7) reduces to $\lambda^{i q} \delta_{p}^{j}+\lambda^{j q} \delta_{p}^{i}=0$, and contracting with respect to $i=p$, we get $\left(n^{+}+1\right) \lambda^{j q} \stackrel{p}{=} 0$, ie.,
(3.8) $\quad G^{i j}=\lambda^{i j}=0$
for all $i, j \in\{1,2, \ldots, n\}$.
Let now $n=2$. Putting $i=j=p=q$ in (3.7), we get, at a
generic point

$$
\lambda^{i i}=c^{i i} /\left(w_{1}\right)^{2} \quad(i=1,2)
$$

where $c^{i i}$ does not depend on w_{i}. Further, putting $i=1, j=2$, $\mathrm{p}=\mathrm{q}$ in (3.7), we obtain the equations

$$
w_{1} \partial \lambda^{l 2} / \partial w_{1}=w_{2} \partial \lambda^{l 2} / \partial w_{2}=-\lambda^{12} .
$$

By an elementary calculation we get

$$
\lambda^{12}=c^{12 / w_{1} w_{2}}
$$

where c^{12} is a constant. Summarizing, we get, at a generic point,

$$
G^{i j}=c^{i j / w_{i} w_{j}} \quad(i, j=1,2)
$$

where $c^{i j}(i, j=1,2)$ are constants. But $G^{i j}$ and w_{i} must satisfy the transformation laws (2.3) and (2.4). This is possible if and only if $c^{i j}=0(i, j=1,2)$. Thus we get again
(3.9) $\quad G^{i j}=0 \quad(i, j=1,2)$
at a generic point, and hence at any point by continuity. Substitution of (3.8) into (3.5) implies

$$
\partial G_{i}^{j} / \partial \Gamma_{q r}^{p}=0 \quad(1 \leqq i, j, p, q, r \leqq n)
$$

hence ${ }_{G}{ }_{i}^{j}(1 \leqq i, j \leqq n)$ do not depend on $\Gamma_{\mathrm{qr}}^{\mathrm{p}}(1 \leqq p, q, r \leqq n)$. Put $G_{i}^{j}=\mu_{i}^{j}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. Then we get from (3.2)
(3.10) $w_{p} \partial \mu_{i}^{j} / \partial w_{q}=-\mu_{i}^{q} \delta_{p}^{j}+\mu_{p}^{j} \delta_{i}^{q} \quad(1 \leqq 1, j, p, q \leqq n)$.

Using (3.10) for $i=j=p=q$ and also for $i=j \neq p=q$, we see that, at a generic point, $\mu_{i}^{i}(1 \leqq i \leqq n)$ are constants. Putting $i=j=q \neq p$ in (3.10), we obtain $\mu_{p}^{j}=0$. Thus $\mu_{i}^{j}=0$ for $1 \leqq i, j \leqq n$, $i \neq j$. Putting $i=q \neq j=p$ in (3.10), we get immediately $\mu_{j}^{j}-\mu_{i}^{i}=0(1 \leqq$ $i, j \leqq n$, $i \neq j)$. This can be written in the form $\mu_{i}^{j}=a \delta_{i}^{j}(1 \leqq$ $i, j \leqq n$) for some constant a, i.e., at a generic point, (3.11) $G_{i}^{j}=a \delta_{i}^{j} \quad(1 \leqq i, j \leqq n)$,
where a is a constant. (3.11) then holds at any point. Substituting (3.11) into (3.4), we get
(3.12) $\partial G_{i j} / \partial \Gamma_{\mathrm{q} r}^{\mathrm{p}}=-\mathrm{aw}\left(\delta_{\mathrm{p}}^{\mathrm{q}} \delta_{i}^{r}+\delta_{i}^{q} \delta_{j}^{r}\right)(1 \leqq i, j, p, q, r \leqq n)$
from which we get by integration with respect to $\Gamma_{\mathrm{q}}^{\mathrm{p}}$,
(3.13) $G_{i j}=-2 a \sum_{s} w_{s} \Gamma_{i j}^{s}+\nu_{i j} \quad(1 \leqq i, j \leqq n)$,
where $\nu_{i f}(1 \leqq i, j \leqq n)$ do not depend on $\Gamma_{q r}^{p}(l \leqq p, q, r \leqq n)$. Substituting (3.13) into (3.1) and using (3.12), we obtain, after some calculations,
(3.14) $w_{p} \partial \nu_{i j} / \partial w_{q}=\nu_{i p} \delta_{j}^{q}+\nu_{j p} \delta_{i}^{q} \quad(1 \leqq i, j ; p, q \leqq n)$.

By calculations similar to those for solving (3.7) in the case $n=2$ we get from (3.14), at a generic point,
(3.15) $\nu_{i j}=b_{i j} w_{i} w_{j} \quad(1 \leqq i, j \leqq n)$,
where $b_{i j}(1 \leqq i, j \leqq n)$ are constants.
Substitute (3.15) into (3.14) for $i=q \neq j$. We get $b_{i j}{ }^{w} j^{w}{ }^{w}$ $=b_{j p} w_{j} w_{p}(l \leqq i, j, p \leqq n, i \neq j)$ and hence, at a generic point, $b_{i j}=b_{j p}$ whenever $i \neq j, p$ arbitrary. Hence all $b_{i j}$ are equal to the same constant b. Thus we get

$$
G_{i j}=-2 a \sum_{s} w_{s} \Gamma_{1 j}^{s}+b w_{1} w_{j} \quad(1 \leqq 1, j \leqq n)
$$

at a generic point, and hence at any point.
This completes the proof of Theorem 2.

REFERENCES

1. KOWALSKI O. and SEKIZAWA M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - A classification, (preprint).
2. KRUPKA D., Elementary theory of differential invariants, Arch. Math. (Brno) 4(1978), 207-214.
3. KRUPKA D., Differential Invariants, Lecture Notes, Faculty of Science, Purkyně University, Brno, 1979 (preprint).
4. KRUPKA D. and MIKOLAŠOVA V., On the uniqueness of some differential invariants : d, [,], ∇, Czechoslovak Math. J. 34(1984), 588-597.
5. N IJENHUIS A., Natural bundles and their general properties Geometric objects revisited-, Differential Geometry, in honor of K.Yano, Kinokuniya, Tokyo, 1972, 317-334.
6. PETERSON E.M. and WALKER A.G., Riemann extensions, Quart. J. Math. Oxford (2)3(1952), 19-28.
7. TOOMANIAN M., Killing vectorfields and infinitesimal affine transformations on a generalized Riemann extension, Tensor,N.S. 32(1978), 335-338.
8. VANHECKE L. and WILLMORE T.J., Riemann extensions of D'Atri spaces, Tensor,N.S. 38(1982), 154-158.
9. WILLMORE T.J., An Introduction of Differential Geometry, Oxford University Press, Oxford, 1959.
10. YANO K. and ISHIHARA S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.

AUTHOR'S ADDRESS: Department of Mathematics, Tokyo Gakugei University, Nukuikita-Machi4-1-1, Koganei-Shi, Tokyo, 184, Japan

