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PROLONGATIONS OF CONNECTIONS AND SPRAYS WITH RESPECT 

TO WEIL FUNCTORS 

Jan Slovak 

Recently, the concepts of Weil algebras and Weil functors have 

become actual for several reasons. One of them is that any product 

preserving functor with values and domain in manifolds coincides 

with a Weil functor on connected manifolds, which has been proved 

independently by [l], [2] , [6]• Moreover, there is a natural equi­

valence between the category of Weil functors and the category of 

Weil algebras, so that natural transformations between product pre­

serving functors are completely determined by corresponding homo-

morphisms of Weil algebras. The present paper deals with prolonga­

tion of some geometrical objects with respect to Weil functors and 

[7] can be considered as our starting point. In particular, genera­

lized or linear connections on fibred manifolds or vector bundles 

are prolonged canonically into generalized or linear connections, 

respectively, and sprays are prolonged into sprays. Moreover, the 

geodetic spray of a linear connection is prolonged to the geodetic 

spray of the prolonged connection. All considerations are in the 

category C °°. 

The author is greatful to Prof. I. Kol£f for suggesting some 

ideas, valuable remarks and useful discussions. 

1. PRELIMINARIES 

In the sequel, R will denote real numbers only. Let Hi be the 

category of smooth manifolds and mappings and let T7K be the cate­
gory of fibred manifolds. A covariant functor F: TH-*T7W is called 

a prolongation functor if the following two conditions hold: 

B°P • id w, where B: 7W —* W is the base functor, and having an 

open submanifold i: U«-»M, the map Fi is an embedding onto or (U), 

This paper is in final form and no version of it will be submitted 

for publication elsewhere. 
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where it : FM-* M is the image of M. A Weil algebra A is a real, fi­

nite dimensional, commutative, associativef unitary algebra of the 

form A « R©N, where N is the nilradical of A. Any Weil algebra A 

gives rise to a prolongation functor which will also be denoted by 

A: AM s Hom(C°°MfA)f MeOblttZ, and its value on morphlsms is given 

by composition, see [9l> [7]* In the special case of the tangent 

functor T corresponding to the algebra D of dual numbers we shall 

keep the traditional notation. The natural transformation of T into 

id w (defining the fibre structure) will be denoted by 7t # For any 

Weil functor A there is the following identification. Having a vec­

tor space V, any homomorphism y £ Hom(C°° Vf A) is determined by its 

values on V* . On the other hand, any n-tuple of values *f(v ) » 

oc pa € A on a base of V* determines a homomorphism yf so that 

Hom(C°°VfA) S V ® A. For more details see [9]. Using this identifi­

cation we obtaine easily the following lemma by direct computations. 

Lemma 1. 

(a) If Vf W are vector spaces and \p *Hom(VfW)f then 

A y : V0A-* W®A is of the form A y • V®id.. 

(b) Let i: B -> A be a homomorphism of Weil algebras and let C be a 

Weil functor. The corresponding natural transformation 1 of 

Weil functors satisfies i -id ® i , i w - id ® idn ® i# 

Rn Rn CRn Rn C 

(c) Let Ci: C°B-»C°A be the natural transformation defined by app­

lying a Weil functor C on all morphlsms of a natural transfor­

mation i: B -* A of Well functors. Then the corresponding homo­

morphism of algebras is i®idc: B®C -* A&C. 

We shall also use another expression of Well functors introdu­

ced by A. Morimoto. Let us consider a Weil algebra A. This can be 

obtained as a quotient algebra of the algebra £(k) of germs of smo-

oth functions on R at 0 by an ideal (X of finite codlmension for 
some integer k. Two germs at zero of mapps ffg€C°°(R fM) are said 

to be A-e qui vale nt if for any y£C*°M ( f t - y*g)6&« The cla­

sses of this equivalence are called A-velocities on the manifold M 
A 

and A-velocity with a representative f will be denoted by j f. This 
gives rise to a manifold THU of all A-velocities on M and to a map 

T^: O^M — T^, T^jjff) « j)A(h«f) for any map h: M - N. One can 

show that for any Weil algebra the functor r is naturally equiva­

lent to the Weil functor A. (jAf(y) « (iff moda)«Af f ̂ C^M) In 

the sequel T* will alao be denoted by A* 
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2. T-KATPRAL TRANSFORMATIONS OF WEIL FUNCTORS 
Consider an arbitrary prolongation functor F: 0?? —-> Tim . 

Having a vector field ^ : M -* TMf we obtain F^ : FM -+ FTM. On the 
other hand, we can prolong the flow of <$ to obtain a flow on FMf 
which defines a vector field F <f : FM -• TFM. In other words, 
expt(F<£ ) « F(expt$ )• The following general definition is due to 
Koldf, [3J. 

Definition 1. A natural transformation i: FT — TF is called 
T-natural if the following diagram commutes for all manifolds M 
and vector fields J 

TFM 
JГ 

1*1 
FM * FTM 

*<$ 

The aim of this section is to show that the canonical exchan­

ge homomorphism i: D <5> A—» A ® D determines a T-natural equivalen­

ce. We remark that this assertion is stated without proof in [7]. 

We shall use the following identifications s A » O^R, D « jJ(R
f
R)

f 

T^jJ^R.R)) « jJ(R
f
R)® T*R

f
 T ^ R ) « ^ R <S> jJ;(R

f
R). Having a map 

—
 u

k 1* V k 

y> : R -+ JQ(R,M), there is a map y: R** x R-> M satisfying 

jl( v^(x
f
-)) » y(x). Hence any element j y e OTTM is of the form 

i (dlty(Xf))) an
d
 we can define i

M
i T S M --> TO^M, 

i
M
(r(3j(y>(x,-)))) « 3j(d

A
(y>(-,t))). Obviously, the map i

M
 form 

a natural equivalence. ar(ji(R
f
R))

f
 considered as a quotient 

algebra of functions, is generated by elements with representati­
v e v 

ves g « f.c: R
 T
 —• R where f: R —- R

f
 c: R — R

f
 but under the 

above identification this are the elements jic ® j
A
f € T TR and 

it follows that iR is the canonical exchange homomorphism. 
To prove the T-naturality of if consider a vector field J 

on M and its flow y(t tx). we have <$(x) » ^(y(-,-*))f 

T ^ (jAg) " dA(5fg> - ;!A(;jJ(<f (-.g(x)))). On the other hand, 
TA(y(t,-))(jAg) « JA(<f (t,-)*g)f which implies " 
l ^ C ^ g ) - dJ(3A(y (tt-)°g))* Hence ijfT^ - T^$ . The commuta-
tivity of the upper triangle in Definition 1 is obvious, so that 
we have proved 

Proposition 1. For any Weil functor Af the natural transformation 
1: A°T-» T*A determined by the canonical exchange homomorphism of 
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D ® A is a T-natural equivalence. 

Remark 1. According to a recent result by Kolif (private communi­

cation), a prolongation functor P admits a T-natural equivalence if 

and only if P is product preserving, which implies by [1], [2], [6] 

that P is a Weil functor. Since the transformation i from Proposi­

tion 1 is essential for all following considerations, this fact 

shows that our way of prolongation of some geometrical objects is 

applicable to Weil functors only. 

The next lemma shows that our T-natural equivalence behaves 

well with respect to the linear structure on tangent bundles. 

Having a vector bundle E, the multiplication by a scalar 

<x e R or the addition E © E - ^ E will be denoted by ex.- or S_ 

respectively. 

Lemma 2. Por any manifold M the following diagrams commute. 

ATM © ATM -i-M-, ATM ATM ^ ATM 

% ®
 A
м j - м k k 

TAM ® TAM fTAM
 T A M T A M

 TAM^
 T A M 

Proof. We may restrict ourselves to M « R
n
 and in this case the 

commutativity is easily computed directly by Lemma 1. 

3. APPLICATIONS TO SPRAYS 

In the special case T -* A, the T-natural equivalence from 

Proposition 1 is the canonical involution j: TT -# TT. Let us recall 

the definition of a spray, [4j. 

Definition 2. A spray on a manifold M is a vector field 

<j : TM — TTM satisfying 

(i) 7r
M
«>expt<jf • oc

TM
 - irr

M
"exp(<xt)<f 

(ii) im^ - £. 
Consider a Weil functor A. 

Proposition 2. Por any spray <y on M the mapping 

<jA « ̂ i j i 0^ 0^ 1 i s a ePray o n AM* 
Proof. According to (i) we have 
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AinrM . iMiiM . .xpt .i^-iMliM-AccM . iM
1 - A o r ^ i ^ e ^ « t)A? . i " 1 

Since we have AgrM«iM » tt^ by T-naturality and 

1M*AotTM°iM " T̂AM b y I,ennna 2* *n e la**8*" condition implies 

orAM.expt<jA. ocTAM - JT^-expCoct) <?A. 

The condition ( i i ) for <f yields AJM«A«j - A^. Hence 

<fA " TiM^TM^^^M1 " - iM'1TirA3M'A .f'ili1 ' 

By local considerations using Lemma 1 we easi ly obtain 

«M-i w
# A JM , 1 M # ( , i M>" 1 " JAM 

which completes the proof. 

4. PROLONGATIONS OF GENERALIZED CONNECTIONS 

We shall deal with generalized connections introduced by 
P. Libermann, [5]> in the form of the lifting mappings. 

Definition 3» A generalized connection on a fibred manifold 

p: Y — X is a mapping p : TX © Y —> TY satisfying 

(i) (Tp ®?tY)*r - id T X ( J >Y 

(ii) P(-,y) is linear for all y£Y. 

Consider a Weil functor A and a fibred manifold p: Y -> X. 
Since A preserves products, Ap: AY-• AX also is a fibred manifold. 
For the same reason the morphisms of fibred manifolds are trans­
formed into morphisms of fibred manifolds. Local considerations 
show, that the fibred products of manifolds and mappings are also 
preserved. 

Let P be a generalized connection on a fibred manifold 
p: Y -* X. Using the T-natural equivalence i, we can construct the 
composed map 

±Z © idAY *r -̂Y 
TAX © AY — - -̂ -— ATX ® AY —— ATY — TAY . 

Proposition 3. The map A P « iY«AP*(ix ©
 idAY^ *s a g e n e r a l i z e d 

connection on the fibred manifold Ap: AY—* AX. 
Proof. Since P is a generalized connection, we have 

(ATp<DA7rY)«Ar « idATX 0 A Y • 
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To prove (TAp © w A Y ' # - r - ±d<2&£ ® AY* w e n e e d 

ijOj^Tpoi^1 « T.Apf A^Y^iY1 « 7rAYt but this i s obvious, since i 
i s a T-natural equivalence* 

The l inearity condition ( i i ) i s computed directly. Let ^ 1 # 

lj2£TAXf y€AYf orAI( ^ 1 ) » S r ^ H g ) « Ap(y). Choose g l f g2> h 

in such a way that ±^1*1}) - lk&i> i x ' L ( ^ 2 ) " * A g 2 f y " ^ a3ad 

7rx«g, « 7rx#Sp * P**1* ^s^nfi Lemma 2 we obtain ( a , 6 € R) 

i j 1 ( o c r i 1 + /2><»72) » AGrTX(AocTX(jAg1), A aTX(;)Ag2) « JA( ocgj + flgg). 

Then 
A r ( j A ( o c g 1 +4g 2 ) f ;J A h) « ikr(^Sl + ^ g 2 » ^ ) » 

« j A ( o c r ( g l f h ) + t 3 r ( g 2 , h ) « 

« AG T y (Ao< T Y*Ar(d A g 1 ,d A h) f A / 3 T Y * A r ( J A g 2 f j A h ) ) . 

By Lemma 2 

A r ( o c ^ 1 + ^ 7 2 , y ) » oc A r ( ^ l f y ) + / 3 A r ( ^ 2 , y ) . Q.E.D. 

Let us consider a generalized connection f on a fibred mani­
fold p: Y-»X and a vector f ie ld <f . This i s l i f ted to a vector 
f ie ld r y on Y defined by r^f(y) « P(<Jop(y) fy) and called the 

p - l i f t of <f . 

Proposition 4. Let A be a Weil functor, p a generalized connection 
on a fibred manifold p: Y -• X. For any vector f ie ld <$ on X i t 
ho ldsAP(AY) - £ ( P < f ) . 
Proof. We have r j » To( j « p © id Y ) f so that 

A ( r j ) » ATo(A^oA p © i d A y ) . On the other hand, 

Ar(A<j) « Ar*(AcpAp ® idAY) « iY*Aro(ix
1® idy)<> (A^oAp © id y ) » 

» iY*Ar*(A5«Ap © i d A y ) « i y ° A ( r ^ ) . Q.E.D. 

The covariant differentiation V*"* defined by a generalized 

connection P on a fibred manifold p: Y-* X can be expressed as 

<s?£a « Tso<f - ro(^f © s): X — VYf 

where VY is the vertical tangent bundle of Y. 
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Lemma 3. The restriction of the map iY to AVY has its values in 

the vertical tangent bundle VAY. 

Proof. The subbundle VYCTY is characterized by TpIVY 3 0. 

Consider an arbitrary z • j jng("*fx) e AVY» We may assume 
k pog(-,x) =. const « h(x) for all x£R . Then we have 

TAp"iY(z) - TAp(jJj
Ag(t,-)) = jJjAh . Q.B.D. 

Proposition 5* Let p: Y-* X be a fibred manifold, P a generalized 

connection on Y. The covariant differentiation determined by the 

generalized connection A satisfies 

V A ^
r As » iY«A(vC s) 

for all vector fields ^ on I and all local sections s of Y. 

Proof. We have 

V A ~ r As « TAsoA<j - Ar«>(A<> © As) » 

• TAsoi^Ac^ - iyoAP^Cij1© ^ A Y ^ ^ X * ^ ® As^ # 

Hence Lemma 2 implies 

^ A ^ f A s " ^ T AY°
( iY* A T s* A? © (-1)TAYoiYoAro(ACf ® A s ) ) s 

« iY*A<5TY(ATs«A^ © A(«l)TY«Ar«(A^ © As)) » 

- iy<>A(Ts*<J - r°(<£©s)). Q.E.D. 

An interesting question is, whether a generalized connection 

on Ap: AY —» AX is determined by its values on prolonged vector 

fields and local sections. An answer is given by the following 

considerations. 

Lemma 4» Let p; Y-# X be a fibred manifold, dimX ̂ k and T£ be the 

functor of r-th order k-velocities. There is a dense subset 

UCTjx such that for any jjf € U the fibre of TJY over jjf is of 

the form 

^kYjrf "Oo^ 8*^* s is a local section of Yj. . 

Proof. We may restrict ourselves to the case X » Rn. Let n^k. 

There is a dense set Uc j^(R*fR
n) each element of which has a left 

inverse. Consider an arbitrary element jj?f €U and let 

jjfojjjf » jjid k. Choose an arbitrary jJg^T^Y over jjf. 
R 
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Using local coordinates on a neighbourhood of g(0)f we have 

i$E • (Jof»«'o^, where 8: HT-* Rm and m is the dimension of the 
fibres of Y. Then we set s * (id „fg*f)9 which is the coordinate 

Rn 

expression of a local section of Y. Moreover 

dj(s«f) » (djf,dj(g-f-f)) = jgg. Q.E.D. 

Lemma 5. Let A » E(k)/Cl and let p: Y — X be a fibred manifold. 
If dimX^k, then AYU • (As(u); s is a local section of Y} for 
a dense set U of elements u ofvthe base AX. 
Proof. Any Weil algebra is a quotient of some j£(R fR). Hence the­
re is a surjective natural transformation j: TJl -• A for some inte­
gers r and k. First of all we show that the restriction of jy to 
a fibre over v €T^X is a map onto the fibre AY over u • Jx(v)6AX. 
Consider an arbitrary homomorphism u-̂ G Hom(C°°YfA) over u. This 
homomorphism depends only on r-jets of functions in a point yeY. 
Using local coordinates, we have y€ (R nxR m) f u-. * (u,u) € AR^AR111. 
Since i is surjective, there is v^ • (vfv) ̂ T ^ R x T^R01 satisfying 
i (v) - uf i.e. 
Rm 

i nj+n^i) a ui« Hence we have proved dy((T^Y)y • AY. ^ . 

Further, it is clear that a surjection transforms dense sets into 

dense sets. Let VCTJJ 

U a 3x^v) and we *iave 

AY » {dy°TFs(v); s is a local section of Y} » 

• (As(u); s is a local section of Y] 
for any u » jj(v)€U. Q.E.D. 

Proposition 6. Let A « E(k)/0t be a Weil algebra and let 
p: Y-> X be a fibred manifold. If dimX^kf then any generalized 
connection P on AY is determined by its values on prolonged vec­
tor fields and local sections. 
Proof. This is a direct consequence of Lemma 5. 

Remark 2. Consider A « Tg and take TfR: TR-*R for p: Y—*X. 
We have T g ^ d , ^ , © ) « (xf ny 9 0 f <$ fd£/dx-*£ fd^/dx-0 ) f so 
that the assumption dimX>k in Proposition 6 is essential. 

dense sets. Let V C T £ X be the dense set from Lemma 4* We set 
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Remark 3. Let A « E(k)/a be a Weil algebra. The equality in 

Proposition 5 can be used for an equivalent definition of a pro­

longation of covariant differentiation, if the dimension of the 

base is greater then k. 

Remark 4. Another approach to prolongations of connections was 

introduced by Z. Pogoda, [8]. He prolongs connections on principal 

fibre bundles using the canonical form of a principal connection. 

5. THE LINEAR CASE 

Consider a vector bundle p: E -* X. There are operations 

A© E, A<*E on the fibred bundle Ap: AE -> AX. Since the properties 

of vector bundles can be expressed by commutative diagrams, 

Ap: AE -+ AX is a vector bundle with operations Gr̂ g « A<->Ef 

°*AE * A0CE» s o t h a t O CAE ( 3 A g ) " 3A(^E°g)* I* (d
Ag1,3

Ag2)^AE®AEf 

then we may assume p°g^ « p*g2 &*-<* then g « (glfg2)€ C°° (R fE®E). 

In this way we identify AE ® AE « A(E © E) and we have 

<SAE(ikg1,i
kg2) " 3A(3«,*«)• I n particular, for A « T we obtain 

the well known linear structure on Tp: TE -> TX. The functoriality 

also implies that the morphisms of vector bundles are transformed 

into morphisms of vector bundles. 

Let us recall the well known concept of a linear connection, 

which is defined as a linear section T: E -* J E. One can easily 

see, that in our setting this is equivalent to the linearity of 

a generalized connection P: TX © E —• TE on E with respect to the 

linear structure on Tp: TE —> TX. In other words, the P-lift of 

any vector field on X is linear. 

Proposition 7. If P is a linear connection on p: E —> Xf then AP 

is a linear connection on Ap: AE -+ AX. 

Proof. Consider any elements ^ 6 TAX, y1# y2eAEf 

Ap(y1) * Ap(y2) - K A I ( ^ ) . Let JX » J
Aflf y2 = j

Af2f i"
1^ « jAyf 

pof-^ « pefg * ^ X * ^ aXld 1 # t Uf^ € R# W e CaX1 f i X l d 

A P ( ^ f c < y i + fly2) by the fo l lowing computation. 

A i " 1 © id -
(ri9 oCJx + 4 y 2 ) « (ifti

k(oit1 + Af2)) » - * fL>. 

i — > ( i \ fd A (ocf 1 -f>/3f2)i A r > d A ( r ( ^ f < ^ f 1 + / 3 f 2 ) ) » 

« d A ( T ^ E ( T o ( E o P ( y i f 1 ) f T / 3 E o P ( l r f f 2 ) ) • > 

, 1* iBoAT&E(AT^E<>AP(jAy , d A ^ 1 ) * A T / 3 E o A P ( j A y f 3 A f 2 ) « 
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- T A C r E o i E © E ( A T o c E ° A r <JAtf . J A * i > . * c ' V A r a \ ,ikt2) » 

" TGr^(TocA^Ar(^fy1)fT/2iA^Ar(^fy2)) Q.E.D. 

Having a vector bundle p: E —> Xf there is a canonical identi­

fication of any V E with ^(v)9 s o *hat t h e r e i s a c&B°:nical mor-

phism of vector bundles *-: VE -* E. Let us consider a covariant 

differentiation V on p: E -*X. We define V by 

^ s « ̂ -.oVc-sj X ^ E , 

We remark that for a linear connection P f v is the usual cova­

riant differentiation determined by P. 

Lemma 6. For any vector bundle p: E-*I it holds 

^AE C iE * A V 

Proof. We may restrict ourselves to E « Rn x Rm. In this case 

ttE: R
nx Rmx {0} x R 1 1 1-^ x Rm is the projection to the first 

and the last factor. Hence 

A* E: (Rn®A) x (Rm©A) x {o} x (Rm©A) —> (Rn® A) x (Rm®A) 

is also such a projection. On the other handf we can similarly 

locally write VAE - (Rn® A) x (Rm®A) x {o] < (Rm©A)f where ac^, 

is also the above projection, and the corresponding coordinate 

expression of i™ is the identity. Q.E.D. 

Using this lemma and Proposition 5 we obtain 

Proposition 8. For any linear connection P on a vector bundle 

p: E—>Xf any vector field <f on X and any section s of E 

we have ^ z T A s • A( V ^ s). 

6. APPLICATIONS TO THE CLASSICAL UHEAR COHKECTIONS 

A linear connection P : TM©TM-*TTM on the tangent bundle 

Tiff of a manifold M is called a linear connection on Iff. 

By Proposition 7t there is a linear connection 

A T : TAM © ATM — TATM on A7iM: ATM-* AM. Using the T-natural 

equivalence if we can construct the map 
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T A » Tij^AroCidjjn©!^1) .^TAM © TAM--> TTAM. 

A 

Proposition 9. The map r is a linear connection on AM for any 
linear connection P on M. 
Proof. Since Ti„ is a linear mapping, the linearity condition (ii) 
of Definition 3 holds. The condition (i) is easily verified by 
local computations by Lemma 1. The linearity of the generalized 
connection T follows from the definition of T , Lemma 2 and 
Proposition 7* Q.E.D. 

Any linear connection P on a manifold M determines the geo­
detic spray ^„ on M by the composition 

c r̂j T M

 d i a6 > TM © TM - ^ TTk>, 

The following proposition is obtained directly by comparing the 

construction of P with the construction of the prolonged sprays. 

Proposition 10. Let A be a Weil functor and let P be a linear 
connection on a manifold M. The geodetic spray of the linear con­
nection P on the manifold AM coincides with the prolongation 
of the geodetic spray of the connection P with respect to A, i.e. 

< < ! r ) A - -frA-

Lemma 7» It holds 

V ^ A T M " *TAM° T iM * 
Proof. This can be proved by direct computations in local coordi­
nates similarly to the proof of Lemma 6. 

Proposition 11. For any linear connection P on a manifold M and 
any vector fields <f f^ on M we have 

,A 
VĄ^ A^ - A C V ^ >• 

Proof. 

By Lemma 7 and Lemma 6 
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r A 
V A kYl ' i M° a € ATM° i TM , , A ( ^ 7 . ) " iM*A^TM°A( ^ ^ ) " 

- iM-A(V(T^) . Q.E.D. 

.Remark 5. We give the expression of the prolonged connection in 

local coordinates. Consider a linear connection F on Rn, i.e. 

T : Rnx Rnx Rn -* Rnx Rnx Rnx Rn, 

(x^y1,*1) »—> (xi,zi,yi,ri5y
i
Z!:) , where r±* € c°°Rn. 

The multiplication <«: R K R D - * R D is prolonged into 

k{* : AxARn-> AR11 and defines an A-module structure on ARn. 

The module structure defined in this way is studied in [7], 

similar considerations are also possible in our setting. Let us 

denote by x ,v> the coordinates on ARn defined by Ax • x 9 e^ , 

where e^is a base of A. Then direct computations give: 

rA(xi,V ^-V.i.v, . (xi,v> fZi,V fJl.V t k r * + (ji..* )* Ui.V )) 

where * denotes the above mentioned module multiplication. Taken 

into account /^ p "0 p k ^ 

V J TJ "'UT? 
one verifies that the Morimoto s prolonged connection [7] coinci­

des with our one. This fact also follows directly from Propositi­

on 6 and Proposition 11 if dim M^k f provided A is a quotient 

of E(k). 
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