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ERGODIC THEOREMS IN d-LATTICE CONES 

R a d u - N i c o l a e Gologan 

ABSTRACT. We extend the maximal e rgod i c theorem o f Hopf to the case of 

a - l a t t i c e cones o f Cornea and Licea ( [ 1 ] ) . As consequences we prove some a b s t r a c t 

p o t e n t i a l theo ry r e s u l t s o f maximal type and an a b s t r a c t po in tw ise e rgod i c theorem. 

The c o n c e p t of a - l a t t i c e cone of Cornea and L i c e a can be 

viewed a s an a b s t r a c t s e t t i n g of t h e cone of p o s i t i v e m e a s u r a b l e 

f u n c t i o n s o v e r a m e a s u r a b l e s p a c e . The aim of t h i s p a p e r i s t o e x t e n d 

t h e p o i n t w i s e e r g o d i c theo rem t o t h i s a b s t r a c t c a s e . The l a r g e c l a s s 

of n o n t r i v i a l examples of a - l a t t i c e c o n e s can be u s e d t o o b t a i n 

a p p l i c a t i o n s of t h e s e r e s u l t s . 

For t h e beginning l e t u s r e c a l l some f a c t s from [ 1 ] . 

An o r d e r e d convex cone (C,<,+) i s c a l l e d a a - l a t t i c e cone i f 

t h e f o l l o w i n g c o n d i t i o n s a r e f u l f i l e d : 

a) For any xeC we have x>0; 

b) For any x ,yeC such t h a t x<y t h e r e e x i s t s z e C such t h a t 

x+z=y; 

c) The o r d e r e d s e t C i s a a - c o m p l e t e l a t t i c e ; 

d) D e n o t i n g a s u s u a l by "A" ( r e s p . "V") t h e " in f " ( r e s p . 

t h e " sup" ) o p e r a t i o n , f o r e v e r y xeC and any s e q u e n c e (x ) M i n C, 

we h a v e : 

xV(Ax n )=A(xVx n ) ; 

xA(Vx )=V(xAx ) ; n n 
. x+Ax n =A(x+x R ) ; 

x+Vx =V(x+x ) . n n 

If C is a a-lattice cone, an element xeC is called finite if 

for every y such that y<x, the element zeC such that x=y+z is unique; 

that is equivalent with A (l/n)x=0. The cone of finite elements will 

be denoted by C . 
' s 

The set |c| defined formally by |c|=C-C has a natural lat-

tice structure induced from that of C, in such a way that |c| be-r 

comes an upper -a-complete and conditionally lower -a-complete lat-



440 RADU-NICOLAE HOLOGAN 

tice. The relations d) hold in |c| also. 

If C and C' are o-lattice cones, a mao T:C -* C is called a 

kernel if T0=0 and if for every sequence (x ) _> from C we have 
n nefj 

CO 00-

T( I V - *
 Tx
n 

n=0 -n=0 

A kernel T:C — C is called proper if for everv xeC there . 
exists a sequence (x )

 M
 in C, increasing to x, such that Tx eC' 

n n E i '| n • s 

for every nefj. 

We say that a o-lattice cone is proper if the identity ker

nel is proper. 

For any xeX we denote by I the man I :C — C defined by: 

I y= V [(nx)Av]. 
X
 ncN 

It is easy to see that for any xeC, I is a kernel with the 

following properties: 

(1) *
x

v
--fy

 f o r
 every yeC 

<
2 )
 -x--x:» 

(3) !
x
(Vx

n
)=VI

x
x

n 

- x
( A x

n
) = V I

x
x
n
 ; 

VX„ X„ ' 
n n 

V П E N 

I will be called the indicator of x. 

Moreover, if for ze|c|=C-C we set z =zV0 and z =-zA0 (in 
+
 _ s 

|c|), we have z=z -z and for every xeC, yeC : 

I . (x-v)"=0; 
(x-v)

+ 

I , x>I,
 x

 . y. 

( x _ y ) + (x-y) + y 

A measure on C is a kernel u-C - R
+
. The set of measures on 

C is a a-lattice cone which is complete. 

If T is a kernel on C, an element xeC (respectively,a mea

sure u on C) is called T-supermedian if Tx<x (respectively, u(Tx) __ 

_>u(x) for every xeC) . An element xeC (respectivelv a measure u) will 

be called T-invariant if equalities hold. 

If xeC is T-supermedian.the Riesz decomposition theorem 
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asserts that there exist unique'UyVeC such that: 

x=0Tu+v , 

where G =I+T+ ... +Tn+ ... and v= A Tnx satisfies Tv=v. 
1 n>0 

We also need the following natural construction. 

If u is a measure on the a-lattice cone C denote 

by C the a-complete subcone of C of those elements xeC having zero 

U-measure (i.e. u(x)=0). 

Defining in C the equivalence relation -. by x~y iff there 

exists x eC such that x<y+x and y<x+x , the set of classes C/C*1 0 0 o -* o - • o 
becomes a a-lattice cone. If we denote by x the class of xeC, the 

following then hold: 

(1) xe(C/CU) iff A (l/n)xGC
U ; 

o S _- o 
n>l 

(2) u:C/C - R defined by u(x)=u(x) is a measure on C/G^ 

and u(x)=0 implies x=6; 

(3) if u is T-supermedian the map T on C/c u defined by Tx=Tx 

is a kernel on C/C^ . 

Two elements x,yeC are called u-almos.t everywhere (a.e.) 

equal if x=y. 

For a sequence (x -) M in C we shall define as usual the 
-1 n ne|»| 

upper limit and the lower limit by: 

lim sup x =A V x_ ; 
n n m>n m 

lim inf x =V A x_ . 
n n m>n ra 

vtfe shall say that the limit of the sequence (x ) M exists 

if limsup x =liminf x^ and that the limit exists u-a.e. if limsun x„= 
r n n n 

=liminf x . In particular, if u(limsup x ) 0 and udinisup x n) = 

=udiminf. x ) the limit exists u~a.e. 

The results of the paper can now be formulated. 

The first one is the natural extension of Hopf's maximal 

ergodic lemma. In order to formulate it,let us introduce the follow

ing notation: if T is a kernel on the a-lattice cone C satisfyina 
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TC c C and xe|c|, let us denote by r (x,T)=r_(x) the elements defin

ed' inductively by rQXx)=0, rn(x)=x+Trn_1(x), n>l. 
PROPOSITION. (Maximal ergodic lemma) Let C be a o-lattice 

cone. T a kernel on C satisfying TC c C and u a prober T^supermedian 
s s „ - r-

measure. If x=x'-x"e|c| (x'eC, x"eC ) and X = y r (x,T), N>1, we have: 
s w n=l n 

U(I . x')>u(I + x") for every N>1. 

Proof. We shall use the' same trick as in the proof of Garcia 

for the classical ergodic lemma ([2]).. 

First, let us suppose that u(x') and u(x") are finite. From 

the fact that X^>r (x,T) we infer that TX*>Tr (x,T) for every 

n=0,...,N-l (we put r =0). Adding x in both sides of the last inequa

lity, we obtain that jrx+x>r for n=0,...,N-l, that is: 

T XJ + X i XN ' 

or: 

TXN+X'+X">x"+X^ .. 

If we apply the kernel 1=1 + to the last * inequality, we ob

tain: ^ 

ITX*+Ix'>Ix"+IX*=Ix"+X* , 

and 

u(ITX^)+u(Ix')>u(Ix")+u(X^) • 

Using -the facts that L<identity and that u is T-supermedian toge
ther with u(XN)0, we obtain the anounced inequality. 

If x'eC or x"eC have infinite measure, it will suffice to s 
use the fact that u is proper; standard limit arguments will conclude 

the proof. 

The following consequences of the precedina result can be 

viewed as abstract potential theory results. 

THEOREM 1. Let C, T and u satisfy the assumptions of the r)ro*> 

poeiti0n and let x,VGCft,y b4ing'tE-£*vavian'bi The following are then true: 
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(i) y> A (l/n)r (x,T) 'implies u ( y ) . > u ( I x ) ; 
n=l

 A n y 

CO 

(ii) y< V (l/n)r (x,T) implies u(y)--U(I x) . 
n=l

 n y 

Proof. We shall apnly the precedinq proposition for. z=ey-x, 

where e>l is arbitrary. We have: 

(1,,+ sy)>u(I
7
+ x) , 

*N
 Z

N 

N
 " + 

where Z = V r (z,T). Let N tend to infinity (the sequence Z 

n=l
 n
 . 

being increasing). We obtain: 

(*) U(I
 +
ey)>u(I ,x) , 

Z Z 

where 

I ,=1 = I 
+ 00 00 

Z
 [V r (z

f
T)]

+
 [єy- Л l/n(x+Tx+.. .+T

П
"

1
x) ]

 + 

n=l
 n
 n=l 

the last equality being an easy consequence of the T-invariance of y 

and the distributivity laws in |c|. 

00 

Moreover, the inequalities y> A ( (1/n) -r (x,T) ) and e>l im-< 
n=l 

ply, as a direct consequence of the definition of the indicator ker

nel, that I =1 . Thus the ineaualitv (*) can be written: 

Z
 y 

eu(y)=u(I ey)>u(I x) . 

In order to obtain the inequality- (i) it is sufficient to 

consider e l . 

The proof of (ii) goes along- the same way if we apply the 

ergodic lemma to x-ey, where 0<e<l. 

The following i s an immediate consequence of theorem 1. 

COROLLARY 1. Let Q, T and u satisfy the preceding assumptions and let xeC have-

finite \i-measure. Then every ^-invariant finite element yeC satisfy-

00 

ing x<.y£ V (1/rlr (x,T) equals x u - a . e . Similarly, every ^-invariant 
n=l 
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element yeC having the same support as x u~a.e. (that is u(I x)= 

=U(x)) and satisfying A (l/n)r (x,T)<v<x, equals x u-a.e. 
n=l n 

Proof. For the first part we have from Theorem 1 (i) that 

U(y)<4-»(I x) . But u(I x)<u(x) so u(x)=u(v)r which combined with v>x 

and u(x)<<» concludes the proof. 

Similarly the proof of the second Dart makes use of Theorem 

1 (ii). 

It is interesting to i^plvthis corollary in the case when 

C is a cone of positive measurable functions on a a-finite measure 

space, (X,X,u) and T restricted to L, (X,X,u)AC is a nositive con

traction. For example if feL,n C and sup(l/n)(f+Tf+...+Tn" f)=« 
n>l 

U-a.e., our results gserts that there exists no T-invariant finite 

positive measurable function greater than f u-a.e. Also if f̂ O is in 

L,A C and inf(1/n)(f+Tf+...+T ~ f)=0 u-a.e., than there exists no 
n>l 

T-invariant measurable positive function less than.f u-a.e. and hav

ing u-a.e. the same support as f. 

The second corollary can be viewed as a disjointness result 

in the Riesz decomposition. 

COROLLARY 2. Let C, T and u be as above. Suppose that xeC 

is T^suvermedian and x=G u+v is the Riesz decomposition. Then: 

u(v)=udvx). 

In particular if u(x)0 we have u(I r:rpu)=0, that is the invariant 

part and the potential part have u-a.e. disjoint supports. 

Proof. From theorem 1 (i) we have that u(v)>u(I x) because 

CO oo 

v is invariant and v= A T x= A (l/n)r (T,x)• The opposite ineauality 
n>l n=l n 

is obvious. For the second part apply the kernel I and the measure 

U to x=GTu+v. 

Our generalisation of the pointwise ergodic theorem is also 

a consequence of theorem 1. However the abstract setting and the ab

sence of units' involves some more assumptions. 

THEOREM 2 . (Ergodic theorem). Let C, T be as above and let u 
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be a T-invariant proper measure.'Let xeC and swnpose that 
U(lim sup (l/n)r (Tfx) )0. .Then the following are equivalent: 

n-*«> 

a) lim sup(l/n)rn(Tfx) and lim inf(l/n)r (Tfx) have u-a.e. 

the same support; 
b) t 

case we have 

b) the limit of (l/n)r (Tfx) exists u-a.e; Moreover in every 

U(l-tm irvf (l/n)rn(Tfx))=u(lim sup(l/n)rn(Tfx) )=u(Ilim ^f(un)T (x T)
x) 

Proof. Let us use the following notations: 

x*=lim sup(l/n)r (Tfx) 

x*=lim inf(l/n)rn(Tfx) 

By standard arguments we have .Tx^x* and Tx*>x*f which imp--: 

liesf by the T-invariance of the measure u and the supposition that 

x* has u~finite measure that x* and x^ are T-invariant in (C/C ) . 

The implication b) ts> a) being obvious, in order to nrove 
00 

the opposite one, let us remark that x*< v (,l/n)r (Tfx) and 
n=l 

00 

x*> A (l/n)r (Tfx) , so by Theorem 1 used in C/ , we have: 
n=l n • c u 

o 
U(x^)>u(I. x) 

x* 

and 

U(x*)<u(I# x) 
x* 

Asf by usual arguments, it is easily seen that u(I* x)=u(I x) and 
• . it is 
u(I'+x)=u(I +x) , the last two ineaualities conclude the Droof. 

xx x* •- . • 

Finally, let us remark that in the•classical L,-case dis

cussed above, Theorem 2 gives necessary and sufficient conditions 

thatffor feL, f f>0f the ergodic average converges u-a.e., in the case 
n — 1 • ' 

that lim sup 1/n(f+Tf+...+T " f) is integrablef without knowing the 
n-00 

L -behaviour of T. 
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