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1987 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 28. NO. 2 

Generalized Vitali Systems of Uniform Type 

LEIF MEJLBRO, 

Lyngby, Denmark*) 

Received 2 April, 1987 

Some Vitali systems of geometrical type consisting of more general sets than just cubes, 
balls or compact, convex sets are defined. Packing theorems for these are formulated, and sketches 
of the proofs are given. The general theory is applied on a class of nullsets, generalizing the usual 
Lipschitz condition for functions. A theorem is given of Jessen-Marcinkiewicz-Zygmund type 
for a system & of axiparallel rectangles, though 0BQ has the packing property. 

1. Introduction. In 1908 G. Vitali [19] proved a packing theorem for intervals in R, 
squares in R2 and N-dimensional cubes in RN. The depth of this discovery was realized 
by H. Lebesgue [7], who improved the method to systems of regular sets with respect 
to cubes and used the packing theorem in differentiation theory. In 1918. C. Caratheo-
dory [3a] conjectured that squares could be replaced by rectangles in U2. This 
conjecture proved to be wrong as pointed out by S. Banach [1] in 1924. In [3b] C. 
Caratheodory included an example communicated to him by H. Bohr as early 
as in 1918. This counterexample has become the most commonly used construction 
ever since, just like S. Banach's method from [1] has become the most well-known 
proof of Vitali theorems. On the other hand S. Banach conjectured that Vitali 
theorems could only be proved for systems of constant regularity, introduced by 
H. Lebesgue [7], A careful analysis shows that this is true as long as Banach's 
method is applied, but already J. C. Burkill [2] proved some results which indicated 
that this is not generally the case. As differentiation of integrals is concerned, B. 
lessen, J. Marcinkiewicz and A. Zygmund [5] proved an important result, which 
clarifies the different roles of the geometry of the considered sets and the class of 
functions, which is differentiated with respect to these sets. The proof of [5] uses 
two ingredients: 1) A Vitali theorem combined with a modification of Bohr's example 
(cf. [3b]) and 2) a result of G. H. Hardy and J. E. Littlewood [4], where the maximal 
function is introduced. Since that time over 300 papers have been published con
cerning Vitali theorems and differentiation theorems, and it would be unjust not 
to mention that such a vast literature exists. 

*) Mathematical Institute, The Technical University of Denmark, Building 303, DK-2800 
Lyngby, Denmark. 
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The starting point here is that Banach's method (cf. [1]) need not give the best 
covering principle. This was demonstrated by L. Mejlbro and F. Tops0e [8] for 
noncentred cubes. Recently, [9] — [14], far more general results have been established 
and it has been possible in the proofs to some extent to distinguish between the role 
played by the geometry in R* and the role of the Lebesgue measure. In the sequel 
we shall give a short review of the results in [9], [10], [11] and [15], where [15] 
demonstrates that we may have a Vitali theorem for our differentiation basis 3SQ, 
and yet 3bQ can only differentiate the Jessen-Marcinkiewicz-Zygmund class Llog+ L. 
The key to the understanding of this phenomenon is that differentiation theory leans 
heavily on some halo condition. 

2. Notation and general Vitali systems. We shall only consider the Lebesgue 
measure |*| and the outer Lebesgue measure |*|* in RN. Let cl A and int A denote 
the closure and the interior, resp., of a set A. The class of all closed sets in RN is 
denoted by 3F, and X denotes the class of all compact sets. The norm [| • [| in UN 

is chosen as the maximum norm, and d denotes the corresponding metric. Let B[x, r] 
(and B(x, r)) denote the closed (open) cube of centre xe RN and radius r e R+. 
The class of all closed cubes in R* is denoted by SI. If Q e Si we let c(Q) denote the 
centre, e(Q) the edge-length and r(Q) = $e(Q) the radius of Q. For a > 0 and 
Q e St let CLQ e J be the blown-up cube with the factor a, i.e. Q and OLQ have the same 
centre and e(a<2) = cce(Q). 

For p e N \ {1} each Q e J can be divided into pN subcubes of edge-length e(Qjp). 
This is called the p-adic division of Q. 

Following F. Topsoe [18], a Vitali system © is a class of pairs (A, S?) with A £ UN 

and Sf £ &, such that 

VS1: V(.A,^)e93 MB c A: (B, ^)e93; 
VS2: V(A,^)e93 We^: (A\F, {SeST: S n F = 0}) e33. 

In [9] we indicated the connection between this setup and the more general blankets 
of A. P, Morse [16]. 

Let ^ 0 g ^ and A £ R*. We say that Sf0 is a packing of A, if the elements 
of Sf0 are mutually disjoint and 

\A\\J{S:Se^0}\* = 0. 

If Sf £ & and Sf contains a packing Sf0 of a set A, we say that the pair (A, Sf) 
has the packing property. 

A Vitali system 23 is said to have the Vitali property (or one says that the packing 
theorem holds for SB), if every pair (A, y ) e S has the packing property. 

A Vitali theorem (or a packing theorem) is a theorem, which states that a given 
Vitali system SB has the Vitali property. 

The following classical lemma can be traced back to H. Lebesgue [7]: 
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Lemma 2.1. A Vitali system © has the Vitali property, if and only if there exists 
a positive constant c, such that whenever A is bounded and (A, £f) e 23 one can 
select disjoint sets {Sn: ne J} c Sf with 

\\J{Sn:neJ}\^c\A\*. 

This lemma is used in an essential way in all the proofs of Vitali theorems in [6] 
and [8] — [14] together with the following elementary lemma: 

Lemma 2.2. Let f: R+ -> R+ be a continuous and nondecreasing function. The 
following two conditions are equivalent: 

0 f(r) r~N~x dr = +oo for one R > 0 and hence for all R > 0 ; 

+ co 

ii) £ qnN f(q~~n) = +co for one q > 1 and hence for all q > 1 . 
n = 0 

3. Uniform Vitali systems. We shall specialize to geometrical Vitali systems 
of uniform type, cf. also [8] — [11]. 

A continuous and nondecreasing function <p: [0, +oo [ -> [0, +oo [ is called 
a $ function in R* and we write <p e <PN, if 

0 ^ <p(r) < (2rf for all r ^ 0 . 

The # functions were used in disguise in [8] in order to obtain a nonclassical 
Vitali theorem for cubes. Here we shall generalize the class of cubes to a class of more 
general compact sets. The elements of this class are defined by a complexity function, 
which describes the complexity of the geometry of each set. 

Definition 3.1. A nondecreasing function r\ e C1(R+),/0r which rf(U+) c ] 0,6" 1 [ , 
is called a complexity function, and we write r\eH. Note especially that apy con
stant r\ e ]0 ,6 - 1 [ may be considered as a member of H. 

For every r\ e H we define a related function rj* by 

rj*(r) = rri(r), r e R + . 

Definition 3.2. Let rje H and K e ]0,3_JV[. By SfN
tKN we shall understand the class 

of all KG Xn, such that for every QN e J either 

(3.1) \QnK\^K\Q\, 

or there exists a Qte JHN, such that 

(3.2) Qi^Q, e(Ql)^rj*(e(Q)), QxnK^9. 

It is easily seen that 

(3-3) •*"«.-. S •*"£.-, f o r *i ^ fa a n d K. ^ K2 . 
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yK contains the class of all convex 
and compact sets in RN. In fact, let K be convex 
and compact. Let Q e &N be chosen, such that (3.2) 
does not hold for K and Q. Perform a 3-adic divi
sion of Q. By assumption all the 3N subcubes contain 
points from K, so by the convexity the central 
subcube Q* is contained in K, and (3A) follows. 

Example 3.1. In [10] other elements called 
trumpets were introduced. A trumpet T in RN, 
N ^ 2, is characterized by its vertex v(T), the 
direction of its axis, i.e. an element of the 
rotation group 0(N), its length e(f) and its shape 
Junction. A shape function Q is a continuous and 
nondecreasing function Q: [0, +oo[ -> [0, +oo[ 
such that 

#(0) = 0 and 0 < Q(r) < r for r > 0 . 

The standard trumpet T0tR of length JR and vertex 0 is defined by 

TOtR = {xeUN:0 ^x^R, £ x) < Q(XI)
2} . 

1 = 2 

A trumpet T of shape Q and length R is defined by a rotation and translation of the 
standard trumpet T0 R. The class of all trumpets of shape Q in IR* is denoted by 
<JTN 

J ( ? • 

By a fairly long, though elementary geometrical proof (cf. [10]) it is proved that 
FN c jfN

K for all r\ e H and all K ̂  cN- x(5 V 2 )~*>w h e r e CN- I is the volume of the 
(N - l)-dimensional euclidean unit ball. Note that the bound for K is independent 
of the shape function Q. V 

The trumpets of example 3.1 indicate that the families tfN
K contain far more 

general elements than just compact, convex sets. The elements do not even have 
to be connected, so some K e CfN

K may look like an archipelago of connected 
components. It should be mentioned that when r\(r) -^ 0 for r -> 0 it is possible 
to construct elements K e XN

$K having boundaries dK very similar to a fractal set. 

Definition 3.3. Let q>e<PN and r\ e H and K e ]0,3~"N[. By ®N
ni[<p; r\, K] we shall 

understand the class of all pairs (A, Sf), where A c RN and £f c XN
K, such that 

(3.4) Vx e A lrx>0 Vr e ]0,rJ 3Ke^:Ka B(x, r) A |K| ^ <p(r) . 

A routine check shows that %}N
ni[(p; r\, K] is a Vitali system. 
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4. Vitali theorems for uniform Vitali systems. The main theorem of this section is 

Theorem 4.1. Let <pe<PN and rjeH and K e ]0,3-JV[, and let rj*(r) = r rj(r). If 

(4.1) (<p o rj* o rj*) (r) r~N~1dr = + oo /or some R > 0 , 

f/ien 33^[<p; *7, K] fctfs the Vitali property. 

By the assumption on <p and */ it follows that if (4.1) holds for one R > 0, then 
it is satisfied for all R > 0. The proof of the theorem is fairly long and complicated 
(cf. [9] and [11]), so only a sketch is given here. First one proves that it suffices 
to establish the following 

Lemma 4.2. Let <p e &N and rj e H satisfy (4.1), and let KE~\093~N[. Let A := 
<= [0, RY be dense in [09RY and suppose that the pair (A9 Sf) from &N

ni[q>; r\9 K] 
satisfies the stronger geometrical condition 

(4.2) VxeA Vre]0,.R] 3KeSf:K c B(x9 r) A \K\ = <p(r) . 

There exists a constant c > 0 and a disjointed subfamily S^± ^ Sf consisting 
of compact sets contained in ]0, R[N

9 such that 

(4.3) \\J{S: SeSft}\ = cRN(^c\A\*) . 

The reductions leading to lemma 4.2 are using the definition of a Vitali system 
and a property of the outer Lebesgue measure. If A is not dense in [0, RY define 
ST = Sf\j {KeXN

tK: K n A = 0} and let A! be given by A u \J{KeXN
tK: K n 

n A = 0} and consider (A! n [0, RY, Sf') e &um[<Pi 1> K] instead. Then theorem 
4.1 follows from lemma 4.2 and lemma 2.1. 

The proof of lemma 4.2 is the core of the matter. Let r0 = R and define inductively 
a division sequence (pn) by 

(4.4) pn = [3a • / / (a" 1 ^)- 1 ] + 1 and rn+l = p. - 1-- . , n e N0 , 

where a > 2 is a constant and [x] denotes the integer part x e U+. 
Let Q° = [0, r0Y and perform a ~0-adic division of Q°. If p0 is odd, consider 

the central subcube Q% of edge-length rx. If p0 is even, consider anyone Q* of the 
2N central subcubes of edge-length rx. By assumption we find x0 e Q% n A and 
choose an element K° e Sf9 such that K c= Q° and |K| ^ <^(r0/a). 

The subcubes from level 1 of edge-length r1 are distributed into the three classes: 

Sltl = {Q):K0n int Q) = 0} , (a cubes) , 

» i = {Qj: K° n int Q1 + 0 , |Q) n K°| < JC|QJ|} , (P cubes) , 

«i = {e) : Ift)n *°l = *|Q)|}. (ycubes) • 
The y cubes satisfy the desired estimate, so they are removed from the process. The 
a cubes are treated as Q° above, only we perform a Pi-adic division instead, obtaining 
subcubes of edge-length r2 from level 2, which are distributed into the three classes 
(after the choice of Kx e S?) 
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tt2 = {Q): K1 n int Q) = 0} , (a cubes) , 

232 = {fij: K1 n int fi* * 0, \Q) n K'l < K | # | } , QB cubes) , 

G2 = {fii: \Q) n K1! ^ *G*|} , (7 cubes) . 

If however Q) e 23 x we cannot always be sure to choose an element K e Sf of the right 
size, which also is disjoint from K°, so we only perform a Ivadic division of Q) 
and distribute the subcubes into the three classes 2l2, 932 and Ct2 described above. 
From the definition of (pn) and definition 3.2 of Jf£K follows the important fact that 
at least one of the pN subcubes of Q) from 231 must belong to 2l2. 

In this way we proceed through all the levels, removing all y cubes and performing 
a p„-adic division on all cubes from 91,, u 23,,. In cases of an a cube we choose an 
element KeSf contained in this cube and hence disjoint from all previous selected 
elements from Sf, such that |K| ^ (p(a~1r„). 

Let mn = max {meN:mn < pn(cc — 2) a"1 — 1}, and let art and /?„ denote 
the numbers of elements in 2t„ and 23,., resp. 

a) Each Qn e 2t„ creates at least pN — (pn — mn)
N elements in 3In+1. 

b) Each Qn e 23n creates at least one element in 9t„+1. 

A simple book-keeping shows that 

«»+l + Ai+1 -= Pn(<*n + Pn) 
and 

«»+i = {Pn - (Pn - mn)N} a„ + fin , 

from which one derives that 

(4.5) —^— > - 4 - > neN. 

The ratio in (4.5) is the ratio of all cubes from 2t„ u 23n still in the process, for which 
we can choose elements Kn e Sf disjoint from the previous selected elements, where 
|KW| ^ <p(vTxrn). Letting 

0 . = U{e:ee2Twu23n}, Q0^Qt^ ... 2 Qn 2 . . . , 

it suffices to prove that \Qn\ -» 0, since e° N -2» 1s composed of y cubes up to level n. 
This is done by using the selected class SP = {Kn: neN} of disjointed elements 
from Sf as gauges, which can be piled up over Qn using (4.2) and the uniform structure. 
This process is totally Active as KeSf" is disjoint from Qn for n sufficiently large, 
but we are merely comparing the measures \Qn\ and |U{-^": n e N}| ^ 1. We obtain 
that the density of the gauges over Q = n Qn is at least 

+ 00 

SvV(*"lr«)-
n = l 

Due to (4.4), the assumption (4.1) and lemma 2.2 this density is +00, so Q must 
be a nullset, and the lemma follows (•) 
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When r\ e H is constant we obtain (rj* o .7*) (r) = f/2r, so (4.1) is reduced to 
R 

(p(r) r"*"1 dr = + 00 for some R > 0 . 

By using an example from [8] we obtain the improved result: 

Í: 
Theorem 4.3. Let <pe$N and i j e jOt f"^ and Ke]0,3~N[. Then ®N

ni[q>; rj, K] 
has the Vitali property, if and only if 

(4.6) I <p(r)r-N-xdr = +00 
Jo 

for one value ofR > 0 and hence for all R e U+. 

A simple calculation shows that for the class of trumpets 3TN of shape Q one may 
choose as the corresponding # function 

fl/2r 

<p(r) = icN-i { f fW}*" 1 * . rGU+> 
Jo 

cf. example 3.1. By a change of the order of integration, (4.6) is reduced to 

J Q(r)*-N r~N dr = +00 for all R>0, 

so we easily obtain from theorem 4.3 and example 3.1: 

Corollary 4.4. Let Q be a shape function, such that 
mR 

^ry-Nr-Ndr = + 0 Q foraU R>Q% 

' o 

Let A ._. UN and Sf <= F" satisfy 

VxeA 3rx>0 Vr6]0 , r J _ T e ^ : T c B(x, r) A e(T) = \r . 

There exists a disjointed subfamily Sf^ = Sf, such that 

\A\\J{T:Te#'1}\* = 0. 
5. Applications. It was pointed out in [6] that Vitali systems of this non-classical 

type could be used to characterize some classes of nullsets. Here we shall mention 
one interesting result of this type by using trumpets. 

Theorem 5.1. Let A ^ UN and let Q be a shape function. Assume that 

(5.1) VxeA 3 r > 0 3TeFN
Q: e(T) = r A V(T) = {x} = Tn A . 
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(5.2) I Q^f-1 r~N dr = +00 for all R>0, 

then A is a nullset. 

Proof. If Te3T*, then also T a e ^ for ae]0, 1], where Ta is the truncated 
trumpet of T of length ae(T). By collecting all trumpets satisfying (5.1) for some 
x e A we define a system Sf of trumpets, such that (.A, Sf) satisfies the assumptions 
of corollary 4.4, so we can find a disjoined family Sf± ^ Sf9 such that 

\A\\){T:TeSf$[* = 0. 

Since Sf± is at most countable, it follows from (5.1) that 

A n U{T: Te 9>^ = V{{v(T)}: T e y±} 

is a nullset. Hence A is a nullset. n 
One interpretation of theorem 5.1 is the following. Let Q be a shape function 

satisfying (5.2). Let 4 c RNbea set, such that (almost) every point x e A is accessible 
from UN \ A within a trumpet of shape Q. Then A is a nullset. One example of a set 
having this property is the Koch curve K in 1R2, where it is well-known that K is 
a fractal set of Hausdorff dimension log 4/log 3, and hence for other reasons a nullset 
inlR2. 

In general one may interpret theorem 5.1 as a generalized Lipschitz condition 
on certain C°-functions giving a sufficient condition for that the corresponding 
graph is a nullset. 

It is well-known that Osgood's curve, cf. [17], is a Jordan curve of positive area. 
Assume that almost every point of Osgood's curve is accessible from the outside 
within a trumpet of shape Q. Then by contraposition of theorem 5.1 we obtain the 
following information on Q: 

í ^ d r < +oo for all R > 0 , 
o r2 

since N = 2. Hence any such uniform shape function for the "gaps" in Osgood's 
curve must be very small near 0, and the corresponding wedges (trumpets in IR2) 
extremely thin near their vertices. 

The theory of trumpets presented above solves a problem posed by Flemming 
Tops0e at the conference Topology and Measure IV, Trassenheide, GDR, 1983. 
A careful examination of an earlier proof revealed that trumpets could be replaced 
by sets from 3f*tK9 hence the present far more general theory. 

The positive Vitali theorems above for fairly general Vitali systems would naturally 
lead to the conjecture that the corresponding differentiation bases would differentiate 
more general classes of functions. It has recently been demonstrated [15] that this 
is not the case, because differentiation theorems also need some kind of halo condi-
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tion, which is totally unnecessary for Vitali theorems. We shall end up with a result 
for differentiation bases, which is closely related to a result of Jessen-Marcinkiewicz-
Zygmund [5], though we do have a Vitali theorem. The notation will be very close 
to that in [5]. 

Let Q: R+ -> ]0,1] be a continuous and nondecreasing function, where Q(r) -» 0 
for r -+ 0, and let Qm = lim Q(t) e ]0, 1]* Define logQ by 

= í l o g ř 

1° 
. _ & . for t > Q^1 

°EQ *n otherwise. 

Let @Q be the system of all axiparallel rectangles in U2, such that the smaller edge-
length is ^Q(r)r, where r denotes the larger edge-length. If <p(r) = r 2 Q(r), then 
<p e $2, and (4.6) reduces to 

* ? W d r = +oo for all R>0. (5-3) Г-Й 
Jo r 

Since rectangles are convex we have St\ <= Jf * K for all rj e H and K e ]0, f [ so theorem 
4.3 gives us a Vitali theorem for (A, @Q) e 23;L[<?>; rj, K], when (5.3) is fulfilled. It is 
trivial to construct Q, such that (5.3) holds, while Q(r) -+ 0 for r -> 0, e.g. Q(r) = 
= {log (1/r)}"1 for r sufficiently small and suitable otherwise. 

Let ij/: [0, + oo[ -> [0, + oo[ be a nondecreasing function satisfying the conditions 

<A(0) = 0, l i m i n f - ^ > 0 , 
f-"> + 00 t 

and let L^ denote the class of all measurable functions /, such that ^(|/|) e L. It 
follows immediately from [5] that the system @Q defined above at least differentiates 
the class Llogtf L. What is more interesting is the following theorem, which states 
that Jessen-Marcinkiewicz-Zygmund's theorem essentially still gives us the best 
result. 

Theorem 5.2. Let Q and \j/ be as above, where Q(r) -> 0 for r -» 0. If 3lQ differen
tiates L^, then ij/(r) ^ cr ]ogQ r for some constant c > 0. 

The proof uses the following 

Lemma 5.3. Let E be an arbitrary bounded and measurable set, and let for 
ae]0,l[ 

(ja(£) = \J{Ie<%Q:\Enl\ > a|/|} . 

If&Q differentiates L^, then one can find a constant C > 0, such that 

|<r a (£) |^c^( l /a) |£ | . 

Lemma 5.3. follows immediately from lemma F in [5]. 
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The rest of the proof of theorem 5.2 follows in spirit the corresponding proof 
in [5], though some very technical modifications are needed (cf. [15]). 

The consequence of theorem 5.2 and (5.3) is that we may have a Vitali theorem 
in connection with ^ , and yet @Q does not differentiate L. This is due to the fact 
that the halo (Ta(E) may be fairly large in measure compared with the measure of E. 

A modification shows that logG may be replaced by the classical log+. 

6. Final remarks and acknowledgement. It should be mentioned that there has 
been developed a corresponding theory for generalized pointwise Vitali systems, 
cf. [12] —[14]. The theorems in section 4 cannot be generalized to the pointwise 
case. In fact, M. Talagrand has given a counterexample in R (published in [6]) to 
such a conjecture. Instead one uses a totally different procedure which is closely 
related to Banach's method [1]. The estimates in the pointwise case are far more 
delicate than in the uniform case. 

The author wants to express his gratitude towards Bjarne Amstrup, Ole J0rsboe 
and Flemming Topsoe for many helpful discussions and their patience during 
the development of this theory. 
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