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Brno, Czechoslovakia 

Received 1 March, 1988 

There are four possible ways of saying what it means for a topological space X 
to be locally compact: 

(1) Every point of X has a compact closed neighbourhood (or, a neighbourhood 
whose closure is compact). 

(2) Every point of X has a compact neighbourhood. 
(3) Every point of X has a base of compact neighbourhoods (i.e., given xeU 

open in X, there exists a compact K with xeK ^ U). 
(4) Every point of X has a base of compact closed neighbourhoods. 
For Hausdorff space X, there are all equivalent, of course; and many textbooks 

on topology, whose authors aren't particularly interested in compactness in non-
Hausdorff spaces, tent to give (l) or (2) as the definition of local compactness. The 
condition (3) is the correct and usual notion of local compactness for not-necessarily-
Hausdorff spaces, because it conforms to the general scheme for defining local 
version of topological properties and, as it is well known (see e.g. [4]), locally 
compact locales in this sense are exactly the distributive continuous lattices. In this 
paper we will study the locale-theoretic analogue of the condition (1) called weak 
local compactness. 

A locale Lis compact iff L is weakly locally compact and almost compact. Weakly 
locally compact locales are closed under closed sublocales and finite products. An 
arbitrary product ULy of locales is weakly locally compact iff each Ly is weakly 
locally compact and Ly is compact for all but finitely many y. A sum ELy is weakly 
locally compact iff each Ly is weakly locally compact. 

In the second part we investigate almost compact locales. A product HLy is almost 
compact iff any Ly is almost compact. A Hausdorff locale Lis compact iff \a is almost 
compact for all a e L. If Lis a regular locally almost compact locale then Lis weakly 
locally compact. 

The notion of the one-point extension may be adapted to locales (for spaces see 
[ l]) and we consider some connections between locales and their one-point extensions 

*) Katedra algebry a geometrie PF UJEP, Janáčkovo nám. 2a, 662 95 Brno, Czechoslovakia. 
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concerning separation axioms. We investigate also the one-point compactification 
of locales, which coincides with the Alexandroff extension on topological spaces. 
Using the one-point compactification, we can prove that every weakly locally compact 
regular locale is spatial. Some of these results are generalized from known results 
for spaces (for example, see [1] and [12]). 

All unexplained facts concerning locales can be found in P. T. Johnstone [5]. 
Recall that a frame is a complete lattice L in which the infinite distributive law 
a A \/S = V{<3 A s: seS} holds for all a e L, S _ L. A frame homomorphism 
K -> Lis a map preserving finite meets and arbitrary joins. Let Frm be the category 
of frames. Many facts (see [5]) indicate the importance of the opposite category 
Loc = Frmop. Objects of Loc are called locales. Of course, sublocales correspond 
to quotient frames and products of locales correspond to sums of frames. If T is 
a topological space then the lattice 0(T) of all open sets of Tis a locale. These locales 
and locales isomorphic with them are called spatial or topologies. A continuous 
mapf: S -> Tof topological spaces determines a frame homomorphism 0(f): 0(T) -> 
-> 0(S) sending Ve 0(T) tof~l(V). We get a functor 0:Top-+ Loc, where Top is 
the category of topological spaces and continuous maps. O has a right adjoint 
P: Loc -> Top assigning to a locale L the topological space P(L) of prime (i.e. 
A-irreducible and 4=1) elements of L. Open sets of P(L) are x = {a e P(L): x = a], 
where xeL. 

From the topological point of view, we will formulate results in the category Loc, 
but proofs, which are mostly carried out in lattice-theoretic terms, in the category 
Frm. 

Let L be a locale. L is regular ([3]) if a = \/(x e L: x <a a) for all ae L, where 
X < A means x* v a = 1 (where x* is the pseudocomplement of x). Lis Hausdorff 
([6]) if a, b eL, 1 =t= a = b implies that there exists ceLsuch that c* = a, c ^ b. 
It was proved in [6] that Lis a Hausdorff locale iff a = Vl_0 for each ae L\ {1}, 
where Da = {x e L: x = a, x* = a}. Lis a T'2-locale ([10]) if, for each ae L\ {1}, 
there exists an ideal A _ Da such that a = V-4. Lis conjunctive if for each two 
elements a, be L with a %b there is an element ceL such that a v c = 1 and 
b v c # 1. We put D l = L. 

We say that an element a e L, a =t= 1 of a locale L is prime (semiprime, resp.) 
i f x A y _ a = > x _ a o r ) ; = a ( x A } ; = 0=>x = a o r j = a, resp.) holds, for 
each x, y e L. If we denote D(L) (P(L) resp., S(L) resp.) the set of all dual atoms 
(prime elements resp., semiprime elements resp.) in L then D(L) ~ P(L) .= S(L). 
We say that Lis a Trlocale (an S-locale resp.) if P(L) = D(L) (S(L) = D(L) resp.) -
see [9]. Spatial Hausdorff locales (or T^-locales or 5-locales) are topologies of usual 
Hausdorff topological spaces. A locale Lis dually atomic if for any 1 =# a e Lthere 
is a dual atom d e D(L) such that d = a. 

Recall that sublocals of Lcorrespond to nuclei on L, i.e., to maps j : L-> Lsuch 
that a = j(a), jj(a) = j(a) and j(a A b) = ;(a) A j(b) for all a,be L. A surjective 
homomorphism f: K -> L of frames is c/0scd if f(a) = f(b) => a v f°(0) = 6 v 
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v f°(0) for each a, beK, where f°(0) = \/(xeK:f(x) = 0). We denote Lr = 
= {leL: I = I**}. 

1. Weakly locally compact locales 

Let us recall that a locale Lis almost compact if each covering of Lhas a finite 
dense subset. For a locale Lwe will denote SL = {/ e L: I* =t= 0}. Then the following 
are equivalent: 

1. L is not almost compact. 
2. An ideal Q in L exists such that Q .= SL, V 2 = 1-
3. A proper filter F in L exists such that \/(a*: ae F) = 1. 
Such a filter is called an cc-filter. 
Some properties of almost compact locales are in [10]. Recall that a topological 

space Tis locally compact iff for each x e T there exists an open set U such that 
x e U, U is compact. If Lis a locale then we put Fc = {a e L: \a is compact}. 

1.1. Proposition. Let T be a topological space, 0(T) be the locale of all open sets 
of T. Then Tis locally compact iff \(a*: aeFc) = 1. 

Proof. =>: If x e Tthen an open set U exists such that x e U, U is compact, i.e., 
T \ U is open, T\Ue Fc. Clearly, x e U = ( T \ U)*, i.e. \/(a*: aeFc) = 1. 

=>: If x e Tthen ae Fc exists such that x e a*. Clearly, T \ a is compact and closed. 
Now, we have a* .= T\a, i.e., a* c T\a. Evidently, a* is compact. 

Motivated by 1.1, we adopt the following 

Definition. Let L be a locale. We say that Lis weakly locally compact or wl-compact 
if \/(a*:aeFc) = 1. 

Clearly, compact locales are wl-compact. Namely, if L is compact then 0 6 Fc, 
i.e., l = o * = V(a*:aeFc). 

1.2. Proposition. Let Lbe a locale which is not compact. Then Lis wl-compact iff 
Fc is an a-filter. 

Proof. =>: Since \/(a*: a e Fc) = 1 we have to show that Fc is a filter. Evidently. 
0 $ Fc and b = a, a e Fc => b e Fc. Let a, b e Fc, V *t = 1> *t = a A b for any 

iel 

iel. Since | a , \b are compact we have V(xt: ieK) v a = 1 = y(xt: ieK) v b 
for some finite K c L Now, we have 1 = [V(^»: i e K ) v a] A [V(X*: i e K ) v b] = 
= \Z(xt: ieK) v (a A b), i.e., a A b e FC. The rest of the proof is obvious. 

As an appl'cation of 1.2 we have the following characterization of compact 
locales. 
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1.3. Theorem. A locale Lis compact iff Lis wl-compact and almost compact. 

Proof. =>: It is evident. 
<=: This results immediately from 1.2 by the fact that a frame Lis not almost 

compact iffthere exists an a-filter in L(see [10]). 

1.4. Lemma. Let Lbe a locale, a є L. If \x is compact in Lthen î(x v a) is com-
pact in \a. 

1.5. Proposition. Every closed sublocale of a wl-compact locale is a wl-compact 
locale. 

Proof. Let Lbe a frame, a є L. Now, we have 1 = V(**- î* 1S compact in L) = 
= V(** v a: î(x v a) is compact in \a) = V(y® = a- îy 1s compact in \a), 
where y®" is the pseudocomplement in \a. In all we obtain that \a is wl-compact. 

1.6. Proposition. Let L be a wl-compact locale. Then for each 1 Ф a є Fc there 
exists d є D(Ľ) such that d = a. Moreover, Lis duallу atomic. 

Proof. If 1 Ф a є Fc then \a is duallу atomic because \a is compact. Clearlу, 
D(\a) s D(L). Namelу, if d is a dual atom in \a and x > d, x є L then x є \a, 
i.e., x = 1. The rest follows from the fact that there exists a є Fc, a Ф 1. Evidentlу, 
if Fc \ {1} = 0 then 1 = V(я*: a є Fc) = V(я*: я є Fc \ {1}) = 0, a contradiction. 
If 1 Ф b є Lthen \b is wl-compact, i.e., there is an element m є D(\b) s -9(L). 

1.7. Proposition. Let Lbe a frame, a, b є Lsuch that \a, \b be wl-compact. Then 
\(a л b) is wl-compact. 

Proof. If \x is compact in \a, \y is compact in \b then î(x л y) is compact in 
\(a л Ь). Now, we have \/(x®1: \x is compact in \a) = 1 = \J(y®2: \y is compact 
in îb), where x®1, (j®2) is the pseudocomplement in \a (\b). Clearlу, x®1 л y®2

 = 

= (x л y)®, where (x л y)® is the pseudocomplement in \(a л b). Evidentlу, 
1 = V(x l л y®2: \x is compact in \a, \y is compact in \b) = \/(z®: \z is compact 
in \{a л b)), i.e., \(a л b) is wl-compact. 

1.8. Remark. It is interesting to note that wl-compact Hausdorfľ spaces are regular 
but there exists a wl-compact Hasudorff locale which is not regular (see [10], Prop. 
2.4). 

1.9. Proposition. If Lis a wl-compact regular locale then a = V(* ^ a: x* є Fc) 
for each a є L. 
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Proof. Let aeL. Now, we have a = V(* : x <] a), 1 = V(y : y* є Fc)- Clearlу, 
a = \/(x л j : x < a j * e Fc) = V ( z : z ^ a, z* e Fc). 

This suggests the following 

1.10. Lemma. Let Lbe a locale. Then it holds: 
(i) x <з a, x* e Fc => x < a (x is waу below a — see [4]). 

(ii) If Lis a regular wl-compact locale then x << a iff x <л a, x* e Fc. 

Proof. (i) Let x <з a, x* e Fc and S Ç L be a directed set such that a = V^. 
Then x* v V^ = 1, i.e., there is s є 5 such that x* v s = 1 and we have x _ s. 

(ii) Since Lis a regular wl-compact frame we have from 1.9 and 1.10 (i) that Lis 
continuous, i.e., the space (P(L), 0(P(Ĺ))) is a locallу compact Hausdorff space. 
Now, let x << a. Then there exists bу [5], 4.2 a compact set K ~ P(L) such that 
x _ K _ a. Clearlу, it is easу to check that P(L) \Ke Fc and we have P(L) \ K ç x , 
i.e., X < f l , x* є Fc. 

1.11. Corollarу. LetL be a regular locale. Then Lis continuous iíf L is a wl-compact 
locale. 

Proof. It follows from 1.10 and 1.9. 

1.12. Lemma. If Lis a wl-compact locale then for each aeFc there exists x є Fc 

such that x <з a. 

Proof. Evidentlу, \/(x*:xe Fc) = 1. Since ţa is compact in Lthen there exists 
x є Fc such that x* v a = 1, i.e., x <з a, x e Fc. 

We call the attention to the fact that the proofs are in the categorу Frm of frames. 

1.13. Proposition. If L is a locale then L^ Lx 2, where 2 denotes the dуadic 
locale which has preciselу two elements 0 and 1. 

Proof. If it: L-> L + 2, i2: 2 -> L + 2 are the canonical injections then each 
element in L + 2 has the form i^x) for some x є L. Namelу, if x є L + 2 then x = 

= У/i^Xj) A i2(Уj), *j є L, yj e 2. Now, we have x = V(íi(^j) л i2(yj): Уj = 0) v 
j 

v У(ii(xj) л i2(yj): Уj = 1) = Wц(xj) = ii(}/Xj) == i±(x) for some x є L. The rest 
is obvious. 

1.14. Proposition. A fìnite product of wl-compact locales is wl-compact. 

Proof. It is enough to prove that a sum of two wl-compact frames is wl-compact. 
The rest follows bу an obvious induction. 
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Let L,K be wl-compact frames, iľ: L-> L+ К, i2: K -> L + K be the canonical 
injections. Let x є L, j ; є K, îx be compact in L, ty be compact in K. Now, we have 
îx + ty = î(ii(x) л i2(y)), i.e., Î(Ï'I(X) v i2(y)) 1s compact because a sum of com-
pact frames is compact. Evidentlу, N/(f l* : î ö - compact in L + K) *= V((ii(*) v 

v i2(y))*: îx is compact in L, ty 1s compact in K) = V(ii(^*) л i2(y*): îx is 
compact in L, ty is compact ш K) = ix(y(x*: î* lS compact in L)) л i2(V(y* : ty 
is compact in K)) = 1 because Land K are wl-compact. 

1.15. Theorem. Let L ľ, y e Г be locales. Then the product П(L ľ: y e Г) is wl-
compact iíf all Ly are wl-compact and L ľ are compact for all but fìnitelу manу y e Г. 

Proof. =>: a) Let y0 e Г. Since _L ľ is wl-compact then there exists a dual atom D 
in SL ľ which has the form D = \/(iy(dy): dy is a dual atom in L ľ, 7 є F). If we put 

x = iľo(0) v У(iy(dy):y ф уo) t n e n î* i s wl-compact (see 1.6), ]x = L

У0 + 2> 

where ^ î^ľ = 2, i.e., L ľ 0 is wl-compact. 
ľ + ľo 

b) Let D be the dual aiom from the part a). Since _L ľ is wl-compact we have 
1 = V(я* : îя is compact in 2L ľ). Now, there exists some a є _ L ľ , \a is compact 
in _L ľ such that a* = D, i.e., there exist indices yl9 ...,yne Г and elements x ř є LУi 

(i = 1, . . . ,n) such that iУl(
xi) л ... л iУn(xn) ^ d, iУí(

xi) л ... л iУn(xn) ^ a*. 
Clearlу, [i ľ l vXi) л ... л iľn(x„)]* = i ľ l(x?) v ... v iľn(x*) = Ь ф 1, b = я, i.e., 
tb is compact in E L r 

Let y ф 7. (i = 1,..., n). We show that L ľ is compact. If y/Є L ľ, Vy/ = 1 thєn 
Viľ(y/) = 1, i.e., Vm фjk) v b = 1. Now, we have 1 = iy( Vm yjfc) v i ľ l(x*) v ... 

к=i k=i 

... v i ľ n(x*). Since 7 ф УІ (i = 1,..., n), we have that 1 = Vm Уjъ i-e-5 Ly is compact. 
fe=i 

<=: Let each L ľ be wl-compact. We denote F0 the set of indices of all non-compact 
L ľ. Clearlу, F0 is finite and we have £ Ly _ ~] L ľ + J] L ľ. Ғrom 1.14 we know that 

ľєГ уєГo ľ^T0 

^ L ľ is wl-compact and from Tуchonoíf theorem we have that ^ Ly is compact and 
ľєГo yфГo 

hence wl-compact. Finallу, _L ľ is again wl-compact. 

1.16. Theorem. Let L ľ (7 є F) be locales. Then the sum I L ľ is wl-compact iff Ly 

are wl-compact for all y e Г. 

Proof. =>: Let 7ľľ: ПL ľ -* Ly be the canonical projections (in the categorу Frm) and 
let us put x ľ 0 = V(y є ПL ľ : 7 1 ^ ) = 0) for each 70 є Г. Then t ^ ľ 0 = L

У0

 a n d îxľo 
is wl-compact (see 1.6). 

<=: Let each Ly be wl-compact and t y ľ be compact in L ľ. Then ӯy = V(y є ПL ľ : 

Пy(y) _ yy) is such that t y ľ is compact in ПL ľ which can be easilу verified. Now, 
we have nß(ӯy) = 0 for ß Ф 7, тгľ(yľ) = y*• Evidentlу, V(y* : îy is compact in ПL ľ) ^ 
_ V(y* : î y ľ is compact in Ly) = 1 because all L ľ are wl-compact. 
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2. A note on almost compact locales 

2.1. Lemma. If L is a locale and Q £ L is an ideal maximal with respect to the 
property Q r= SL then 

(i) xe Q=> x** e Q, 
(ii) Q is prime in Id(L), i.e., x A yeQ=>xeQ or ye Q. 

Proof, (i) If x G Q, x** <£ Q then >! G Q exists such that 0 = (x** v y)* = x* A 
A y* = (x v y)*, a contradiction with the fact that x v y e Q .= SL. 

(ii) Ifx A yeQ, xeL\Q, yeL\Q then xuyxeQ exist such that (x v x t)* = 
= 0 = (y v j ^ ) * . Now', we have 0 = (x* A X*) V ( J * A y*t) = (x* v y*) A 
A (x* A >>*). If we put Z! = x1 v ^ then zx e Q, Zt = xt A y?. Clearly, x* v 
v y* = Z** G Q, i.e., x* v j * G g. Now, we have that a = (x A y)** v x* v 
v y* e Q and a* = (x A y)* A (x A y)* *= 0, a contradiction with with a e 
e 8 = SL. 

2.2. Theorem. Let Ly (y G F) be locales. Then the product IILy is almost compact 
iff Ly are almost compact for all y e F. 

Proof. =>: Let iy: Ly -» !£Ly be the canonical injections, y0 e F and 5yo .= Lyo be 

such that VSyo = 1. 
We put S = {*'yo(s): s e Syo}. Clearly, S ^ XLy, VS = 1 ai1d by almost compactness 

there exists a finite set F .= S such that V(F)* = 0. Now, we have that there exists 
a finite set Fyo s Syo such that 0 = [V(\0(s): s G FJ]* = [iyo(V(s: s G F J ) ] * = 
= iyo([V(s*. s GFyo)]*). Since iyo is dense then there exists a finite dense subset 
Fyo .= 5yo, i.e., Lyo is almost compact. 

<=: If Ly (y G F) are almost compact frames and if _ELy is not almost compact then 
there exists a maximal ideal Q with regard to the property Q i= SILy such that 
VQ = 1. Let Qy = {xyeLy: iy(xy)e Q). Since Q is an ideal, each Qy is an ideal, 
Qy £ SLy. We put qy = V 6 r Clearly, qy =# 1 because Ly is almost compact. If 
X = V(*'y(qy)

: 7 e F) then K 4= 1, G = T*. Namely, if iyi(*i) A ... A z j x „ ) e Q 
then ŷ  exists such that iyj(xj) e Q because Q is prime. Now, we have iyj(xj) = 

= hMyj)' i-e-' l'vi(xi) A ••• A hJ(x*) E ix- °n t h e o t h e r hand, 1 = VQ = VP-~ = 
= X, a contradiction. Finally, SLy is almost compact. 

2.3. Proposition. If Lis an almost compact locale, aeLr then the closed sublocale 
ta is almost compact. 

n 

Proof. If xt e ta , V*, = 1 then ( V xtJ)** = 1 for some finite set of xip 1 = j = n. 
J = i 

If Z A V *ij = a then a* = (Z A V *y)*** = [>** A ( V **./)**]* = Z*, i.e., Z ^ 
J = i i = i j = i 

^ Z** = a** = a. Now, we have (Vx o . ) 0 ® = 1, where ® denotes the pseudo-
complement in ta. •/==1 
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2.4. Proposition. If Lis a locale, j \ : L-> LJi9 i e {1,..., n) are nuclei on Lsuch that 
the locales LJt are almost compact then the locale Lj is almost compact, where 

n 

j = ЛЛ-
ř = l 

Proof will be done for n = 2. Let (jx л j 2 ) (V(^л: k є I)) = 1, afc є L. Since 
L^ and LJ2 are almost compact then a finite set K _; I exists such that j^x) л 
л ji(y(ak: k e K)) = j ř(0) implies j i v x) = j^O) for each x e L, i = 1, 2. 

If (Ii A j 2 ) (x) л (ji л j 2 ) (V(<V- k є K)) = (j\ л j 2 ) (0) then j / vx) л 
л Ji(V(ak: k e K)) = jt(0)9 i.e., j i v x) = ;,(0) for i = l ,2 . Now, we have that 

(Ii л j 2 ) (x) = (ji л j 2 )(0) and LjíAJ2 is almost compact. 

2.5. Lemma. ([5]). If Lis a locale, j _ k are nuclei of L, a, Ь є L then 

(i) fc(a)Фk(Ь)=>j(a)Фj(b), 
(ii) fc(a) > fc(0) =>j(a) > j(Ö) hold. 

Proof. j(a) = j(b) => k(a) = k(j(a)) = k(j(b)) = k(b). 
Now we introduce a generalization of [8] on locales. 

2.6. Proposition. Let L be a locale, A be a chain of nuclei of L such that each nuclei 
j e A is not 1 and Lj is almost compact. Then the set G = [g e L:j(g) is dense in Lj 
for some j є A} has the finite intersection property. 

Proof. Let gl9...,gяєG9 jfót) is dense in LJi9 1 _ i ^ n9 j t й h _5 ••• _ Jя. 

Then j*и(gи) > jи(0) and from lemma 2.5 we have jn-i(gn) > In-i(0)- s i n c e Jn(gn-i) 
is dense in L,.^ we have jи_i(gи_i) л Jи-i(gи) > jи_i(0). Consequently, 
jи_ 2(gи_i л gn) > jи_ 2(0).Now,wehavejи_ 2(gи_ 2 л aи_i л gn) > j л _ 2 ( 0 ) . Finally, 
we obtain j'i(gi л ... л gn) > jx(6)9 i.e., gx л ... л gn Ф 0. 

2.7. Lemma. If Lis a HausdorŕГ locale, 1 ф a e Lsuch that \a is almost compact 
then for each dual atom de D(Ľ) such that d v a = \ there exists heL with 
d v й* = 1, a v h is dense in ţa . 

Proof. Clearly, l = a v d = a v V(^ : x <* )̂> i.e., there exists h<\ d such that 
a v h is dense in \a. 

2.8. Lemma. If Lis a dually atomic almost compact Hausdorff locale and A _; L 
is a chain such that Ű Є І implies 1 Ф a, ta is almost compact, then \/A Ф 1. 

Proof. From 2.6 we know that G = {a є L: a v a is dense in | a for some a є A} 
has the fìnite intersection property, i.e., V(g* : g є G) Ф 1. Now, there exists a dual 
atom d e D(Ľ) such that d _ g* for all g є G. 
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Let 1 = V-4. Then a є A exists with a v d = 1, i.e., ři є L exists such that 
d v h* = 1, a v h is dense in ţ я . Evidently, h є G, i.e., d = h*, a contradictioп. 

Recall that a locale Lis compact iff for each chain {ai}iє/, Яj + 1 for each i є I, 

is V я ř Ф 1. 
ІЄІ 

2.9. Theorem. Let L be a Hausdorff locale. Then L is compact iff \a is almost 
compact for each aeL. 

Proof. =>: It is evident. 
<=: Clearly, Lis almost compact and dually atomic. Namely, L= \0 and \a is 

almost compact for each 1 ф a e L, i.e., there exists an element d such that a _ d є 
є D(]a) _ D(L) (see [10], 2.13). The rest follows from 2.8. 

Recall that a topological space T is locally almost compact if for each xєT 
there exists a neighbourhood U(x) of x such that U(x) is almost compact. Equi-
valently, T is locally almost compact iff for each xєT there exists an open set U 
such that x є 17, Ü is almost compact. 

Let Lbe a locale. We put Fa = {xe L: î * * * is almost compact}. Clearly, D(Ĺ) _ 
_ Fa and each dense element lies in Fa. 

2.10. Proposition. Let T be a topological space. Then T is locally almost compact 
iff У(x*:xєFa) = 1. 

Proof is similar as for wl-compact spaces. 

Defínition. We say that a locale Lis locally almost compact if \/(x*: x є Fa) = 1. 
Clearly, each wl-compact locale is locally almost compact and each almost compact 

locale is locally almost compact. 

2.11. Lemma. Let L be a locale, lєLr. Then ţZ is almost compact iff for each 
S ^ L such that VS = 1 there exists 5' _ S, S' finite such that (/ v V$0* = 0. 

Proof. =>: If S c L, \/S = 1 then there is S' _ 5, S' finite such that (/ v V ^ ) 
is dense in îl, i.e., y л (/ v VS") _ / implies y = /. If y л (/ v V-S') = 0 then 
y _ (/ v VSO = /* л V(S')*. Now, we have у = j л / = / л / * л (VSO* = °-

<=: If 5 £ L, VS = 1 then there exists Sr _ 5, S' finite such that (/ v V^O* = 
= 0. If y л (/ v VSO _ / then /* = (y* v (/ л VS')*)** = У*> i ' e ' y _ y** _ 
_ /** = /. 

2.12. Proposition. Let Lbe a locale which is not almost compact. Then Lis locallу 
almost compact iff Fa is an a-filter. 

Proof follows from 2.11. 

2.13. Lemma. Let Lbe a regular locale, / є Lr. Then / є Fc iff / є Fa. 
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Proof. Fc ç Fa. If / є Fa then ]l is almost compact and regular, i.e., ]l is compact 
(see [10], 2.7). Now, we have that l є Fc. 

2.14. Proposition. If L is a regular locally almost compact locale then L is wl-

compact. 

Proof. Evidently, 1 = \/(x*: xeFa) = \/(x*: x** e Fa) = \/(x*: x** e Fc). 

2.15. Proposition. If Lis a locally almost compact locale then Lhas at least one 
semiprime element. Moreover, for each 1 ф x e Lr, x e Fa there exists p e S(Ĺ) 
such that x = p. 

Proof. The Proposition can be proved similarly as 1.4. 

3. The one-point extensions 

Definition, (i) Let K be a locale and Lbe a dense sublocale in K. Then we say that K 
is an extension of L. 

(ii) Let L be a locale, F .= L be a filter on L. The sublocale LF _= L + 2, generated 
by the set {(/, 0): l e L j u {(a, 1): a e F} is called a one-point extension of L. 

This construction is a special case of the "Artin glueing" construction for locales 
(see [12]). 

Evidently, Lis a dense sublocale of LF. We shall denote ea = \/(e: (a> £) e LF) for 
each a e L. 

3.1. Lemma. If Lis a locale then (a, e)* = (a*, ea*) holds in LF. 

Proof. We have (a, e) A (a*, ea>) = (0, 0) because 0 £ F. If (a, e)* = (b, p) then 
b g a* and /? ^ eb _ ea*. 

Now, we give an explicite description of the sets P(LF) and D[LF). 

3.2. Proposition. Let L be a locale, F <= L be a filter and (a,e)e LF. Then the 
following propositions hold: 

1. (a, e) e P(LF) iff a = 1, e = 0 or a e P(L), e = ea. 
2. (a, e) e D(LF) iff a = 1, e = 0 or a e D(L), e = 1. 

Proof. 1. =>: If (a,e)eP[LF) then aeP(L)u{l}. Namely, if a * 1, a£P(L) 
then x, y e L exist such that x A J = a, x J a, j ^ a. Clearly, (x, 0) A (y, 0) = 

= (a, e), (x, 0) $ (a, e), (y, 0) g (a, e), a contradiction. 
If a = 1 then £ = 0. If a 4= 1, a G P(L) then (1, 0) A (a, ea) = (a, e), i.e., sa = 

= e ^ V 
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<=: Evidently, (1,0)є D(LF) s P(LҒ). Consider (a,ea) for some aєP(L). If 
(x, /?) л (y, y) = (Ь, єa) then x = a oг j ; = Ű, i.e., jS ^ ea or 7 5̂  єđ. Now, we have 
<a,є в )єP(L ғ ). 

2. The proof is similar. 

3.3. Corollary. Let L b e a locale, F g L b e a fìlteг of L.Then L ғ is a 7Vlocale 
iflF L is a T^-locale and D(Ľ) s F. 

Pгoof. <=: Clearly, Lis a Г,-frame. If d є D(Ľ) then (d, ed) є P(LF) = D(LҒ), i.e., 
eđ = 1. We have dєF. 

=>: Let (a, e) є P(LF). Clearly, (1, 0) є D(LF) and if a ф 1, a є P(Ĺ), e = ea then 
я є D(L) = F, i.e., (a, є) є D(LF). 

3.4. Corollary. Let Lbe a locale. Then L ғ is dually atomic iflf for each 1 ф / є F 
there exists d є D(L) such that / _ d. 

Proof. =>: lf 1 Ф fє F then (/, 1) є L ғ and (d, 1) є D(LF) exists such that (/, 1) = 

= ( á , l ) , i . e . , / = d , dєD(L). 

<=: Let (a, e) Ф (1,1), (a, e) є L ғ. If є = 0 then (a, e) = (1, 0) є D(LF). If є = 1, 
1 Ф a є F then d є D(L) exists such that a = d, i.e., (a, є) = (d, 1) є D(LҒ). 

3.5. Proposition. Let Lbe a locale, F be a filter of Land (a, e) є Lғ then the fol-
lowing propositions hold: 

1. a є S(Ĺ) => (a, ea) є S(LF). 
2. (a, e) є S(LF) => a є S(L) u {l}. 
3. (a, є) є S(LF), F ІS an a-filter of L=> a є S(L), є = 1 or a = 1, є = 0. 

Proof. 1., 2. are evident. 
3. Let (a, e) є S(LF). If a = 1 then є = 0. If a Ф 1, я є S(Ĺ) then x є F exists 

such that x* £ a. We have (x, 1) л (x*, 0) = (0, 0), i.e., (x, 1) = (a, є) and є = 1. 

3.6. Corollary. Let F be an a-filter on a locale L. Then L ғ is an S-locale iflf L is 
an S-locale. 

Proof. =>: Lis a homomorphic image L ғ, i.e., Lis an S-frame. <=: If (a, e) є S(LF) 
and a Ф 1 then a є S(L) = D(Ľ), є = 1, i.e., (a, є) є D(LF). 

3.7. Proposition. L ғ is spatial iff Lis spatial. 

Pгoof. =>: If 1 Ф a є L then (a, 0) = (1, 0) л Д{(P, ep) = (a, 0): p є P(Ĺ)}, i.e., 
a = A{p^a:pєP(L)}. 
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<=: If (a, є) Ф (1,1), (a, s) e Lғ then (a, s) = Д{(p, єp) = (a, s) : (p, sp) e P(LF)} 
because a = Д{p = a : pe P(L)}. 

3.8. Рroposition. Lғ is conjunctive iff for arbitrary two elements a,b e Lsuch that 
l ф a $ í ? there exists c є F such that a v c = l , b v c ф l and F \ {1} is cofinal 
in L\{1}. 

Proof. =>: If 1 Ф a = b, a,beL then (1,1) Ф (a, 0) $ (b, 0), i.e., (c, є) є Lғ 

exists such that (a, 0) v (c, s) = (1, 1), (1, 1) Ф (b, 0) v (c, є). We have є = 1, 
a v c = l, Ь v c ф l and c є F. 

If 1 Ф b e L then (1,1) Ф (1, 0) £ (b, 0), i.e., (c, є) є Lғ exists with (1, 0) v 
v (c, є) = (1,1), (1,1) ф (b, 0) v (c, є) and we have є = l , b = c v b Ф 1, c v 
v Ь є F . 

<=: If (a, s), (b,ß)eLғ, (1,1) Ф (a, s) = (b, ß) then we have the following 
cases: 

a) If 1 Ф a = Ъ then ceF exists such that a v c = l , Ь v c Ф l , i.e., (a, s) v 
v ( c , l ) = (l,l),(b,j5) v ( c , l ) Ф ( l , l ) . 

b) If 1 = a = b then є = 0, b ф 1 and 1 Ф c є F exists such that b = c. We have 
(1, 0) v (c, 1) = (1,1), (b, ß) v (c, 1) = (c, 1) Ф (1, 1). 

c) If 1 Ф a = b then є = 1, ß = 0 and we have (a, s) v (1, 0) = (l , 1), (b, ß) v 
v (1,0) = (1,0) Ф (1,1). 

Ғinally, Lғ is conjunctive. 

3.9. Lemma. If Lis a locale, F £ Lis a fìlter of L, x є L r then x є F <=> (x*, 0) <з 
^ ( 1 , 0 ) . 

Proof. =>: If x є F then (x, 1) v (1,0) = (1,1), (x*,0) = (1,0), i.e., ( x * , 0 ) o 

<*(1,0). 
<=: If (x*, 0) <i (1,0) then (x, sx) v (1, 0) = (1,1), i.e., sx = 1. We have x є F. 

3.10. Corollary. F is an a-filter iff (l, 0) = У(z e Lғ: z <i (1, 0)). 
Proof follows from 3.9. 

3.11. Theorem. If Lis a locale and F is a filter of Lthen the following propositions 
are equivalent: 

1. Lғ is a Hausdorff locale. 
2. Lis a Hausdorff locale and F is an a-filter. 
3. (i) a = \/(x П CL: X* Є F) for each aeL, 

(ii) Ғor each 1 Ф a e F there exists x є F such that x\Z\ a. 

Proof. 1 => 2: Clearly, Lis a Hausdorff frame and (1,0) is a dual atom in L ғ . 
Since (1,0) = \/(z: z o (1, 0)) we have that F is an a-ŕìlter. 
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2 => 3: (i) If aeL then a = V(* є L: x D a) = V(y л x: y* є F, x D a) = 
= V(z є L: Z D a, z* є F). 

(ii) If 1 ф a є F then x % a exists with x* є F. If we put Z = a л x* then Z g a, 
Z* ^ a becаuse a* v x** S a, i.e., ZєF, Z D a. 

3 => 1: Let (1,1) Ф (a, є) є Lғ. If є = 0 then (a, 0) = V((*, 0): x D a, x* є F) = 
= V((*, 0): (x*, 1) £ (a, 0)). If є = 1 then Z є F exists with Z D a. Cleаrlу (a, 1) = 
= (a, 0) v (z, 1) = V((*, ßУ (*, ß) D (a, 1)), i.e., L ғ is а Hаusdoríf frаme. 

3.12. Theorem. If Lis а locаle, F is а filter of Lthen the following аre equivаlent: 
1. L ғ i s regulаr. 
2. (i) a = V(* <i a: x* є F) for eаch a є L. 

(ii) Ғor eаch a є F there exists x є F such thаt x <a a. 

Proof. 1 => 2: (i) If a є L then (a, 0) = V((*, в) : (*, fi) <а (a, 0)) = V((*, e) : 

: (x*, sx*) v (a, 0) = (1, 1)) = У((x, e) : x <i a, x* є F). Now, we hаve a = 

= У(x: x < a, x* є F). 

(ii) If a є F then (a, 1) = V((*, e) : (**, єx*) v (a, 1) = (1,1)). Cleаrlу, (x, 1) S 

^ (a, 1) exists such thаt x* v a = 1, i.e., x є F exists with x <i a. 

2 => 1: Let (a, є) є Lғ. If e = 0 then (a, 0) = V((*, 0): x <а a, x* є F) = 

= V((*, 0) : (x, 0) <J (a, 0)). If є = 1 then x є F exists with x <з a. We hаve (a, 1) = 

= (a, 0) v (x, 1) = V((y, e) : (y, «) <• (a, 1)). 

4. The one-point compact if ications 

4.1. Proposition. If Lis a non-compact locale then the locale LFc is compact. 

Proof. If V((^i, fi,): * e ^ = (1> 1) t n e n there exists i0 e I with eI0 = 1, i.e., x l 0 e Fc. 
Clearly, a finite set K ^ I exists such that V(xt: ieK) v xIO = 1, i.e. \Z((xhst): 
f e K ) v ( x , 0 , l ) = ( l , l ) . 

Definition. Let Lbe a non-compact locale. We say that LFc is the one-point com-

pactification of L. 
Evidently, if Lis spatial then LFc is the Alexandroff extension of L. 

4.2. Proposition. Let L be a non-compact locale. Then LFc is a T±-locale iff L 
is a Tj-locale. 

Proof follows from 3.3 because D(L) ^ Fc. 
The following is a locale analogy of the Alexandroff compactification for 

Hausdorff spaces. 
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4.3. Proposition. Let L be a non-compact locale. Then LFc is a Hausdorff locale 
iíf L is a wl-compact Hansdorff locale. 

Proof follows from 3.11. 

4.4. Corollary. A wl-compact Hausdoríf locale is a T2-locale, 

Proof. Clearly, LFc is a compact Hausdorff frame, i.e., LFc is a T2'-frame (see [10], 
1.4) because LFc is dually atomic. Since Lis a homomorphic image of LFc we have 
that L is a T2-frame. 

4.5. Proposition. Let L be a non-compact locale. Then LFc is regular iff L is wl-
compact and regular. 

Proof. =>: It follows from 4.3 and from the fact that homomorphic images of 
regular frames are regular. 

<=: It follows from 1.9, 1A2 and 3.1. 

4.6. Corollary. A wl-compact regular locale L is spatial. Moreover, L is completely 
regular. 

Proof. If Lis non-compact then LFc is spatial and completely regular, i.e., Lis 
spatial and completely regular. 

4.7. Proposition. If Lis a locale which is not almost compact then thr locale LFa 

is almost compact. 

Proof. If V((^i>гi) : í Є I ) = (1J 1) t n e n ioeI єxists with sio = 1, i.e., xf0єFa. 
Further, a finite set K я I exists such that [ V ( ^ І : * Є -8-)]* л x ř o = 0, i.e., 
[V((x i ? в,): гєK)v (x ło, 1)]* = Д(x*, axt.) л (x*, 0) = (0, 0). 

Defìnition. Let Lbe a locale which is not almost compact. We say that LFa is the 
one-point almost compactification of L. 

4.8. Proposition. Let Lbe a locale which is not almost compact. Then it holds: 
1. LFa is a T^-locale iŕf Lis a T^-locale. 
2. LFa is a Hausdorff locale iff L is a Hausdorff locale which is locally almost 

compact. 

Proof. 1. It follows from 3.3 because D(L) c Fa. 2. It follows from 3.11. 
The proposition 4.8.2 is well known for spaces (see [8]). 
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