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Some basic observations on the reconstruction of a finite tree from its subtrees are given. 
It is conjectured that every tree with n vertices is determined by the collection formed of all its 
subtrees with the number of vertices q -= 1, 2,..., k provided k is greater than «/2. 

1. Preliminaries 

All graphs considered are finite, simple and undirected. If G = (X, E) is a graph 
and Yis a subset of the set of vertices X then G/Ydenotes the induced graph with the 
set of vertices Y and the set of edges formed of all edges from E contained in Y. We 
use the symbol = to denote the isomorphism of graphs. 

For every two graphs H, G we define the frequency frq(H9 G) as the number of 
induced graphs of G isomorphic to if. Four types of similarity can be defined. 

Definition. Let ^ be a class of graphs and let k be an integer. For two graphs Gl9 G2 

we define G1 ~k G2 (Gt ~ *k G2, respectively) ifffrq(H9 Gt) = frq(H9 G2) for every 
graph H on k (on ^fc, respectively) vertices, Gx ~\ G2 (Gt ~%k Gl9 respectively) 
\Sfrq(H, Gt) = frq(H, G2) for every graph H from # having k (having ^ k, respec
tively) vertices. 

2. Reconstructing trees 

In the reconstruction theory we are interested in the implication "Gx ~ G2=> 
=> Gt ~- G2" where ~ denotes some of the similarity types. There are some positive 
answers in the case of trees (the class of all trees will be denoted by «̂ "). 

Kelly [4] proved in 1957 that the implication holds for trees Gl9 G2 on n vertices 
in the case of similarity ~n~i

9 i.e. that trees are reconstructible from one vertex 
deleted subgraphs. Further, Harary and Palmer [3] proved in 1966 that the implica-
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tion holds for trees Gl9 G2 on n vertices in the case of similarity ~nf1, i.e. that trees 
are reconstructive from endvertex deleted subtrees. In 1976, Giles [ l ] showed that 
the implication holds when Gl9 G2 are trees on n vertices (n > 4) and the type of 
similarity is ~nf2

9 i.e. that trees are reconstructible from two-vertex deleted subtrees 
(with a trivial exception). He also studied fc-vertex deleted subtrees reconstruction. 

The reconstruction of a graph from "small" subgraphs was first investigated 
by Manvel [5]. The following theorem we regard as basic. 

Theorem 1. Let fc, n be integers, Tl9 T2 trees on n vertices. The following three 
properties are equivalent 

(0 Tt ~k T2, 
(ii) T . ~ - * 7 i , 

(iii) T. ~f T2. 

Proof. Apply Theorem 1.7 from [8] to the class of trees. 
One may try to add the fourth property to Theorem 1, namely the property (iv) 

T1 ~k
r T2 We are going to show (in Theorem 2) that it is not possible. 

Let nl9..., ns be integers and n their sum. We define the "star" graph St(nl9..., ns) 
as a tree consisting of s paths of lengths nl9..., ns all "emanating" from one common 
vertex. Obviously, this tree has n + 1 vertices. 

Theorem 2. Let k ^ 5 be an integer. Then for every n ^ 2fc — 2 there exist two 
trees Tl9 T2 on n vertices such that 7\ ~k

r T2 but not Tx ~%k T2. 

Proof. Take q = n — fc + 1, T = St(l9 k — 4, q) and suppose T = (X9 E) where 
X = {xl9...9xn-2} u { a } , £ = {{xi9xi+1}; i = 1, . . . , n - 3} u {a9 xq+1}. Now, for 
x, y $X let K! = X u {x}9 X2 = X u {y}9 EX=EKJ {X9 X2}9 E2= EKJ {X„_2 , y} 

and finally Tj = (Xj9 Ej) for j = 1, 2. The trees T9 Tl9 T2 are shown in Figure 1 for 
the case fc = 5, n = 8. 

To prove the required properties we put Mj = {K c Xj\ Tj\K is a tree and 
cardK — fc} and we define/: M1 -> M2 as follows: 

(1) if xiK then/(K ) = K, 
(2) if xeK et Xl$K then/(K ) = {xq.l9 ...9xn.2} u {y}9 

(3) if x eK et xxeK then /(K) = {x9,..., xn.2} u {>;, a}. 
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It can be easily shown thatf is a bijection and for every K e Mx it is true that TXJK = 
_ T2/f(K). Thus, we have Tx ~k

r T2. On the other hand, since Tx has just two vertices 
of degree 3 while T2 has only one such a vertex, we have frq(St(\91,1), Tt) = 2 
butfrq(Sf(l, 1,1), T2) = 1 and thus Tx ~p T2 does not hold. 

The following theorem shows that the diameter of a tree cannot be reconstructed 
from "small" subtrees. 

Theorem 3. For every fc _ 1 there exist two trees Tl9 T2 on 3fc + 1 vertices such 
that Tx ~%k T2 and diam Tt 4= diam T2. 

Proof. Let T = St(k - 1, fc, fc) = (X9 E) where X = {x1 ? . . . , x 2 J u {yl9..., jfc} 
and_ = {{xi9xi+1}; i = l , . . . , 2 f c - 1} u {{yi9 yi+1}; i = 1, . . . , fc- 1} u {xk9 yx}. 
Now, let Tx = 5r(fc, fc, fc) = (X!, _x) and T2 = Sf(fc - 1, fc, fc + 1) = (X2, E2) where 
Xx = X u {*}, X2 = X u {w}, £ i = _ u {x, x j , _ 2 = _ u {x2k, w}. 

We take Mj = {K c K,.; card K ^ fc and T//K is a tree} and we define f: Mt -> M2 

as follows: 
(1) if x £ K thenf(K) = K, 
(2) if x e K then K = {x l 5 . . . , xr} u {x}, where r < fc, and then we put f(K) = 

= {x2k-r+i>-~,x2k} u{w} . 
It is clear that for every KeMt we have TX\K _ T2/f(K) but, on the other hand, 
diam Tx = 2fc 4= 2fc + 1 = diam T2. 

3. Bounds of reconstructability 

To analyse the problem in more details we define the concept of a function rec 

Definition. Let 2F be a class of graphs. The integer valued function rec? is defined 
as rec#(n) = min {fc; for every two graphs Gl9 G2 on n vertices from the class 2F 
it is true that Gx ~ ** G2 => Gx ._ G2}. 

Miiller [6] proved that there exists a class ^f containing asymptotically the most 
of graphs with n vertices (in the sense of limit) such that for every r > 1/2 there 
exists nr such that for n > nr the inequality rec#{n) < r .n holds. On the other 
hand, we have proved (see [7]) that for the class 0 of all graphs and for every n _ 15 
rec9(n) > (2n/3) - 6. 

Since Miillers class Jf does not contain the class 2T of all trees nothing can be 
derived for rec^. 

Theorem 4. For every n _ 6 recg-(n) > n\2. 

Proof. It was shown in [7] that for Tt = St(k - 1, fc - 1, 1), T2 = St(k - 2, fc, 1) 
with 2fc vertices (fc _ 3) it is true that Tt ~k T2. Obviously Tl9 T2 are nonisomorphic. 

Checking all the cases of trees with _ 10 vertices (according [2]) we obtained the 
exact values of rec^(n) (see Table 1). Taking into acount this result and supposing 
that our construction from Theorem 4 is "the best possible" we formulate: 
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Table 1 

(t(n) denotes the number of nonisomorphic trees on n vertices) 

n 4 5 6 7 8 9 10 

<«) 2 3 6 11 23 47 106 

recr(n) 3 3 4 4 5 5 6 

Conjecture. For every n ^ 4 rec^(n) = [n/2] + 1, where [ ] denotes the integral 
par t of a number. 

References 

[1] GILES, W. B., Reconstructing trees from two point deleted subtrees, Discrete Math. 15 
(1976), 325-332. 

f2] HARARY, F., Graph theory, Addision Wesley, Reading (1969). 
[3] HARARY, F. and PALMER, E. M., The reconstruction of a tree from its maximal subtrees, 

Canad. J. Math. 18 (1966), 803-810. 
[4] KELLY, P. J., A congruence theorem for trees, Pacific J. Math. 7 (1957), 961—968. 
[5] MANVEL, B., Some basic observations on Kelly's conjecture for graphs, Discrete Math. 8 

(1974), 181-189. 
[6] MCLLER, V., Probabilistic reconstruction from subgraphs, Comment. Math. Univ. Carolinae 

17 (1976), 709-719. 
[7] NYDL, V., Finite graphs and digraphs which are not reconstructible from their cardinality 

restricted subgraphs, Comment. Math. Univ. Carolinae 22 (1981), 281—287. 
[8] NYDL, V., Some results concerning reconstruction conjecture, Proceedings of the 12th Winter 

School on Abstract Analysis (Suppl. ai Rendiconti del Circolo Math, di Palermo (1984)), 
243-245. 

74 


		webmaster@dml.cz
	2012-10-06T00:38:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




