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1991 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 32. NO. 2 

More Facts about Conjugate Banach Spaces 
with the Radon-Nikodym Property, II 

C. STEGALL*) 

Austria 

Received 11 March 1991 

We extend the results of [S0] by proving: if X is an Asplund space (respectively, X is a subspace 
of a gsg space) and K is a Corson compact then any operator from X to C(K) interpolates through 
a Banach space Y such that Y is both Asplund and hereditarily weakly compactly generated 
(respectively, Y is wcg). The techniques are much easier than those of [S0] and yield stronger 
results e. g. if K is a Corson compact that is the continuous image of a so called Radon-Nikodym 
compact then K is an Eberlein compact. 

We use the same terminology as in [S8] and [SO]. Let Y be an Asplund space. 
In [SO] we efficiently show (motivated by [F] and [R]) that there exist increasing 
filters of norm closed and linear subspaces of Y and Y* 

Y = { Z c 7 :Z i s normed closed, linear, and Z norms Zf} 

Y1 = (Zf c y* : z f is normed closed, linear, and Z*|Z is onto} . 

Moreover, if W £ Y, and V £ Y* and both Fand W have the same norm density 
then there exists Z e Y o f the same density as W, W £ Z, V c z*, and if F c Y is 
an increasing filter then 

norm 

\JZ is in Y and 

(UZ )* = UZ* is in Y* . 
F F 

See [SO]. We need two applications of this construction. Suppose that yis Asplund 
and weakly countably determined; equivalently, the unit ball of the dual of y* is 
a GuTko compact. Choose any closed linear subspace W of Y. Choose any Zx in Y 
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such that d(Zt) = d(W) and W =" Zx. Choose a subspace Jr^ that is the image of 
a contractive projection Pl9 d(Zx) = d(Wx) and Zt =" J^ (this is done as in [S4]). 
Continue, constructing {Zn} s Y and subspaces {P ,̂} complemented by the con
tractive projections {P„}, each having the same density as W, such that 

W=Z, = W,= . . . = Z„ = Wn = Zn+l = Wn+1 = . . . 

and Pn(Wn) = Z'n+1. It follows that 

Z = \JZn = U*V„ 

is in Y and is also the image of a contractive projection. The discussion given in [SO] 
provides sufficient details to see that Yis (hereditarily) weakly compactly generated. 
This is an efficient way of getting at the results of [F]; in [F] are also the details 
of constructing equivalent Frechet smooth norms. A second application is to suppose 
that K is a Corson compact and {fa : a e P} is a point countable (each point in K 
belongs to at most countably many of the sets {|/J > 0 : a e F}) family of continu
ous functions on K that separates the points of K. Suppose that X = [{/«}] S C(K) 
is an Asplund space. Then X is (hereditarily) weakly compactly generated and K 
is an Eberlein compact. A property of Corson compacta is the following: given 
any infinite subset Ax of F then there exists a set A so that Ax =" A =" F, A has the 
cardinality as Al9 and there exists a multiplicative projection P on C(K) such that 
p(\K) = l^, p(fa) = fa if a e A and P(fa) = 0 if a $ A (this can be found in [Ne]). 
Obviously, P leaves X invariant and defines a projection on X. As in the case that 
X is weakly countably determined we may intertwine the projections as above and 
show that X is weakly compactly generated. We deduce and generalize the main 
result of [SO] by using neither the results of [F] nor the results of [Pol]; of course, 
everything depends heavily on [S8]. We require the following technical Lemma, 
which is based on the following trivial inequalities: \a v c — b v c\ ^ \a — b\ = 
= avb-aAb. 

Lemma. If C is an equimeasurable subset of C(K) and f and g are in C(K) 
then (C v / ) - g and \Jn(C v 2"") - 2"" are equimeasurable. 

Proof. Suppose that {gu . . . , gn} is an s net for C|Ke where Ke is a compact 
subset of K. Observe that 

I* v / - f f l v / | g | f c - B l | 

and we have that {gx v / , . . . , gn v / } is an e net for (C v f)\Ke. The next part follows 
by translation. The final part can be shown by assuming that C is norm compact 
and then showing that 

U(C v 2~n) - 2~n 
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is relatively norm compact. Choose {gu ..., gk) an e/4 net for C. Choose m such 
that 

£ 2~P < ~ • 
m<ip 8 

We shall show that 

{(gt v 2"-/) - 2~-/ : i = k and j g m} 

is an a net for 

U (C v 2~n) - 2~n . 
n 

If n g m,fe C and g,- are such that ||f — gt\\ < e/4 then 

!((/• v 2 - ) - 2 - ) - ((a,- v 2 - ) - 2 - ) | < 1/ - 0 , | < E- . 

For a > m it follows that 

| | ( ( / v 2 - « ) - 2 - « ) - ( ( / v 2 - ) - 2 - ) i 

< S !((/ v 2"") - 2"") - (( / v 2 - - 1 ) - 2 - ' - 1 ) ! 

Z <£ 2~" + 2-"'1 + | ( ( / v 2~") - (/ v 2-""1)! 
m ^ p 

= 4 Z 2 - " < - . 
m<\p 2 

This completes the proof. 

Lemma. Let K a compact Hausdorff space and C a subset of C(K) that is equi-
measurable and separates the points of K (in some circles K is called a Radon-Ni-
kodym compact). Let F be any subset of C(K) that is point countable. There exists 
a subset G of C(K) that is both equimeasurable and point countable and the algebra 
A! generated by G contains F. 

Proof. We may assume that C is a convex and symmetrical subset of the unit ball 
with \K e C. It is easy to check that C . C is also equimeasurable and, by induction. 
Cn is equimeasurable. It follows that 

E = X 2~n Cn 

n 

is equimeasurable (see [S8]). Observe that the family of all polynomials in F with 
rational coefficients is also point countable. Thus, we may assume that F is a dense 
subset of the unit ball of A0, the smallest algebra containing F. Partition F by 

F = UF„ 
n 
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so that 

F„ c (2- . E) + B(0, i) . 

For each/Bffl. e Fn choose A M e " so that \2n h„)a - / „ > a | | < J. Define 

«».« = (2n fcBi« v i ) - i = 0 
and observe that 

2- «„„ = (v« v - L ) - ^L e (E v -1-) - - L . 

Thus, {2~n un<x : n, a} is equimeasurable. Fix fceK; if 2~n una(k) > 0 then 
2n h„>a(fc) > i which implies that |/„,a(fc)| > \. Thus, {2~n una : n, a} is also point 
countable. Fix two points fc0 and fcx in K so that fc0|A0 = a0 and kx\A0 = ai are 
distinct (positive, multiplicative) states of A0 and choose a function h e A0 so that 

- i = h(a0)<h(ai) = i = \\q. 

There exist n and/„ , , e FB so that ||/„>a - fc|| < ±. Therefore, ||2" V a - A|| < i 
and it follows that 

0 = unta(a0) < un§Jax) . 

Let G = {2~n wna : n, a}. Let A2 be the algebra generated by F u G and let Ai 
be the algebra generated by G. The arguments above show that the state spaces of 
A2 and Ai are the "same"; in other words, if some he A0 separates two points in K 
then those two points are also separated by some una, This means that A0 £l Ax = 
= A2. The algebra A1 is generated by the point countable and equimeasurable set 
[2~n una : n, a}; thus, the state space of At is both a Corson compact and a Radon-Ni-
kodym compact. 

We point out some trivial consequences of this Lemma. Suppose that f:K-+T 
is a continuous function from the Radon-Nikodym compact K to the Corson com
pact T. Then/factors through a space S that is both a Radon-Nikodym and a Corson 
compact. If follows from [SO] that S is an Eberlein compact; however, the main 
result of [SO] can be trivially deduced from the Lemma and the remarks at the 
beginning of the paper. The following is both stronger and easier to prove. 

Theorem. Suppose that U : X -> C(K) is an operator, X is an Asplund space 
and K is a Corson compact. Then the operator factors through a Banach space Z 
that is both Asplund and weakly k-analytic (it follows that Z is hereditarily weakly 
compactly generated). Hence, the algebra A generated by U(X) is weakly compactly 
generated (equivalently, the state space of A is an Eberlein compact). 

Proof. We may assume that []L7|| = 1. If we let A be the subalgebra of C(K) 
generated by U(X) and the constants then the state space of A is also a Corson com
pact (see below). Thus, without loss of generality, we may assume that A = C(K), 
or, in other words, that U(X) separates the points of K. Now, we make the first 
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interpolation. Let D be an equimeasurable subset of the unit ball of C(K) that is 
closed in the simple topology, convex, symmetrical, \JnnD is norm dense in C(K) 
and U(Bx(0,i)) s D. There exists E ^ D that is point countable and separates the 
points of K (see the Lemma above). There exists an Asplund space yand an operator 
S : y-> C(K) with the following properties: 

(i) E s S(Br(0,l)) £ BC(K)(0,1) , 

(ii) [S _ 1 (F ) ] = Fand 

(iii) S** is one to one. 

This is in [S8]. Since S*(C(K)) is norm dense in y* (condition (iii)) and the convex 
hull of S*(K) is norm dense in 5*(C(K)) (this is because Y* has the Radon-Nikodym 
property) it is easy to check that the unit ball Lof Y* is a Corson compact. To see 
this, fix any y* e Y* and choose a sequence {kn} £ K so that y* is in the norm closed 
convex hull of {S*(kn)}. Then, S maps the set {y : S(y)eE and |y*(y)| > 0} one 
to one into the countable set \Jn{feE : \f(kn)\ > 0}. Consider the canonical operator 
J : y-> C(L). This is an isometry and J(Y) is the span of the point countable and 
point separating family J(S~1 (E)) of continuous functions. Thus, Y is weakly 
compactly generated and it follows that the unit ball of Y* is an Eberlein compact; 
since S* is one to one on K it follows that K is an Eberlein compact. Now, we make 
the second interpolation. There exists an Asplund space Z and operator T: Z -» C(K) 
with the following properties: 

(i) the image of the unit ball of Z contains D, 

(ii) [T-^Dj] = Z a n d 

(iii) T** is one to one. 

This is in [S8]. We have proved that K is an Eberlein compact and it follows 
that D is k-analytic in the weak topology; since T** is one to one it follows that 
T"1 (D) is also k-analytic in the weak topology and since T"1 (D) spans Z it follows 
that Z itself is k-analytic in the weak topology (see [T] and [SI] for lots of details). 
In particular, Z is an Asplund space that is also wed. We know that Z is hereditarily 
wcg. Since U(Bx(0,l)) .= D it follows that U factors canonically through Z and 
this is the desired result. See [Gu], [So] and [S4]. 

There are hosts of corollaries. 

Corollary. Suppose that X is an Asplund space and K £ X* is weak* compact 
and is a Corson compact. Then K is an Eberlein compact. If K is norming then X 
is hereditarily wcg. 

Proof. Let T: X -> C(K) be the canonical operator. Of course, T(X) separates 
the points of K. By the Theorem, we know that T factors through a hereditary wcg 
space, which proves that K is an Eberlein compact. If K is norming, by which we 
mean that Tis an isomorphism, it follows that X is isomorphic to a subspace of a 
hereditarily wcg space. 
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Corollary. A Corson compact which is the image of a Radon-Nikodym compact 
is an Eberlein compact. 

Proof. The techniques required are the same as those above, except for one gap, 
which is filled by [BRW]. If K is a Corson compact and C £ C(K) is equimeasur-
able and separates the points of K then there exists an Asplund space X and an operator 
T: X -* C(K) such that C c T(X) [S8]; thus, T* is a homeomorphism on K. Since 
T factors through a wcg space this proves that K is an Eberlein compact. Do not 
assume that K is a Corson compact but keep the same hypothesis o n C c C(K) 
and suppose that A0 is any subalgebra of C(K) whose state space is a Corson compact. 
We know that there exists another subalgebra Al9 A0 .= Al9 so that the state space 
of Aj is both a Corson compact and a Radon-Nikodym compact; hence the state 
space of A1 is an Eberlein compact. The state space of A0 is the continuous image 
of the state space of Ax and hence, is also an Eberlein compact [BRW] (see also [Ne] 
and its references). 

Corollary. Suppose that U : X -+ C(K) is an operator, X is a subspace of a gsg 
space and K is a Corson compact. Then U factors through a wcg space and the 
subalgebra A of C(K) generated by U(X) is weakly compactly generated (the state 
space of A is an Eberlein compact). IfU is an isomorphism then the unit ball ofX* 
in the weak* topology is an Eberlein compact (but, in general, X is not wcg). 

Proof. The statement that X is a subspace of a gsg space is equivalent to the unit 
ball of X* being the continuous image of a Radon-Nikodym compact [S8]. 
Thus, U*(K) is Corson compact and the continuous image of a Radon-Nikodym 
compact. Thus, U*(K) is an Eberlein compact and is (homeomorphic to) the state 
space of A. If U is an isomorphism, then X is isomorphic to a subspace of the wcg alge
bra A and the result follows. The example of Rosenthal (complete details are in [S8], 
[SO] and [Ne]) shows that, in general, X need not be wcg but it is weakly k-analytic. 

Corollary. Suppose that U : X -> Y is an operator, the unit ball of X* is Corson 

compact and Yis gsg. If Z = U(X) then the unit ball ofZ* is an Eberlein compact. 

If Yis an Asplund space then Z is (hereditarily) wcg. 

Corollary. If we can decompose the Corson compact K so that K = \JnKn and 
for each n there exists a Radon-Nikodym compact Ln so that Kn is the continuous 
image of Ln then C(K) is k-analytic in the weak topology (in other words, K is a 
Talagrand compact). 

Proof. Add [T] and [So] to the ingredients here. Mix well. Do not add water. 
Why is the continuous image of a Corson compact also a Corson compact? 

Our proof of this is quite easy (there are, however, some horrendous proofs in the 
literature and none as easy as ours). In fact, the Lemma above essentially contains 
a proof. Suppose that K is a Corson compact and {fa} is point countable, separates 
the points of K and 1K e {fa}. We may replace {fa} by all polynomials in {fa} with 
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rational coefficients. We may assume that {/J is norm dense in the unit ball of 
C(K). Let A be a uniformly closed subalgebra of C(K) containing the constants. Let 
B be the unit ball of A and for each a choose 

K e B(f.,$ fl B if B(f„i) fl B * 0 and 

ha = 0 otherwise. 

Define wa = (ha v £) — •£. Since .4 is also a lattice it follows that each ua is in A. 
Suppose a =t= a' are states of A. There exists he A such that - 1 = h(a) < h(a') = 
= 1 = \h\. There existsfa such that \fa - h\ < % and it follows that ||ft - ha|| < f 
Therefore, 0 = ua(a) < ua(a') and {ua} separates the states of A. Fix a state a of .4 
and keK so that a = fc|A. Then 

{a : |Wa(a)| > 0} s {a : |ha(a)| > i} £ {a : |fa(k)| > J} 

and the latter set is countable. 
We can do somewhat more with the same ideas. Suppose that K is a Corson 

compact and U = {Ua} is any collection of open subsets of K. Let 

g? = {g e C(K) : \g\ = 1 , g = 0 and {g > 0} c Ua for some a} . 

Replace £ by J27, let {fj, {ha} and {wa} be as above. It follows that 

(i) {{ua > 0}} is point countable, 
(ii) {{wa > 0}} is subordinate to U, 

(iii)U{K>o}} = uu, 
(iv) {{ua > 0}} separates the points of (JU and 
(v) each {ua > 0} is an open F,. 

This improves a result in [Y] that, using the terminology in [Grl], Corson com
pact spaces are hereditarily (with respect to open subsets) metalindelof; the improve
ment being conditions (iv) and (v). A topological space is metalindelof if every 
open cover has a point countable open refinement. In [Grl], there is an interesting 
converse; if K is a compact space and the complement of the diagonal of K2 is 
metalindelof then K is Corson compact. 
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