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We use a Banach space recently considered by W. Gowers to improve some results on norm 
attaining operators. In fact, we show that the norm attaining operators from this space to 
a strictly convex Banach space are finite-rank. The same Banach space is also used to get a new 
example of a space which does not satisfy the denseness of the numerical radius attaining ope
rators. This new counterexample improves and simplifies the one previously obtained by R. Paya, 
who answered an open question raised by B. Sims in 1972. 

Introduction 

This paper deals with two parallel optimization problems concerning operators 
in Banach spaces. First we make some remarks on norm attaining operators, then 
we discuss a new counterexample on numerical radius attaining operators. 

Given two Banach spaces, X and Y9 a (bounded and linear) operator Te L(X9 Y) 
attains its norm if there is an element x0 in the unit sphere o f Z such that ||-Tx0|( = 
= ||r||; we will denote by NA(X9 Y) the set of norm attaining operators from X 
to 7. The general question (sometimes called the „Bishop-Phelps problem") is 
whether or not NA(X9 Y) is dense in L(X9 Y) for the norm topology. In his pioneering 
paper on this question, J. Lindenstrauss [14] introduced the so-called properties 
„A" and ,,B". A Banach space X has property A (resp. B) if NA(X, Y) (resp. 
NA(Y9 X)) is dense in L(X9 Y) (resp. L(Y9 X)) for any Banach space Y. Thus, Bishop-
-Phelps Theorem can be stated by saying that the scalar field has property B. 

Whereas property A is fairly well-known, there are few results on property B. 
Lindenstrauss [14] gave a strong geometrical condition which is sufficient for 
property B. However, Partington [15] proved that every Banach space can be re-
normed to satisfy Lindenstrauss condition, hence also property B. By using techni
ques developped by Bourgain [10] to prove the most relevant result that the Radon-
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-Nikodym property implies A, Huff [13] showed that Banach spaces failing Radon-
-Nikodym property can be renormed to fail B. Nevertheless, no isomorphic condi
tion is known to be sufficient for property B. Even the natural question if some of 
the most classical spaces have property B was open for many years. In 1990, W. Go-
wers got a very interesting result by finding a Banach space G such that NA(G, lp) is 
not dense in L(G, lp) for 1 < p < oo, hence lp fails property B. In fact, getting the 
most out of Gowers arguments, one can prove that a strictly convex Banach space 
X which contains an isomorphic copy of lp (1 < p < oo) cannot have property B. 
In the first part of this paper, we go a little bit farther and show that every norm 
attaining operator from G into a strictly convex Banach space has finite rank. There
fore, if X is strictly convex, and there is a noncompact operator from G to X, then 
X fails property B. 

In § 2 the same Gowers space will allow us to get new information on the problem 
of numerical radius attaining operators. The numerical radius of an operator T 
on a Banach space X (Te L(X, X) = L(X)) is defined by 

v(T) = sup {|x*(Tx)| : (x, x*) e II(X)} , (*) 

where TI(X) = {(x, x*) eX x X* : \\x\\ = [|x*[| = x*(x) = 1}. 
We refer to the books by F. Bonsall and J. Duncan [8, 9] for the theory of 

numerical ranges of operators on Banach spaces. It is said that the operator Tattains 
its numerical radius when the supremum in (*) is actually a maximum, that is, 
there exists (x0, xj) e Tl(X) such that fxj(rx0)| = v(T). Let us denote by R(X) the 
set of numerical radius attaining operators on X. Paralleling the Bishop-Phelps 
problem, B. Sims raised in 1972 the question if the set R(X) is dense in L(X). In [1] 
the reader may find the partial answers to Sims problem until 1990. Amongst them, 
we should mention the results by I. Berg and B. Sims [6], C. Cardassi [11] and those 
obtained in [2, 3]. For example, if X has the Radon-Nikodym property, then R(X) 
is dense in L(X) [3]. Recently, the first author [4, 5] showed that under weak hypo
thesis a Banach space can be renormed to satisfy the denseness of R(X) in L(X). 
The third author [16] proved that the answer to the general question posed by Sims 
is negative. 

Herein we use the Gowers space G to get a new counterexample. We show that 
R(X) is not dense in L(X) for X = l2 ©<» G. This improves the earlier example 
in several aspects. 

1. Gowers space and norm attaining operators 

The next definition of the space G looks different from the one given by W. Gowers 
[12], but it is clearly equivalent. 

1.1. Definitions and notation. For a scalar sequence x and n e N let us write 

*„(x) = -i- sup {Xfx(j)| : J <= IM, \J\ = n} 
H„ i*J 



where \j\ is the cardinality of the set / and Hn = ^ = s l fc 1. We will denote by G 
the space of those sequences x such that 

lim $n(x) = 0 
n->oo 

with the norm given by 

H x ^ s u p ^ ^ r n e N } (xeG). 

Note that every element in G is a sequence convergent to zero. 
Apart from some obvious facts, the following lemma contains the most relevant 

property of the space G. 

1.2. Lemma (Gowers [12]). 

i) G is a Banach space. 

ii) The unit vector basis {en} is a Schauder basis for G. 

iii) For 1 < p < oo, G is contained in lp and the formal identity from G into 

lp is a bounded operator. 

Gowers also got another interesting property of G, its unit ball lacks extreme 
points. In fact, given an element x in the unit sphere of G, one can find a natural 
number k and S > 0 such that [|x ± Sek\ = 1. Something better can be shown: 

1.3. Lemma. For xeG with ||x|[ = 1, there exist a natural number m and S > 0 
such that 

\x + Xek} = 1 

for k = m and any scalar X with |A| _ S. 

Proof. By definition of G, there exists N eN such that 

&n(x) < i for n > N . 

Since lim x(n) = 0, we can find meN satisfying 
n-> oo 

k e N, k > m => |x(fc)| < — . 
1 W l " 2iV 

Now we choose 0 < S = 1/2N, k = m, and take y = x + Xek, where [X\ ^ S. 
We want to show that <Pn(y) ^ 1 for all n. 

If n > N we simply have 

0n(y) = <Pn(x) + S < i + S = 1 . 

So, let us take J a N with | j \ = n ^ N to show that 

ZlXOI-i----
JeJ 



and we can clearly assume that k e J. Then we get 

I IXOf = \y(k)\ + I \y(j)\ ^ 

= S + \x(k)\ + £ \xQ)\ = 
JeJ\{*} 

^ 4 + 4 + -- Ki)l = J- + Hn_1 = Hn. n 
2N 2N jeJ\{h} N 

We can now use a simple argument due to Lindenstrauss [14; Proposition 4] to 
get the following: 

1.4. Theorem. Let X be a strictly convex Banach space and TENA(G9X). Then 
T(ek) = Ofor large enough k9 hence Tis a finite-rank operator. As a consequence, 
if there is a noncompact operator from G to X9 then NA(G9 X) is not dense in L(G9 X) 
and X fails property B. 

Proof. Assume without loss of generality that [|T|| = 1 and let x e G be such that 

| x | - | 7 . - | - . l . 

By the previous lemma, we have \\x ± 3ek\\ = 1 for some positive 5 and large enough 
k. Then 

\\Tx ± 5Tek\ = 1 = 11*1 

and the strict convexity of X comes into play. • 

By Lemma 1.2. iii) there is a noncompact operator from G to lp (1 < p < oo). 
If a Banach space X contains a subspace isomorphic to lp9 there will be a noncompact 
operator from G to X as well, so we get: 

1.5. Corollary (Gowers [12]). If X is a strictly convex Banach space containing 
an isomorphic copy of lp(l < p < oo), then X fails property B. 

2. A new counterexample on numerical radius attaining operators 

Using Gowers space we are now going to exhibit a new example of a Banach 
space X such that the set R(X) of numerical radius attaining operators is not dense 
in the space L(X) of all bounded linear operators on X. The first example of this kind 
was shown in [16] and had the form 

X = Ye00z (•) 

where Z was the space c0 with its usual norm, Y was a suitable equivalent renorming 
of c0 and the symbol ©^ means that we put the maximum norm on the direct sum: 

||y + . | | = max{|),.||,||x||} (yeY,zeZ). 



The new example which we are going tp exhibit here will also have the form (*) 
but with a different choice of the spaces Y, Z. Therefore we can take advantage 
of some of the results obtained in [16]. To be precise, we will use the observations 
on the numerical radius of operators on a space of the form (*) contained in the fol
lowing lemma. The closed unit ball and the unit sphere of a Banach space E will be 
denoted by BE and SE respectively. 

2.1. Lemma [16; Lemma 1.2]. Let Y, Z be Banach spaces, X = Y©^ Z and P, 
Q the projections from X onto Y, Z respectively. For Te L(X) we have 
i) v(T) = max {v(PT), v(QT)}. 

ii) / / Te B(X) and v(PT) > v(QT), then PTe R(X). 
iii) v(PT) = sup {\y*(PT(y + z))\ : (y, y*) e n(Y), z e Bz} and PTe R(X) 

if and only if this supremum is attained. 
We will take Y = l2 (any Hilbert space of infinite dimension could be used, separa

bility is not required) and the set Tl(l2) is particularly simple. The inner product 
of l2 will be denoted by (•)•) and for y e l2, the functional (*\y) will be denoted by 
y*, that is, the mapping y -> y* is the canonical (conjugate linear in the complex case) 
identification of l2 with its dual. It is clear that 

n(l2) = {(y,y*):yeSl2}. 

Gowers space G, with which we are already acquainted, will play the role of Z. 
The fact that R(l2 ©«, G) is not dense in L(l2 ©«, G) will be an easy consequence 
of the following result, which keeps a strong parallelism with Theorem 1.4, although 
its proof is a bit more cumbersome. 

2.2. Theorem. Consider the Banach space X = l2 ©^ G and let Te L(X) be de
fined by 

T(y + z) = Ay + Bz (yel2,zeG) 

where A e L(l2) and B e L(G, l2). 
If Te R(X), then B is a finite-rank operator. 

Proof. Consider the projection P fromK onto l2. We have clearly PT = T and by 
using Lemma 2.2. iii) we obtain: 

a) There exist y0 e Sh, z0 e BG such that 

\(Ay + Bz | y) = \(Ay0 + Bz0 \ y0)\ 

for every y e St2, z e BG. 

By rotating z we actually have 

\(Ay | y)\ + \(Bz \ y)\ = \(Ay0 \ y0)\ + \(Bz0 \ y0)\ 
equivalently 

\(Ay | y)\ + \[B*y*] (z)\ <S \(Ay0 | y0)\ + \[B*y*0] (z0)\ . 



By taking the supremum over z e 5 c w e get 

\(Ay | , ) | + \\B*y*l = | ( ^ 0 | y0)\ + \[B*yfi (*.)|, 

and this still holds for all y e Sh. Now we take y = y0 to get 

\B*y*\ ^ f ^ * ] (z0)|. 

which shows that the functional B*y0 e G* attains its norm at z0. So far we have 
proved 

b) There exists y0 e Sl2 such that 

\(Ay | y)\ + \B*y*\\ g \(Ay0 \ y0)\ + \\B*y*4 Vy e Sh . 

Moreover, the functional B*y0 attains its norm at a point z0 e SG. 

The function of y appearing in the first member of the last inequality attains its 
maximum at y0 and this leads us to consider a suitable derivative of such a function. 

We fix h e Sl2 with (h | y0) = 0 (a comfortable direction) and for t ^ 0, we define: 

yf = y0 + th , 0(f) = \yt\ 

F1(t) = <j>(t)-'(Ayt\yt), H x(t) = \F,({){ 

F2(t) = B*y* , H2(t) = ||F2(0| . 

By taking y = 0 ( f ) 1 y* 1n t n e inequality which appears in assertion b) we simply 
obtain: 

Ht(t) + H2(t) = 0(f) [#.(0) + H2(0)] (t^O) (1) 
Note that 

<f>(t) = (1 + t2)1'2 (t^O) 

thus 0 is differentiate at the origin with 0'(O) = 0. Since 

0(f) Ft(t) = (Ay0 | y0) + t[(Ay0 | h) + (Ah f y0)] + t2(Ah \ h) 

we deduce that Fx is also differentiable at the origin with 

F'1(0) = (Ay\h) + (Ah\y0). (2) 
If we now assume that 

^i(0) = (Ay0 \y0) + 0 (*) 

we can conclude that the function H1 is also differentiable at the origin with 

H\(0) = Re (K^« | *>>l . Fi(0)) . (3) 

For the functions F2 and H2 the task is even simpler. It is clear that 

F2(t) = B*y*0 + tB*h* (0 £ t) 

so H2 is a convex function and therefore it is differentiable (on the right) at the origin. 
From inequality (1) we conclude that: 

H[(0) + H'2(0) = 0 (4) 
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Note that the above arguments depend on a fixed vector h e Sl2 only satisfying 
(h | yo) = 0, so let us see what happens if we replace h by —ft. 

In view of (2), F[(0) changes its sign, and (3) indicates that the same occurs with 
H[(0). Therefore, if we add inequality (4) to the inequality which would be obtained 
by changing h for — h9 we obtain: 

l im Ч Д < J > * + * B ***И + ^B*У* ~ * Д ***Д " --llд*-VoП - Q 
ř-+0 

(5) 

Actually we only obtain an inequality, but the other one is completely obvious. 
We must remember that this conclusion has been reached under the assumption (*). 
If (Ay0 \ y0) = 0, things are even simpler, for inequality (1) implies 

H2(t) = c/>(t)H2(0), 

and instead of (4) we get H'2(0) = 0, which leads directly to (5). 
Let us summarize again what has been demonstrated so far, bearing in mind the 

part of assertion b) which was not used in previous calculations: 
c) There exists y0 e Sl2 such that (5) holds for all h e Sl2 with (h \ y0) = 0. More

over, the functional B*y* attains its norm at a point z0 e SG 

It is worth explaining in advance how the previous assertion will allow us to deduce 
such a strong restriction on the operator B as to be of finite rank. Equality (5) gives 
us a certain „smoothness" of the norm of G*9 to be precise, this norm allows a direc
tional derivative at B*y* in a rather „general" direction B*h*. However we know 
that BG lacks extreme points (Lemma 1.3) and therefore a functional which attains 
its norm in BG can never be a smooth point. The only solution one can hope for 
consists of the image of B* being very small so that B*h* is a very „particular" direc
tion, and that is what we are going to obtain. 

To simplify the notation, we write 

z* = B*y*09 z* = B*h* 

where h e Sl2 is fixed and always conditioned by (h \ y0) = 0. Given s > 0 we use 
(5) to find r > 0 such that: 

0 < t < r => | | 4 + tz*l + \\z*0 - tz*\ < 2\z*0\ + te. (6) 

On the other hand we should not forget that z* attains its norm at a point z0 e SG 

and there is no objection in assuming that z*(z0) = \z*\. Lemma 1.3 provides us 
with a natural number m and a 3 > 0, such that: 

k e N, k > m, ft e K9 \fi\ = d => |)z0 + fiek\\ = 1 . (7) 

For fixed k > m9 we choose a scalar \i such that 

|/4 = <5, 8\z*(ek)\ = z*(nek), 

and by using (6) and (7) we obtain, for 0 < t < r, 

2flz0*|| + fc>||z0* + .-zi + | | z 0 ' - ^ i > , 
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2: Re ([z* + te*] (z0 + ^ ) + [zj - tz*] (z0 - ^ t ) ) = 

= 2||zS|| + It Re z*(fiek) = 2|]z*|| + 2tS\z*(ek)\. 

Subtracting 2[|z* ||> dividing by t and bearing in mind the arbitrariness of s, we obtain 
z*(ek) = 0. But remember that z* = B*h*. thus we have proved 

(Bek | h) = 0 (Vfc > m) 

and this must be true whenever (h \ y0) = 0, for we can already dispense with the 
normalization \h\ = 1. It is crucial to observe that the natural number m is inde
pendent of h. 

Therefore, we have Bek e {yo}1"1 = -^yo for fc > m and the range of B is contained 
in the subspace of l2 generated by {y0, Ber, Be2,..., Bem}. Thus B is a finite rank 
operator, as required. • 

2.3. Remark. If we take A = 0 in the above theorem, then it is clear that v(T) = 
= \B\ and T attains its numerical radius if and only if B attains its norm. Thus 
Theorem 1.4 is a special case of Theorem 2.2. How to dispose of the operator A 
was the main difficulty in the above proof. 

We can already state the result which is the main objective of this section: 

2.4. Corollary. R(l2 ©«> G) is not dense in L(l2 ©«, G). 

Proof. Part iii) of Lemma 1.2 gives us a noncompact operator I eL(G, l2). Let 
S e L(l2 © «, G) be defined by 

S(y + z)=l(z) (yel2,zeG), 

We are going to see that S cannot be the limit in the norm topology of operators 
which attain their numerical radius. 

Assume, on the contrary, that there is a sequence {Tn} satisfying 

TneR(l2®„G)VneN, {\Tn - S\} -> 0 . 

We have clearly PS = S, QS = 0 where P, Q are the projections from /2 ©«, G 
onto 12 and G respectively, so {PTn} -> S, {QTn} -> 0 and the inequality \QTn\ < 
< \\PTn\ will hold for large enough n. It follows from Lemma 2.1 that PTn e 
e R(l2 ©oo G) also for large enough n. By deleting some terms of the sequence {7 .̂} 
and replacing Tn by PTn we may assume that 

TneR(l2®ODG), PTn = Tn. VneN, {\Tn - S\} -> 0 

For each n e N w e denote by An and Bn the restrictions of Tn to l2 and G respectively. 
Hence we have 

Tn(y+ z) = Any + Bnz (yel2,zeG) 

where An e L(l2) and Bn e L(G, l2) for every natural n. Thus the assumptions of the 
above theorem are fulfilled and we conclude that Bn is a finite rank operator for all n. 
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This is a contradiction, for the sequence {Bn} converges in norm to the noncompact 
operator I. • 

2.5. Concluding remark. As we have already mentioned, the negative answer 
to the question posed by B. Sims in 1972 was already obtained in [16], with a similar 
example to the one given here and even using similar arguments in the proof. In 
our opinion, Corollary 2.4 improves on the conclusion of [16] in three ways, which 
we will try to explain. First, the counterexample given here is some who w more 
„natural". There is nothing to be said against the naturality of the space Z2, whose 
role could be played by any Hilbert space of infinite dimension. The definition of G 
seems to be more contrived, but one should not forget that G can be considered in the 
orbit of „classical" Banach spaces. As said in [12], G* is a Lorentz sequence space 
d(co, 1) where the sequence of weights co is {1/n}. Although d(co, 1) has not a unique 
predual, G is an M-ideal in its bidual and is the only predual of d(co, 1) with this 
property, a fact proved in [17] which shows that G is in a sense a „canonical" pre
dual of d(co, 1). Furthermore, the result proved here improves those in [16] because 
Theorem 2.2 gives a quite restrictive necessary condition for an operator to attain its 
numerical radius, while the results in [16] are far from being so explicit. Finally, 
although the arguments in the proof of Theorem 2.2 are essentially those used in 
[16], the simplicity of the geometry of l2 makes the proof much easier and intuitive. 
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