Acta Universitatis Carolinae. Mathematic et Physica

Wojciech Dȩbski; Jan Kleszcz; Szymon Plewik Perfect sets of independent functions

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 33 (1992), No. 2, 31--33

Persistent URL: http://dml.cz/dmlcz/701973

Terms of use:

© Univerzita Karlova v Praze, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z:$ The Czech Digital Mathematics Library http://project.dml.cz

Perfect Sets of Independent Functions

WOJCIECH DĘBSKI, JAN KLESZCZ AND SZYMON PLEWIK

Poland*)

Received 10 May 1992

It is shown that there exists a perfect set $C \subseteq \mathrm{k}^{\boldsymbol{N}}$ such that if $K \subseteq C$ is a perfect subset, then there is an infinite subset $X \subseteq \mathrm{~N}$ for which $K_{\mid X}=\mathrm{k}^{\boldsymbol{X}}$. A characterization of this property uses independent functions.

Notations. The set of all function from a set X into the subset $\{0,1, \ldots, k-1\}=\mathrm{k}$ of natural numbers is denoted by k^{X}. The set of all natural numbers $\{0,1, \ldots\}$ is denoted by N . The set k^{N} with the product topology is homeomorphic with the Cantor set. If $X \subseteq \mathrm{~N}$ and $f: \mathrm{N} \rightarrow \mathrm{k}$ is a function, then $\left.f\right|_{X}$ denotes the restriction of f to X and if $C \subseteq k^{\mathrm{N}}$ then $\left.C\right|_{X}$ denotes the set of all restrictions to X of functions from C.

Balcerzak's Question. For the case $k=2$ the following question was raised by M. Balcerzak [1] (see also [3]).

Does there exist a perfect set $C \subseteq \mathrm{k}^{\mathrm{N}}$ such that whenever $K \subseteq C$ is a perfect subset, then there exists an infinite subset $X \subseteq \mathrm{~N}$ for which $\left.K\right|_{X}=\mathrm{k}^{X}$?

We show that this question has positive answer.
A family G is called a k-partition of a set Y if it consists of pairwise dsijoint k-element subsets of Y and the union of all members of G is equal to Y.

Lemma 1. For every positive integer n there are a finite set I and a k^{n}-element family $T \subseteq \mathrm{k}^{I}$ such that if G is a k-partition of T, then there exists $g \in I$ such that for every $Y \in G$ the functions which belong to Y assume different values on g.

Proof. Let I be the union of the set $\{0,1, \ldots, n-1\}=\mathrm{n}$ and the family of all k-partitions of the set k^{n}. We extend every function $f \in \mathrm{k}^{\mathrm{n}}$ to a function f^{*} defined on I as follows. For a k-partition g of k^{n} we choose the values $f^{*}(g)$ from the set k in such a way that for every $y \in g$ the set $\left\{f^{*}(g): f \in y\right\}$ consists of k different numbers. Let T be the set of the defined above functions f^{*}. For every k-partition G of T we consider the restrictions to n of functions in each $Y \in G$. This yields a k-par-

[^0]tition g of k^{n} because each function f has only one extension f^{*}. It is a desired element of I.

Theorem 2. There exists a perfect set $C \subset \mathrm{k}^{\mathrm{N}}$ such that for each perfect set $K \subseteq C$ there is an infinite set $X \subseteq \mathrm{~N}$ for which $\left.K\right|_{X}=\mathrm{k}^{X}$.

Proof. For every natural number $n>0$ we apply the lemma 1 . We obtain a finite set I_{n} and a k^{n}-element family T_{n} of functions from I_{n} into k such that for every k-partition G of T_{n} there exists $g \in I_{n}$ such that $\{f(g): f \in Y\}=\mathrm{k}$ for every $Y \in G$.

The sets I_{1}, I_{2}, \ldots are finite. We identify them with pairwise disjoint subsets of natural numbers so that $I_{1} \cup I_{2} \cup \ldots=\mathrm{N}$.

We are going to define a sequence C_{1}, C_{2}, \ldots of sets. Every set C_{n} will be contained in $k^{I_{1} \cup \ldots \cup I_{n}}$ and consist k^{n} functions. The sets T_{n} and $\left.C_{n}\right|_{I_{n}}$ will be equal. Every function from C_{n-1} will have exactly k extensions in C_{n}. If functions from C_{n} are different then their restriction to I_{n} will also be different.

We begin by putting $C_{1}=T_{1}$. Let the set C_{n-1} be defined. According to the inductive hypothesis it contains k^{n-1} elements. Therefore there exists a k-to- 1 function F from T_{n} onto C_{n-1}. We define C_{n} to be the set of all functions of the form $F(f) \cup f$, where $f \in T_{n}$. Now the sets C_{1}, C_{2}, \ldots are as it was declared.

Let $C=\left\{f \in \mathrm{k}^{\mathrm{N}}:\left.f\right|_{I_{1} \cup \ldots \cup I_{n}} \in C_{n}, n \geqq 1\right\}$. Clearly, the set C is perfect.
Let $K \subset C$ be perfect set. We shall define a sequence y_{1}, y_{2}, \ldots of natural numbers such that for every $n \geqq 1$ the sets $\left.K\right|_{\left\{y_{1}, \ldots, y_{n}\right\}}$ and $\mathrm{k}^{\left\{y_{1}, \ldots, y_{n}\right\}}$ are equal.

Suppose $\left.K\right|_{\left\{y_{1}, \ldots, y_{n-1}\right\}}=\mathrm{k}^{\left\{y_{1}, \ldots, y_{n-1}\right\}}$; it holds for $n=1$ as $\left.F\right|_{\mathscr{g}}=\mathrm{k}^{\varnothing}$. Let m be a natural number such that $\left\{y_{1}, \ldots, y_{n-1}\right\} \subseteq I_{1} \cup \ldots \cup I_{m-1}$ and each function from $\left.K\right|_{\left\{y_{1}, \ldots, y_{n-1}\right\}}$ has at least k extensions in the set $\left.K\right|_{I_{1} \cup \ldots \cup I_{m-1} \cup I_{m}}$. This is possible by perfectness. We extend every function from $\left.K\right|_{I_{m}}$ to the, unique by definition of C_{m}, function from $\left.K\right|_{I_{1} \cup \ldots \cup I_{m-1} \cup I_{m}}$. We restrict this extension to the set $\left\{y_{1}, \ldots\right.$ $\left.\ldots, y_{n-1}\right\}$. Thus we have defined a function $\phi:\left.\left.K\right|_{I_{m}} \rightarrow K\right|_{\left\{y_{1}, \ldots, y_{n-1}\right\}}$. The function ϕ is onto $\left.K\right|_{\left\{y_{1}, \ldots, y_{n}-1\right\}}$. Every value h of ϕ is assumed at least k times on $\left.K\right|_{I_{m}}$. We choose k elements from every preimage $\phi^{-1}(h)$ and extend it to a k-partition G of T_{m}. We take y_{n} as element of I_{m} such that for every $Y \in G$ the functions from Y assume different, exactly k, values on y_{n}. In consequence the functions from $\phi^{-1}(h)$, where $\left.h \in K\right|_{\left\{y_{1}, \ldots, y_{n-1}\right\}}$, assume all possible values on y_{n}. This means that $\left.K\right|_{\left\{y_{1}, \ldots, y_{n}\right\}}$ is equal to $\mathrm{k}^{\left\{y_{1}, \ldots, y_{n}\right\}}$.

Let $X=\left\{y_{1}, y_{2}, \ldots\right\}$. For every natural number $n>0$ we have $K_{\left\{y_{1}, \ldots, y_{n}\right\}}=$ $=\mathrm{k}^{\left\{y_{1}, \ldots, y_{n}\right\}}$. Therefore $\left.K\right|_{X}=\mathrm{k}^{X}$ since the set K is perfect

The theorem 2 answers positively to M. Balcerzak's question. The same result can be obtained using the notion of independent family of functions, known also as families of large oscillation.

Independent family of functions. A set $F \subseteq \mathrm{k}^{\boldsymbol{X}}$ is independent if for every sequence f_{1}, \ldots, f_{n} of different functions from F and every sequence x_{1}, \ldots, x_{n} of numbers from k the intersection $f_{1}^{-1}\left(x_{1}\right) \cap \ldots \cap f_{n}^{-1}\left(x_{n}\right)$ is non-empty.

Theorem 3. If $F \subseteq k^{N}$ is a perfect independent set, then there exists an infinite subset $X \subseteq N$ such that $\left.F\right|_{X}=\mathrm{k}^{X}$.

Proof. We define a sequence y_{1}, y_{2}, \ldots of natural numbers such that

$$
\left.F\right|_{\left\{y_{1}, \ldots, y_{n}\right\}}=\mathrm{k}^{\left\{y_{1}, \ldots, y_{n}\right\}}
$$

for every $n \geqq 1$. Let f_{1}, \ldots, f_{k} be different functions from F. We take y_{1} to be an element of the intersection $f_{1}^{-1}(0) \cap \ldots \cap f_{k}^{-1}(k-1)$. We have $\left.F\right|_{\left\{y_{1}\right\}}=\mathrm{k}^{\left\{y_{1}\right\}}$.

Suppose $\left.F\right|_{\left\{y_{1}, \ldots, y_{n-1}\right\}}=\mathbf{k}^{\left\{y_{1}, \ldots, y_{n-1}\right\}}$. For every function $f \in \mathrm{k}^{\left\{y_{1}, \ldots, y_{n-1}\right\}}$ we choose its different extentions f_{1}, \ldots, f_{k} which belongs to F. Such extensions exist because F is perfect. We take y_{n} from intersections of all the sets $f_{1}^{-1}(0) \cap \ldots \cap f_{k}^{-1}(k-1)$, where f runs through $\mathrm{k}^{\left\{y_{1}, \ldots, y_{n-1}\right\}}$. Clearly $y_{n} \notin\left\{y_{1}, \ldots, y_{n-1}\right\}$ and we have $F \mid\left\{y_{1}, \ldots, y_{n}\right\}=\mathrm{k}^{\left(y_{1}, \ldots, y_{n}\right\}}$.

Let $X=\left\{y_{1}, y_{2}, \ldots\right\}$. Therefore $\left.F\right|_{X}=\mathrm{k}^{X}$ since the set F is closed
The theorem 3 also provides the answer to Balcerzak's question, assuming the existence of a perfect independent set. This is well known fact following from many papers. The first such a paper due to G. Fichtenholz and L. Kantorovich [2]. It can also be obtained from slightly modified proof of the theorem 2.

Theorem 4. Let $F \subseteq \mathrm{k}^{\mathrm{N}}$ be a perfect subset. There exists an infinite subset $X \subseteq N$ such that $\left.F\right|_{X}=\mathrm{k}^{X}$ if and only if there exists a perfect independent subset of F.

Proof. Suppose that $\left.F\right|_{X}=\mathrm{k}^{X}$ for some infinite subset $X \subseteq \mathrm{~N}$. Let P be a perfect independent subset contained in $\mathrm{k}^{\boldsymbol{X}}$. We take the minimal closed set $H \subseteq F$ such that $\left.H\right|_{X}=P$. By minimality of H, it has no isolated points. Consequently it is prefect. The projection of H onto P is open on points from some dense G_{δ} set is the complement of the union of the preimages of the boundaries of the sets $\left.V\right|_{X}$, where V runs on all closed-open subset of H. Such preimages have empty interiors. They consist of a countable family, as the family of closed-open subsets of H is countable. Thus the projection is one-to-one on a perfect set since any dense G_{δ} subset, contained in a perfect set contains a perfect subset. The image of this set is a perfect independent set.

The inverse implication was given in the theorem 3

References

[1] Balcerzak M., Some properties of ideals of sets in Polish spaces, Acta Universitatis Lodziensis (1991).
[2] Fichtencholz G. and Kantorovich L., Sur les linéaires dans l'espace des fonctions bornées, Studia Math. 5 (1935), 69-98.
[3] Roseanowski A., Dissertation, Wrocław (1990).

[^0]: *) Instytut Matematyki Uniwersytetu Ślaskiego, ul. Bankowa 14, 40007 Katowice, Pland.

