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Local and Global a-Cone Porosity 

P. HOUCK* 

Prague*) 

Received 14 April 1993 

We are comparing two subclasses of first category sets in Hilbert spaces, one of a— a-cone porous 
and the other of CT— a-angle porous sets. Our Theorem gives a positive result whence Example shows 
that these two notions do not coincide. 

In this note we present two elementary observations (see Lemma and Example 
below) concerning the notions of (7-cone and wangle porosity. These and some 
other related notions of small sets in normed linear spaces appeared e.g. in [PZ], 
[Z]. They give subclasses of first category sets and they are used in the mentioned 
papers to describe the size of sets of singular points, such as points of non-differen
tiability of continuous convex functions or points of discontinuity of monotone 
multivalued operators. We recall the definitions and then we formulate two results 
which answer some questions posed by L. Zajicek at a Prague seminar and verify 
the hypothesis from Note 2 of [Z]. 

1. Notions 

For simplicity we suppose that AT is a Hilbert space if nothing else is mentioned. 
We use the notation B(x, r) for the open r-ball centered at x e X and S(x, r) for 
its boundary. 

Under an angle (of size a € (0, JT)) we understand a set of the form 
A(x, v,a)**x + A(0, v, a), where ^4(0, v9 a) is described, for given x € X, 
v e 5(0,1), and a e (0, JI), by 

,4(0, v, a) - |J XB L sin ~) - \y e X; (y, v) > \\y\\ cos -

*) Department of Mathematical Analysis, Charles University, Sokolovská 83, 18600 Praha 8, 
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Remark. In general normed linear spaces the third expression can be given the 
sense supposing that v e 5(0,1) in X*. Nevertheless the set of all angles given by 
the second and the third expressions of the above definition differ. The third 
expression is used in the definition of a cone which is introduced and applied in 
[PZ] and [Z]. Formulating the next results in more general normed linear space 
one has to respect this difference. 

We say that a set S c X is a-angle porous (A e 91(a)) if 

(1) V V 3 3 {S n A(y> v, a) - 0}. 
x « s r>0 yeB(xtr) veS(0,l) 

00 

If A — (J An, An e 91(a), then A is called a— a-angle porous and we write 

The "local versions" of angle porosity are the following notions of cone porosity. 
We say that S c X is a-cone porous (A e £(a)) if 

(2) V 3 V 3 3 {S n A(y, v, a) n B(x9 Rx) - 0}. 
xeS Rx>0 r>0 ytB(x,r) v*S(0,l) 

00 

If A •• (J An9 An e Ct(a), then A is called o—a-cone porous (A e £a(a)). 
n - l 

Remark. The property that A is c-cone (or c-angle) porous introduced in [Z] 
and a-cone (or a-angle) porosity defined above are equivalent for the choice 
c = cos f. 

Notice that the notion of a— a-cone porosity is hereditary to subsets and the 
following proposition claims that it is local. 

Proposition 1. Let S c X and U be an open cover of S such that S n U is 
o— a-cone porous for each f / -U. Then S is a— a-cone porous. 

Proof. There is an open cover 33 of S which refines U and such that 93 -• [)9$n9 
n - l 

where 93„ is (metrically) discrete for every n e N ([S]). The sets 5 „ « J n |Jg3n 

are obviously a— a-cone porous and therefore S is a— a-cone porous, too. 
Similarly we get. 

Proposition 2. Let S c X be a separable a— a-cone porous set. Then S is 
o— a-angle porous. 

Proof. It suffices to verify the assertion for S separable and a-cone porous. Let 
Rx > 0, x e 5, be some choice of Rx from (2). Put Sn - {x e S; Rx > $ for n € |\|. 

00 

Choose x<$ e s„, me N, such that s„ c |J £(.-*?, i ) . The sets s„m -

- 5 , n flC*^. ^) are a-angle porous. 
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2. Resu l ts 

We show that the following equivalence between cone and angle porosity holds 
true. 

Theorem. The setS c X is o— a-cone porous for some a e (0, n), if, and only 
ifSis o— a-angle porous for some a e (0, jt). 

Proof. The "if" part is obvious and the "only if' follows from the following 
more quantitative assertion. 

Lemma. Let S c X be o— a-cone porous for some a e (0, jt). Then 
S e <Ha(§ - e) for every e e (0,f). 

We postpone the proof of Lemma to the next section 3. 
We point out the following special case of Lemma. 

Corollary. For S C X the implication 

S* n M * ) * se _n «*w> 
hold true. 

ae(0,я) ßш(0,ў 

Remark. The sets from f| G a(a) are called cone-small and the sets from 
a€(0,n) 

f| ^a(«) angle-small in [Z]. The following example shows that Corollary can 
ae(0,Ji} 

not be strengthened to the statement that cone-small sets are angle-small. 

Example. Let X be nonseparable and{et; i£ 1} be an orthonormal basis of X. 
Then, for sufficiently small r > 0, the set S(r) - [}S(el9 r) is in f| d(a) but 

«e/ ae(0,n) 

there are /?r e (0, JI) such that lim fir -> po € (0, n) and S(r) is not in 2*a(/?r). 
r -0 + 

Moreover, we can find fir and /?0 such that f% •• |JC + %, wAere % solves the 
equation 

(3) % + - — arctan (Vl + 2 cot2 <p0). 
4 

Remark. The set S(r) from Example is obviously in f| (£(a) if r e (0, -|). Thus 
a>0 

it is cone-small in the terminology mentioned above. In fact, S(r) is even "cone 
supported by halfspaces at every x e S(r)" in an obvious sense. This is a 
strengthening of the notion of cone-supported sets in [ZJ. We suppose that the 
example is far from being optimal in the sense that the bounds obtained for fir are 
probably not the smallest possible for cone-small sets. 

We indicate the proof of the remaining property of S(r) from Example in the 
last section 4. 

The assertions of Lemma and Example lead to the following natural. 
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Question. What is the maximal 0(a) e (0, n) such that anyS e (£(a) is inSSLa(p) 
for every /? e (0, 0(a)) ? In particular, what is the lim 0(a) ? 

a/n 

Remark. We know, due to our above observations, that P(a) ^ § and 
p(a) ^ jjjt + 9?0 with 9>0 fulfilling the above equation (3). 

3. Proof of Lemma 

3.1. We may and shall suppose that 5 e G(a). For every x* X we choose an 
Rx > 0 according to (2). 

3.2. Let us define Sp •• {* e 5; Rx ^ ±} for p € |U It follows that, for every set 
U of diameter less than -p9 the set Sp n t/ is in 21(a). 

3.3. Since .A" is metric there is a cover 23̂  of X by open sets of diameter less than 
£ such that -Bp — (J{®A* > 0 e N}, where every 2JM is metrically discrete, i.e. there 
are 6(q) > 0 with distance of Bx and B2 at least 6(q) for every two distinct Bl9 B2 

from -BM([S]). We put SPtq - S, n (Jg3p ? and notice that S M n fi e 9I(a) for 
B e 93p due to 3.2. 

3.4. Later on we consider the set 5 M for p9 q e N fixed. Let us fix an arbitrary 
v e AT with || v | — 1. We split X into subsets Xs - {x e Jf; (v, x) € [se, (5 + 1) *•)} 
for 5 e Z. We shall show that for e > 0 small enough the sets SPtqtS •- S M n A^ 
are in 2I(# for 0 e (0,f). 

3.5. Let us fix /J € (0, | ) , v e A', p9 q e N and 5 € Z, as in 3.4. Let x be an 
arbitrary element of SPtqtS9 Bx e JBM be the only element with x e Bx. We know 
that for every r > 0 there is y e fl(x; r) and w € 5(0,1) such that Spqs n 
n .A()>, w, a) n S x — 0, The angles .k(y, v9 Jt — y) and A(y, — v, JT — y) have 
empty intersections with Xs <~\ [\J$5Ptq\Bx] for y e (2 arcsin f9 JT). Hence, putting 
e > 0 sufficiently small, the y > 0 can be chosen as small as needed. Both the 
intersections A(y9 v9 jt — y) ^ -4(y, w, a) and .4(y, — t>, Jt — y) n >i(y, H>, a) do 
not intersect 5MiS, but one of them contains A(y9 w,| — y) for some suitably 
chosen u **= /uv + vw, \\u\\ — 1. Thus 5Aftf is in 9l(§ — y) and for sufficiently 
small e9 and thus y, we get f — y iS /?. 

Remark. The above theorem holds true for all normed linear spaces if we put 
A(09 w9 a) - |J XB(w9 sin f) for w e 5(0,1) in the definition of the angle. To 
prove this we idSy proceed similarly as in the proof of Lemma. 

4. Proof of properties of s(r) from Example 

4.1. We already mentioned that S(r) is in G(a) for a € (0, JT) and r e (0, f) . 
4.2. Instead of showing that S(r) i 9I0()8) it is sufficient to show W(r) i 2la(£) 

for a subset W(r) of 5(r) because the a — j8-porosity is hereditary. We find useful 
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to define the subset W(r) of S(r) in the following way. Let <p e (0, f). Consider the 
intersection H(r, <p, t) •• S(e ., r) n d.4(e., — et, 2<p), where dA stands for the 
boundary of A, and denote the center of H(r, <p, i) by h(r, <p, i). There is an un
countable family {fjr, <p, i) e H(r, cp, i); x e J} such that fjr, cp, i) — h(r, cp, i), 
x e J, are mutually orthogonal due to the nonseparability of X. For <5 > 0, we put 
W(r, cp, 6, t) — S(e t, r) n U B(fjr, cp, i), 6). The subset we are interested in is 
W(r) «- U W(r, cp{r), 6(r),xt)Jiox a suitable choice of cp(r), 6(f) and r sufficiently 
small. ieI 

4.3. Here we explain what the suitable choice of cp and 6 means. 
Claim 1. There is an %£ (0, ̂ ) <wi4 for sufficiently small r > 0, there are 

6(r) e (0, oo) with lim <5(r) - 0 and y(r) > 0 with lim y(r) - 0 8wcA t/iat /or 
/—0+ r -0 + 

every t e S(e., r) n B(fjr, <p0, i), 6(r)) 

(a) U B(f*(r> ¥fc 0, <V)) c ^ ('> . * ' " " ' » T + 2(p° + *r>) ; 
*v* \ ||ef — til 2 / 

(b) S(r)\S(et, r)<ZA It, - ^ 7 , 7 + 2<p0 + y(r) 
\ I K - *« l 2 

Proof. We write fx instead of fjr, cp, 1) during this proof. Consider first the 
degenerate situation with B(fx, 6(r)) replaced by \fx}. 

We have that £ e dA(fx, j f ^ j , 2??*), where <p* e (0, f) is the angle between 
the lines given by pairs }„ f^ and e., fx, respectively. 

Also we get 

*«<*!> \ 11/* - *.l 2 / 
By elementary computations we obtain cp* — arctan (^1 + 2 cot2 9) and there 

is a solution % e (0, ^) of the equation 29?* = ^ + 2cp which is equivalent to (3). 
Thus, by continuity arguments, we get the result of Claim 1. 
Finally, we do some choice of c5(r) and y(r) along the lines of Claim 1 and put 

W(r) — U w(r> 0- Here and later on we write (r, 1) instead of (r, cp(r), 6(r), 1), 

or (r, cp, 1), respectively. 
4.4. As a corollary of Claim 1 the following assertion can be derived. 
Claim 1\ Let % e (0, J) be the only solution of (3), and 6(r) and y(r) be as in 

Claim 1. Let t e S(et, r) n B(fjr, 1), 6(r)). Then 
(a) ifve 5(0,1) and ft e (0, jt) be such that A(t, v, p) c A(t, --fcL, n), then 

the relation 
U B(f„(r, 1), 6(r)) Z -4(t, v, ft) 

implies that 
R s „ 4 . 3 „ x И t . 
ß < % + - я + —-; 

4 2 
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(b) ifve s(0,1) andp e (0, n) be such that A(t, v,p)<z X\B(e„ r), then 

S{r)\S{e„r)£A{t,v,p) 
implies that 

ß<-л + ç>o + — 
4 2 

4.5. Before we formulate another auxiliary assertion, we make an agreement. 
The subset V of W(r, i) is called "big" if 

(1) the closure of V contains an interior point of S(r); 
(2) V n B(f£r, i), d(r)) ¥> 0 for uncountably many x € /. 
Further, we assume that W(r) -» |J Wm(r). 

meN 

Claim 2. There is an m(r) e N such that 

Im{r)(r) - { * € / ; W ^ r ) n W(r, 4) if "Wg'} 

w uncountable. 

Proof. Suppose by contradiction that /m(r) is countable for all m e N. Obvious-
ty> -^ U 7 ( m ) ^ 0 and we choose 1 e / \ |J /m(r). Put 

mefy meM 

t\l(r) - {m e N; Wm(r) n S(/^r , *), <5(r)) 5* 0 for at most countably many x € / } . 

Consider the relatively open and "big" subset W(r, 1) \ \J Wm(r) of W(r, 1). It 
meN(r) 

is a Baire space and therefore, by the Baire category theorem, there is an 
m(r) e N \N(r) such that W^^r) contains an interior point of W(r, 1) \ (J Wm(r) 

m€|\|(r) 

and thus of W(r, 1) and S(r) as well. Therefore W^(r) <~\ W(r, 1) is "big" and 
1 e /m(r)(r), which is a contradiction. 

4.6. Let W(r) - |J Wm(r) and m(r) e N be as in the above Claim 2. Thus we 
may choose two distinct elements 1 and *' of / ^ ( r ) . Let t be an interior point of 
l Q 7 y n ^(r, I) in 5(r). 

Suppose that WHr)(r) e 9l(£(r)) for some P{r) e (0, JC). Therefore 

V 3 3 {Wm(r)(r)nA(yT,vT,P(r))»0}. 
r>0 yt*B(t,T) vres(0,l) 

If r is small enough the angle A(yT9 vv f%r)) is contained either in A(t, j^7f > n), 
or in the complement of the angle A(t,^^,n — y(r)). (Here and in what follows 
we use that t is an interior point of Wm{r)(r) in S(r).) 

If A(yt, v„ f%r)) c A(t, if^r, rc), ̂ e n 4.4(a) applies and, by continuity of the 
scalar product and smoothness of S(et, r), we get fi(r) < \n + q>0 + y(r) for 
r small enough. 
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In the other case we use 4.4(b) and. using similar arguments as above, we get 
f%r) < |jt + q>0 + 2y(r) for x sufficiently small again. 

So S(r) is/a(Pr) for fir » |JI + cp0 + 2y(r) and the assertion of Example is 
proved. 

I thank L. Zajicek for helpful discussions and for helping me to make the text 
more clear and correct. 
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