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1994 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 35, NO. 2 

Unconditionally Converging Holomorphic Mappings 
between Banach Spaces 

M. GONZALES and J. M. GUTIERREZ 

Santander*), Madrid**) 

Received 15. March 1944 

It is proved that every holomorphic mapping between complex Banach spaces takes unconditionally 
convergent series into unconditionally convergent series, and (locally) weakly unconditionally Cauchy 
series into weakly unconditionally Cauchy series. The class of unconditionally converging holomorphic 
mappings is ntroduced, as those mappings taking (locally) weakly unconditionally Cauchy series into 
unconditiona ly convergent series. It is shown that a holomorphic mapping is unconditionally converging 
if and only if all its derivatives at the origin are unconditionally converging polynomials. A characte
rization is given of the spaces E such that the space Jfh(E) of holomorphic functions of bounded type 
on E is reflexive. Other properties of unconditionally converging holomorphic mappings are investigated. 
The analogous properties for polynomials are surveyed. 

1, Introduction 

It is well known that, in general, the polynomials between Banach spaces do not 
preserve the weak convergence. An easy example is the k-homogeneous polynomial 
(k > 2) P fa-* {\ given by P((xn)) = (xfyn, where each coordinate is raisen to the 
power k. Indeed, P takes a weakly null sequence into the unit vector basis of t\. 
It might therefore seem unexpected that a polynomial preserves the weakly 
unconditionally Cauchy series, as well as the unconditionally convergent ones [8] 
(the definitions are recalled below). Moreover, this is true even for holomorphic 
mappings, in a sense to be made more precise below. 
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We say that a polynomial P : E -> F is unconditionally converging if for every 
weakly unconditionally Cauchy series £x» in E, the series £Px, is unconditionally 
convergent. Unconditionally converging holomorphic mappings are defined (locally) 
in an analogous way. There are pairs of Banach spaces E, F such that every (linear 
bounded) operator from E into F is unconditionally converging. It may be proved 
that exactly for those spaces, every polynomial from E into F is unconditionally 
converging too. The same is true for holomorphic mappings. 

A polynomial P : E —> F is completely continuous if for every sequence (xn) c= E 
weakly convergent to some x, we have that ||Px« — Px|| converges to zero. 

The polynomial P\fa-*t\ given above shows that there are spaces E, F so that 
every operator from E into F is completely continuous, but not every polynomial 
from E into F is so. However, if E has the Dunford-Pettis property and every 
operator from E into F is weakly compact, then every polynomial from E into F is 
completely continuous. Therefore, if F contains no copy of £», then every polynomial 
from *foo into F is completely continuous. It is easy to see that not every polynomial 
from <fa> into F is weakly compact, whenever F is nonreflexive. 
In this paper, we survey the above mentioned properties of polynomials, that may 
be seen in [8, 9], and prove that they can be extended to the holomorphic case. 

Throughout, E and F will denote complex Banach spaces (however, all the results 
given here for polynomials are also true in the real case), and N the natural numbers. 
A formal series £x, in E is weakly unconditionally Cauchy (w.u.C.) if for every 
(/) in the dual space E* we have £|0(x.{x.)| < oo; equivalently, if 

sup sup 
n |ß/| = l » = i 

The series is unconditionally convergent (u.c.) if any subseries is norm convergent; 
equivalently, if 

sup 
|в,i=i 

Z ^ І 0 for n -> oo 

We denote by J§?(E, F) the space of all (linear bounded) operators from E into 
F. In S£{E, F), we shall be considering the following subspaces: 

iT^^(E, F): the subspace of all weakly compact operators; 
^^(E, F): the completely continuous operators; 
tfl%>(E, F): the unconditionally converging operators. 

Recall that E has the Dunford-Pettis property (DPP for short) if for every F, we 
have IV^AE, F) £= ^(E, F). Classical examples of spaces with DPP are Ll(p) 
and C(K). 

The notation 0>(kE, F) stands for the space of all k-homogeneous (continuous) 
polynomials from E into F, and 3?cc(

kE, F) for the subspace of completely continuous 
polynomials. When the space F is omitted, it is understood to be the scalar field 
K, e.g., 0fE) = 0>(kE, K). 
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The space of k-linear (continuous) mappings from Ek into F is denoted by 
_f(*_, F). TO each P e 0>^E, F) we can associate a unique symmetric P e J?(kE, F) 
so that P(x) = P(x,..., x) for all x e £ . For the general theory of polynomials on 
Banach spaces, we refer to [10]. 

2. Results on polynomials 

The preservation of series by polynomials relies on a lemma, whose proof is 
included for completeness. For it, we need the generalized Rademacher functions, 
denoted by sn(t), neN, which were defined in [4] as follows: 

Fix 2 _^ k e N, and let OLX = 1, a2,..., ock denote the kth roots of unity. 
Let Si: [0,1] -* C be the step function taking the value a, on ((j — i)/k,j/k) for 

; = 1,..., k. 
Then, assuming that sn_{ has been defined, define sn as follows. Fix any of the 

kn~[ subintervals I of [0,1] used in the definition of sn_{. Divide I into k equal 
intervals Iu ..., Ik, and set sn(t) = <Xj if t e Ij. 

These functions are orthogonal [4, Lemma 1.2] in the sense that, for any choice 
of integers iu ..., ik, k _ 2, we have 

K(t) . . . s,(í) dr = f u i f ŕ | - - - " ; 

o 0, otherwise. 

Lemma 1. GiveAz a polynomial P e SP^E, F), we have that, for every xh..., xne E, 

sup 
M=i 

_*ř*i .= sup 
N=i 

JҶEvЛ 
1=1 

Proof. Observe that both suprema are attained for some l̂ l = |v,| = 1. 
For any xu..., xne E and any complex numbers e,- with |e,-| = 1, we can find 

i//eF*, \\ij/\\ = 1, such that 

YJSJPXJ = ^ ( JTSJPXJ 
1=i v = 

Then, taking complex numbers 5j such that fifj = Ej, we obtain 
n 

_EJPxj = *(ÍP(SJXJ)) 

= Í ( I ->.W - S,*W "A o P{5j,xj„ ..., Sjkxjk) dř 
o \;,....,A=I / 

= J <A O P ( £ ðУlSjl(ř) Xjl,.... ~ ^ Ä ( ( ) % ) dt 
V/i = l л = l 
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= ÍÝoP(t5JsÁt)xj)dt 

O \ ; i = l / 

^ sup 
\Vj\=l \ j = l 

and the proof is finished. • 

We remark that if the spaces under consideration are real, then the right hand 
side of the inequality has to be multiplied by (2k)k/k\. The proof, using complexi-
fications of the spaces, is standard. 

Now, thanks to the equivalent definitions of w.u.C. and u.c. series given in 
Section 1, applying Lemma, we easily obtain 

Theorem 2. Given a polynomial P e £?(kE, F), if Yjxt is a w.u.C. series (resp. 
an u.c. series) in E, then £P.x, is w.u.C. (resp. u.c.) in F. 

Therefore, as said in the Introduction, it is natural to introduce the class of 
unconditionally converging polynomials. A polynomial is unconditionally con
verging if it takes w.u.C. series into u.c. series. The space of all k-homogeneous 
unconditionally converging polynomials from E into F is denoted by ^uc(

kE9 F). 
The prototype of w.u.C. series which is not u.c. is the unit vector basis of c0 

Using Lemma 1 and the Bessaga-Pelczyriski selection theorem, it is not difficult 
to prove the following result which will be needed in Section 3. 

Lemma 3. Suppose P e 0*(kE9 F) is not unconditionally converging. Then there 
is an injective isomorphism i: c0 -> E such that P o i takes the unit vector basis 
of c0 into a sequence equivalent to the unit vector basis of c0. In particular, 
P O ie ZP^Co, F) is not unconditionally converging. 

It is well known that the Dunford-Pettis property may be restated in terms of 
polynomials: a space E has the DPP if and only if for every k e N and F, we have 
^wco(

kE9F) £= 0>cc(
kE9F) [13]. However, the situation is very different as regards 

property (V). A space E has property (V) [12] if for every space F, we have 
°ll%>(E, F) £ iVmdjL, F). The C(K) spaces and the reflexive spaces have property 
(V). In the polynomial case, the following result may be proved. 

Theorem 4. Given an integer k > 1 and a space E, we have that SPU^E9 F) g 
£ ^wco(kF9 F) for every F if and only if the space £P(kE) is reflexive. 

Only a few spaces satisfy that SP^E) is reflexive. Indeed, if E has a quotient 
isomorphic to £p (1 ^ p < oo), then &(kE) contains a copy of t^ [8, 6], If E = T*9 

Tsirelson's original space, then 0>(kE) is reflexive for every k e N [1], 
It is well known that if F contains no copy of £^, then we have the equalities 

^ ( C F) = Or<€»(^, F) = ^ ( C F) = W ( C F). (1) 

Contrarily to the linear case (k = 1), whenever F is nonreflexive, for every integer 
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k — 2, there is a polynomial P e ^ ( V ^ , F) which is not weakly compact. It can 
be obtained as the composition of the following three mappings 

where U is a completely continuous linear surjection, Q is the polynomial given 
by Q((x„)n) = (xk)n, and T is a quotient onto a separable nonreflexive subspace of 
F. Therefore, the equality (1) is not true in the polynomial case as far as the weakly 
compact polynomials are concerned. 

It remains to ask if the equality holds for the unconditionally converging and the 
completely continuous polynomials. The following results give the answer: 

Theorem 5. Whenever S£(E, F) = W(E , F), we also have 0>(kE, F) = 
- &>uc(

kE,F)forallkeN. 
We briefly mention the ideas of the proof. Firstly, the problem may be reduced 

to the case when E contains no complemented copy of c0. Now, it may be proved 
by induction on k that, given P e 0>(kE, F) and a w.u.C. series £x, in E, the mapping 

lx .= yr \Xm,..., xm, x)jm 

defines an operator T: E -* c0(F). From the fact that E contains no complemented 
copy of c0, we can get that T is unconditionally converging, and then the result 
follows easily. 

Theorem 6. Suppose E has the DPP, and j£?(£, F) = iV^oiE, F). Given k e N 
and Ae J£(kE,F), let (xj),..., (xjj) cz E be weak Cauchy sequences. Then the 
sequence (_4(xi,..., x£))n is norm convergent. 

The proof may be reduced to the case when one of the sequences is weakly null. 
Assume for instance that (x") converges weakly to 0. Then the point is to prove that 

Tz:=(A(x>[,...,xl_x,z))n 

defines a weakly compact operator T:E —> c0(F). Since E has the DPP, T is 
completely continuous, and this yields the result. 

Corollary 7. Suppose E has the DPP and 5£(E, F) = lT«V(£, F). Then we have 
0>(kE, F) = 0>cc(

kE, F)for all keN. 
The last Theorem and his Corollary hold; for instance, in the following cases: 
(a) E = C(K) with K stonean (e.g. E = C) , and F + 4, . 
(b) E = C(K) and F * c0. 
(c) E* has the Schur property, and F* :£> ^. 
(d) E* has the Schur property, and F is weakly sequentially complete. 
Finally, we give a result on extensions of polynomials to the bidual space. The 

following Proposition is needed: 

Proposition 8. [5] The dual space £* has the DPP if and only if for every F and 
Te ir^^E, F), the second adjoint T** :£**—> F** is completely continuous. 

From this, we can obtain. 
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Theorem 9. Suppose E* has the DPP, and £(E, F) = iTVofi, F). Then each 
polynomial P e 0>(kE, F) has an extension P e 0>cc(

kE**, F), with \\P\\ = ||P||. 

3. Holomorphic mapping 

In this Section, we show that a holomorphic mapping f:E->F with /(0) = 0 
takes w.u.C. series into w.u.C. series, provided that the unconditional partial sums 
of the series are all contained in a closed ball on which the convergence of the 
Taylor expansion of / at the origin is uniform. Moreover, we show that / takes 
u.c. series into u.c. series. 

We introduce the class of unconditionally converging holomorphic mappings and 
prove that a mapping / which vanishes at the origin is unconditionally converging 
if and only if all the derivatives of / at the origin are unconditionally converging 
polynomials. As an application we obtain a new characterization of the spaces 
E such that the space J^b(E) of holomorphic functions of bounded type on E is 
reflexive. Finally, we extend Theorems 5 and 9, and Corollary 7 holomorphic 
mappings. 

Given a holomorphic mapping / : E -» F between complex Banach spaces, 
consider the Taylor expansion at the origin 

Á*)=Ш*) 
k=o 

where Pk e 0>(kE, F), and the convergence is uniform for x in a neighbourhood of 
0. Its radius of convergence at 0 may be calculated by the Cauchy-Hadamard formula 

e ( / ) = Clim sup ||Pt||
1/fcN) \ 

The space of all holomorphic mappings from E to F is denoted by J^(E, F). We 
refer to [10, 11] for the general theory of holomorphic mappings on Banach spaces. 

Given a mapping / e J^(E, F), we shall say that / locally takes w.u.C. series 
00 

into w.u.C. (u.c.) series if for every w.u.C. series £ x , in E with 
/=! 

sup sup 
n Ы£l 

X £.•**• < < * / ) . 

we have that £ /(x,) is a w.u.C. (u.c.) series. 
i = i 

We denote Jrifb(E, F) the space of holomorphic mappings of bounded type (i.e., 
bounded on bounded sets) from E into F, and by J^fwco(E, F) the space of weakly 
compact holomorphic mapping (see [14]), defined as follows: / e J^(E, F) is weakly 

18 



compact if every xeE has a neighbourhood Vx such that f(Vx) is relatively weakly 
compact. We have J^b(E, F) = {/e JP(E9 F): g(f) = 00} [10, Theorem 7.13]. 

Theorem 10. Let f e J^(E, F) such that /(0) = 0. Then f locally takes w.u.C. 
series into w.u.C. series, and it takes u.c. series into u.c. series. 

00 

Proof. Let / = £ Pk be the Taylor expansion of / at the origin, with 
k=\ 

00 

Pk e SP^E, F). If Yjxi ls a w.u.C. series and we denote 
1=1 

M := sup sup X8'*, 
n lenili;--.! 

<<?(/), 

from the Cauchy-Hadamard formula we get lim sup(M*||PJ)1/fc < 1. Therefore, 

£ ||Pt|| M
k < 00. 

k=ì 
Now, for any finite subset A c N , 

Í Є A ieA \k=\ / II k = \ 
zад 
íєД 

by Lemma 1 

<: Z S UP 
t = l |e,|šl 

Pk Z £ Л 
I Є Д 

<= Z unii sup 
fc=l l ť , l = l 

Ze.xi 
iєД 

^ ŽimiiM*. 
k=\ 

Hence £/(x;)is a W-U-C. series. 
1=1 

The proof for the u.c. case is analogous: If £ x , is a u.c. series, then for a finite 
1=1 

subset A c N with min A large enough, we have 

<: Z linii SUP 
k=\ | i . / |_l 

Z£'x'-
ІЄÄ 

Z/N 
I /6A 

which converges to 0 when min A goes to infinity since 

= 0. lim sup 
minД—>oo |e/| _Ş 1 »єA 

Hence £ / ( X J ) is a u.c. series. 
i = l 

Corollary 11. Any f e 3fh(E, F) such that /(0) = 0 takes w.u.C. (u.c.) series 
into w.u.C. (u.c.) series. 
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Now it is natural to consider the class of unconditionally converging holomorphic 
mappings. 

Definition 12. A mapping f e 3ti?(E, F) is said to be unconditionally converging 
if f(0) = 0 and f locally takes w.u.C. series into u.c. series. We shall denote by 
^UC(E, F) the subspace of all unconditionally converging holomorphic mappings 
from E into F. 

Next we show that the unconditionally converging holomorphic mappings can 
be characterized in terms of the summands of their Taylor expansion at the origin. 

00 

Theorem 13. Let f = £ Pk e 3>i?(E, F). Then f e 3FUC(E, F) if and only ifPk e 0>uc 

for every keN. k=i 

00 

Proof. Assume Pke 0>uc(
kE, F) for every keN. Given a w.u.C. series ]Tx, in 

£ with ' = 1 

M := sup sup 
n |e,| = l 

Z6**. 
ł = l 

<oU)> 

we have £ ||PJ Mk < oo. Then, for every £ > 0 there exists ke such that 
it=i 

YJ ll-P/fcll Mk < e/2. On the other hand, since £P^ takes w.u.C. series into u.c. 
k = k8+l k=\ 

series, we can select ne such that, for ne < min A we have 

Then, 

I Є Л 
z(ÍPk)« 
ieA \k=l 

+ 

( ke \ 

A we have Щ^, ieA \k=\ / 

/ 00 \ 

E E ъU 
iєA \k = kE+ì 

< E/2. 

<õ+ I 
k=kв+ì 

ІЛ*. 

Pk ! > , • <̂  -z + X S U P 
- k=k„ + l MSI 

< ^ + t \\pk\\Mk 

Z k = ke + l 

< e; 
00 

hence Yf(x>) *s u x * 
i = i 

The proof of the converse is similar to that of [3, Proposition 1.8]. Let 
00 

f e JFUC(E, F); fix keN and e > 0, and take a w.u.C. series £*,- in E. We can 

assume (after multiplying by a suitable constant) that 
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sup sup 
n |є,| = l 

. ťí^Ci <e(f). 
By Lemma 3, it is enough to show that exists nc e N such that ||Ppc J _ £ for n > ne. 

Claim: There exists ne e N such that for y e aco {^: n _ ne},the absolutely convex 
hull of {^: n _ ne}, we have \\f(y)\\ _ £. 

Otherwise, for every m e N we can select ym e aco {xtl: n _ m) with || /(ym) || > £, 
and passing to a subsequence we can assume ym e aco {^: pf- _ n _ qt}, with 

00 

4» < Pi+i- Then _]ym/ is a w.u.C. series with 
І=I 

sup sup 
n | є , | = l i = l 

<e(f); 

hence ||/(ym,)|| -> 0, a contradiction which proves the claim. 
Now, if there exists n > ne such that HPjtxJ > £, then we can select cpe F* such 

that \cp(Pkxn)\ > 1 and \cp(z)\ _ 1 for every z e e5F. Defining g(A) := (p(f(hxn)), we 
obtain a function g e «?f (C) for which we have 

1 < \cp(Pkxn)\ - * ) 

However, the Cauchy inequalities yield 

fl«(0) 

k\ 

k\ 
< sup \g(X)\ = sup \cp(f(lxn))\ _ 1, 

w=i w=i 

since /(ix„) e EBF, and this contradiction finishes the proof. • 
A similar result is true for 3^wco(E, F) (see [14, Theorem 3.3]) and the space 

3/fct(E, F) of all / e 3^(E, F) which locally take weak Cauchy sequences into 
convergent sequences, i.e., every yeE has a neighbourhood Uy so that whenever 
(x,) czUy is a weak Cauchy sequence, then f(x) is norm convergent [13]. Some 
properties of 3^CC(E, F) may be seen in [7, §4]. 

Now we give a characterization of the reflexivity of 34?h(E). 

Theorem 14. For a space E, the following assertions are equivalent: 
(a) For every F, tfuc(E, F) _ 3^wco(E, F). 
(b) For every Fandke N, 0>uc(

kE, F) _ 0>wco(
kE, F). 

(c) For every k e N, 0>(kE) is reflexive. 
(d) 3/?b(E) is reflexive. 

Proof. (a)o(b) follows from Theorem 13 for 3^UC(E, F), and the analogous 
result for 3tifwco(E, F) [14, Theorem 3.2]. 

(b) o (c) is Theorem 4. 
For (c) o (d), see [2, Corollary 3]. 
From Theorems 5 and 13, we get. 
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Theorem 15. Suppose Se{E, F) = W(.E, F). Then every f e J^{E, F) which 
vanishes at the origin belongs to ^fuc{E, F). 

Theorem 6 yields. 

Theorem 16. Suppose E has the DPP and S£{E, F) = W<g#{E, F). Then, 
tf{E,F) = tfcc{E,F). 

Finally, we have. 

Theorem 17. Suppose E* has the DPP, and <£(£, F) = ir<#*{E, F). Then each 
fe J^{E, F) has an extension to a mapping J e J^CC{E**9 F), and Q{J) = Q{J). 

Proof. Given the Taylor expansion at the origin f = £Pfc, we obtain the 
extensions Pk of Pk, by Theorem 9, and define 

00 

/(-):= 14(-) (-e£**)-
k = 0 

The Cauchy-Hadamard formula yields Q{J) = Q{J). Since Pk e 0>cc{
kE**, F), we 

have that Je tfcc{E**,F). 
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