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The Schauder Fixed Point Theorem 

W . KULPA 

Katowice*) 

Received 20. March 1997 

Some results of the type of the Schauder fixed point theorem are presented where the assumptions 
of compactness and local convexity are omitted. A dual conception of the Kuratowski measure of 
noncompactness is introduced. 

In [2] the author has introduced the notion of topological simplicial space and 
has proved a version of the Schauder fixed point theorem for some subclass of 
these spaces. 

In this paper we want to construct a tool to estimate approximative fixed points. 
Our aim will be reached by constructing two dual sequences of functions 
describing measure of compactness and local convexity. 

We shall use notation [p0,..., pn~\ for n-dimensional geometric simplex spanned 
by vertices ph where the points p0, ..., pn are affinely independent. Each point 
xe[p0, ..., pn~], x = Y/i-Ph Zt. = 1, U ̂  0, -s uniquely determined by its 
barycentric coordinates tt. Any continuous map a: [p0, ..., p„] -• X into topolo
gical space X is said to be a singular simplex contained in X; and let us introduced 
the following notations: 

dom o:= [p0,..., pn], imo:= o[p0, ..., pn~], vert a:= {o(p0), ..., a(pn)} 

The following lemma can be obtained from the Brouwer fixed point theorem. 

Lemma on indexed covering. Let {U0, ..., Un} be an open covering of 
a topological space and a : [p0, ..., pn] -> X a singular simplex. Then there exists 
a sequence 0 = i0 < ... < ik = n of indexes such that <r[pio, ..., p,J n Uio n 
... n Uik * 0 

Proof. Let us put P := [p0,..., pn~\ and At := G~\U^J for i = 0,..., n. The sets 
Ai are open in P. Define a continuous map f:P->P; 
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/(*) = 1 7 S • Pi where dt (*) •= '¥{11* - yll : y e PU,) and d(x) = £ d,(x) 
i = OalXJ ,=0 

Since the sets At form an open covering of the simplex P, we infer that d(x) > 0 
for each point xe P. According to the Brouwer fixed point theorem there exists 
a point aeP such that f(a) = a. This means that 

di(a) = t..(a). d(a) for each i = 0, ..., n 

Since the sets A{ are open and d(a) > 0 we infer that 

ti(a) > 0 if and only if a e At for each i = 0, ..., n. 

Now, let us put {io, ..., ik} = {i= n: tt(a) > 0}. Then, from the above we get 

fle[pfe,..., pik]nAion... n Aik. 

This completes the proof. • 

Recall the definition from [2] of a topological simplicial space. For a given 
topological space (X, 2F) denote by S the family of all singular simplices contained 
inX. 

A family 3F c: E is said to be simplicial structure in a space X if for each 
singular simplex a e 3F, a: [p0, ..., pn~\ -> X and for each sequence of indexes 
0 ^ i0 < ... < ik ^ n we have <r| [#0, ..., pik~\ e 3F. 

A triple (X, «̂ ~, ^ J , where SF is a topology on X and ^ is a simplicial structure 
in the space (X, 2T) is said to be topological simplicial space. In the case when 
(X, Q) is a metric space or (X, || • ||) is normed space, the triples (X, Q, 2F\ 
(X, || • ||, 2F) will be called metric, or normed simplicial space. 

A topological simplicial space (X, 2F, 2F) is said to be convex if for each finite 
set A a X there exists a simplex a e 2F such that A = vert cr, and it is locally 
convex at a point x e C if for each its open neighbourhood Ux there exists an open 
set Vx, x e Vx a Ux such that 

(a) for each finite subset F c F x there exists a c: & with vert a = F, and 
(b) for each a e3F\ vert a n Vx => ima a Ux 

A simplicial space X which is locally convex at each point x e X is said to be 
locally convex. 

A subsdet C c: X is said to be convex if the conditions (a) and (b) holds (where 

c = vx = ux). 
Let us recall that a subset C c I of a topological linear space X is convex if 

for each n + I points c0, ..., cneC, each convex combination ^ = o t , . c, belongs 
to C. In our terminology it means that for each singular linear simplex a e «£?; 
vert a cz C implies im a cz C. Thus in the case when X is a topological linear 
space and 3F = ££ is a simplicial structure consisting of the all linear simplices, 
then the notion of convexity in our sense coincides with the notion of convexity 
in the classical sense. 
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A very important example of simplifical structure is the family J§? c S all linear 
maps (called to be linear simplices), / :[p0 , ..., p„] -• X; /QXot*. p,-) = 
__y=0ti. /(p,), where (X, 3T) is a convex subspace of a linear topological space E. 
In this case the triple (X, 2T9 J£?) is said to be a /mear simplicial space. 

In this remaining part of this paper we shall deal with metric spaces only. If 
(X, p) is a metric space then B(x9 r):= [ye X : p(x9 y) < r) means a ball. 

Let 7 c I be a bounded subset of a metric space (X, p). A function 
cj): N -• [0, oo); 

</>(«): = inf(r > 0:Y a B(x09 r) u ... u 5(x„, r): x0,..., xn e X) 

is said to be a sequence function of compactness for the set Y. In this definition 
we do not assume that the points xt are distinct. Therefore we have; 

0 < c/)(n + 1) < (j)(n) for each n e IV 

The number (f)(Y):=\ivcin^^^)(n) is said to be the Kuratowski measure of 
noncompatness of Y. 

Remarks. 
1. It is easy to see that if X = Y = [0,1], thenjj)(n) = . , 2(n+l) ' 

2. It is left to the reader to check that <j)(n) < T^=T whenever X = Y = [0, l]fc. 
3. The following fact is interesting but easy to prove that for each decreasing 

sequence e0 >
 £i > ••• > 0 of positive reals converging to zero, en -> 0 there 

exists a compact metric space homeomorphic to the Cantor set such that (j)(n) = sn. 
Now we shall introduce a notion of a sequence function of local convexity which 

is in some sense dual to sequence function of compactness. 
If Y is a subset of a metric simplicial space (X9 p, J^) then define; 

\j/(n): = inf{M > 1: [vert o cz B(y, r) & |vert o\ < n + 1] => 

[im o cz B(y, M • r)]; for each y e Y9 r > 0, o e J*}. 

If for each n e N the number i//(n) exists then the function \// : N -> R is said to be 
a sequence function of local convexity for the subspace Y. 

We shall give an example of a metric linear space which is not locally convex 
and for which the sequence function of local convexity exists. 

Example. Fix 0 < p < 1. Recall that Lp is defined to be the linear F-metric 
space of all the Lebesgue measurable functions f: [0,1] -> R with the F-norm; 

nfi := f |/(t)ľdí<oo. 

The metric simplicial space (Lp, ||-||, JSf) with the linear simplicial structure is 
obviously convex but it is not locally convex (cf. [3]). We shall show that 
Lp possesses the sequence function of local convexity. 
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One can verify that the function h:T -+ R,T:= {(h,..., tn): = YJ=O1{ = 1,tt > 0}, 
defined by 

n 

h(t0,...,tn):= £>?, 0 < p < 1 
i=0 

assumes the greatest value equal to (n + l^ - 1 at the point t = (l/n + 1,..., 1/n +1) e T 
Therefore, if a : [p0,..., pn] -> Lp is a linear singular simplex such that a(p0) = x„ 
where x0,...,xne B(y, r), then for (t0,..., tn) e T we have; 

£..•*. 
i = 0 

< £ | | ф ŕ - j ) l l < r - £ ř f < r Ҷ n + i ) i - p . 
i = 0 i = 0 

This implies that î (w) < (n + l ) p - 1 . D 

Main Theorem. If g: X -+ X is a continuous map from a metric simplicial 
space (X,p, 3F) into itself then for each neN and en > 0 there exists a point 
wne X such that 

p(w„, g(wn)) < c\)(n) • \j/(n) + 8n, 

where (j), \j/ mean respectively, the sequence functions of compactness and local 
convexity of the set g(X). 

Proof. Fix 8n > 0 and choose, 5n > 0 satisfying 
(1) (0(n) + Sn) • (xl*(n) + 5n) < cf>(n) • ^(n) + 8n. 
According to the definitions of functions (f> and \j/ there exists a finite set of points 
x0,..., xne X and positive reals r < (j)(n) + 5n and M < \j/(n) + 5 such that 
(2) g(X) c B(x0, r) u ... u B(xn, r), 
and for each x eg(X) and a e f 
(3) |vert c| < n + 1 and vert a cz B(x, r) => im a cz B(x, r • M). 
Applying the lemma on indexed covering to the covering {U0,...,Un}, 
Ut := g-l(B(xt, r), and a singular simplex a: [p0,..., p j -» X with a(pt) = x, we 
find a point wn e X and a sequence of indexes 0 < i0 < ... < ik < n such that 
(4) wn e a[pIO,..., p j n g_1(B(xIO, r)) n ... n g-^xj. 
From the above it follows that o(pt^,..., o(pik)eB(g(wn),r). In view of (3) 
and (4) we have; wne B (g(wn), M • r). Thus we have proved that 
p(w„, g(wn)) < (j)(n) • \j/(n) + 8n. 

If we assume that balls B(x, r) are convex then it is clear that i[/(n) = 1 for each 
neN. Now, using compatness arguments we immediately obtain. 

Corollary (The Schauder fixed point theorem). Let (X, p, !F) be a metric 
simplicial convex space such that open balls are convex. Then each continuous 
map g : X -> X where g(X) is compact, has a fixed point. 

In known proofs of the classical Schauder theorem, the assumptions on 
convexity and local convexity are essential. We are going to present a theorem 
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which gives a partial answer to a question when local convexity is preserved under 
special classes of maps. 

A metric simplicial space (X, 2T, 2F) is said to be strongly locally convex if for 
each compact convex subset C cz X and its open neighbourhood U9C cz U, there 
exists an open set V, C cz V cz U, such that; 

vert G cz V => im G CZ U for each G e3F. 

It is clear that each normed space with the linear structure is strongly locally 
convex. 

A continuous map / :X -> Y from a Hausdorff space X onto a Hausdorff space 
Y is said to be perfect if it is closed and f~\y) is compact for each y e Y (cf. 
Engelking [1], p. 236). And / is said to be monotonic if f~\y) is convex for each 
yeY. 

In [1] one can find the following theorem 

If f: X -+ Y is a perfect map then f~\Z) is compact for each compact subset 
ZczY. 

Theorem. Let f :X^Y be a perfect and monotonic map between Hausdorff 
spaces and assume that (X, 3F) is a convex and strongly locally convex simplicial 
space. Then Y with the simplicial structure &j:= {/ O G : G e !F) is a convex and 
locally convex simplicial space. 

Proof. Since f is onto it is clear that Y is convex. To prove that ^ is a locally 
convex simplicial structure let us fix a point yeY and its open neighourhoud 
U,yeU. From the assumption that IF is strongly locally convex structure on X it 
follows that there exists an open set W such that f~\y) cz W cz f~\U) and 
moreover, the following condition holds; 

vert G cz W => im G CZ f~\U), for each G e 3F. 

Since / is closed hence there exists an open neighbourhood V of the point y such 
that; yeVeU and f~\V) cz W. One can verify, that V satisfies the condition of 
local convexity; 

vert ( / O G) CZ V => im ( / O cr) cz U, for each ( j e f 

which completes the proof. 
Another kind of theorem on preserving of local convexity is given in [2]. 

Remark. Observe that the assumption of strong local convexity is essential. To 
see this, consider the quotient map / :Q -> Q/dQ, where Q := {xe Rn: \\x\\ < 1}. 
The quotien space Q/dQ is homeomorphic to the sphere Sn:= {xe Rn+1: \\x\\ = 1}, 
which has no fixed point property. Thus, in view of the Schauder fixed point 
theorem, the simplicial structure «£}, where J§? is the linear simplicial structure on 
Q, cannot be locally convex. It is obvious that «£} is a convex structure. 
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