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In this survey type talk the main topic is bounded variation (BV). After reviewing some classical 
concepts and results we turn to the more recent concept of BV-integrals and announce the program 
made related to the multiplier problem of these Riemann type integrals. 

1. BV-Sets 

We work in the m-dimensional space Rm. The ball centered at x and of radius 
r will be denoted by B(x, r). The closure, the interior and the exterior of a set A is 
denoted by cl A, int A, and ext A, respectively. We denote by \A\ the Lebesgue 
measure of A cz Rm. In this talk we consider only measurable subsets of Rm. 

Definition. Given a set A c Rm the point x e Rm is a density point of A when 

\B(x,r)nA\ 
lim —, n/ x,— = 1 . 

r_o+ \B(x, r)\ 

The set of all density points of A is its essential interior, denoted by int* A. The 
essential exterior of A, ext* A, equals the essential interior of Rm \ A. The essential 
closure of A, cl* A, equals Rm \ ext* A. Finally d*A denotes the essential boundary 
of A which is Rm \ (int* A u ext* A). By Lebesgue's density theorem almost every 
point of the (measurable) set A belongs to int* A, and almost every point of Rm \ A 
belongs to ext* A. 

We denote the s-dimensional Hausdorff measure by Jtf*8, in the special case 
when s = m — 1 we just simply write Jif, omitting the superscript. 

Definition. The perimeter (surface area) of H c Rm is \\H\\ = 3f(d*H). Sets of 
finite perimeter are called sets of bounded variation (BFsets, or Caccioppoli sets). 
We say that A e MY* if A e BV and cl* A = A. 
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Clearly cl* Ae Sbif for every BV set A. Denoting by A A B the symmetric 
difference of the sets A and B from the Lebesgue density theorem we infer 
1.4 A cl*-4| = 0. 

We say that two BV-sets A and B are nonoverlapping if \A n B\ = 0. 
For a BV set 4 a unit exterior normal *>A can be defined ^f-almost everywhere 

on 4 such that 

f div v dk = f v • ^ dJ f (1.1) 
JA Ja*A 

holds for every vector field v which is continuously differentiable in a neighbor
hood of cl A [EG, Sections 5.1 and 5.8]. 

Next we turn to some results which can help to understand the structure of 
BV-sets. First we discuss the approximation property of BV sets. 

Sets of the form x ^ f a j , bj are called intervals. Figures are finite unions of 
nondegenerate intervals. The class of figures in Rm will be denoted by 3F. By [BuP, 
Proposition 1.1] BV-sets can be approximated by figures: 

Theorem 1.1. Given a BV set A cz Rm there exists a sequence of figures An 

such that 
i) l i m | 4 „ A 4 | = 0; 

ii) sup \\An\\ < cm||4||, where the constant cm depends only on the dimension; 
Hi) diam An < diam A for all n. 

It is clear that & is a subclass of St'V. 
The regularity of the BV-set A is r(A) = |4|/diam (A) • | |4| | when \A\ > 0, 

otherwise r(a) = 0. Given a number r > 0 we say that A is r-regular when 
r(A) > r. The higher the regularity constant the "closer" the set A to a ball. 

The following theorem, giving some information about the structure of BV-sets, 
is due to J. Maffk [Ma, 33. Theorem]. He used a different definition for a class of 
sets which equals the class BV. 

We say that the sets Al9 A2 cz R are equivalent if the one-dimensional measure 
of 4 i A A2 equals zero. For a set i c Rm and a point x e R m _ 1 we denote 
Ax = [te R : (xu ..., xm_i, t) e 4 } , that is, Ax is the "vertical" section of 4 . 

Theorem 1.2. Given a set A e BV there exists a set E cz Rm _ 1 such that 
i) J?$Lm-l\E) = 0; 

ii) For every xeE there exists a non-negative integer n(x) and real numbers 
ai(x) < bx(x) < ... < an(x)(x) < bn(x)(x) such that Ax is equivalent to 
U;L1(a/4 bj(x)); 

Hi) 

2 f n(x)dx < Mil Í n(x) dx < 
R m - 1 

The above result roughly states that almost every "vertical section" of a BV set 
is equivalent to the union of finitely many intervals. The integral of the number of 
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these intervals is not greater than half times the perimeter of A. This statement 
reminds to a well-known theorem of Banach [S, Ch. IX. (6.4) Theorem], which is 
usually among the very first theorems one learns about bounded variation: 

Theorem 1.3. Let f be a continuous function on the interval I = [a, b] and let 
n(t) denote the number (finite or infinite) of the points of I at which f assumes the 
value t. Then j^oow(t) dt equals the variation of f on I, namely, f is a function of 
bounded variation whenever this integral is finite. 

We can also given a slightly different interpretation to the previous theorem. 
Recall that J^°(A) equals the number of the elements of A. Observe that if A a R 
is a one dimensional BV set then \\A\\ = Jlf0(d*A) < oo, that is, d*A is finite and 
A is equivalent to a finite union of intervals (note that these one dimensional BV 
sets appear in Theorem 1.2 as "vertical sections"). Let Et = {xe [a, b] :f(x) > t}. 
Then n(t) for almost every t equals J^°(d*Et), that is, the variation of / equals 

This leads us to the second topic of this talk. 

2. BVFunctions 

Given an open set n we denote by Cl(Cl; Rm) the class of continuously 
differentiable n -> Rm maps with compact support. 

Definition. The integrable function / : n -» R is of bounded variation in n, that 
is,feBV(Q)iffeL1(Q)md 

sup i f fdiv q>: <p e CJ(Q; Rm), \q>\ < 1 < 00 

For a detailed treatment of BV functions we recommend reading [EG, Chapter 5] 
or [Z, Chapter 5]. We just mention that the weak partial derivatives of BV 
functions are Radon measures, and a set A cz Rm is a BV-set if and only if its 
characteristic function ^ is a BF function. When one deals with generalized 
integrals it is much easier to think of BV functions by using their characterization 
obtained from the Coarea Formula [EG, Section 5.5]. For a given function 
f: n -> R and a t e R w e denote the upper level set {xeQ:f(x) > t} by Et. 

Theorem 2.1. Assume that the function f is integrable on the open set 
n ^ R " \ Then feBV(Q) if and only if \\Df\\ (n) = \^^(d*(E) n n) At is 
finite. 

This implies that for BV functions almost every upper level set, Et, is of finite 
perimeter in n. It is also clear that Theorem 2.1 is a generalization of the classical 
result in Theorem 1.3. 
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3 . The BV integral 

The BV integral is a multidimensional Henstock-Kurzweil type non-absolute 
integration procedure. We refer to the monograph [P2] for the history and details 
of the theory of generalized Riemann type integrals. 

We discuss two integration procedures the first, the J^-integral, deals with 
figures while the ^?f-integral with ^^"-sets. Since the definitions are similar 
sd will denote either the class # \ or ^'f. 

Definition. The function F : si -> R is a charge when 
i) F is additive, that is, F(A u B) = F(A) + F(B) when A, B e stf are 

non-overlapping; 
ii) F is continuous, that is, for every s > 0 there exists ^ > 0 such that \F(A)\ < e 

for each A e si with A cz 5(0,1/s), ||i4|| < 1/e and \A\ < r\. 
Charges are the possible "indefinite" integrals. For example, F(A) = (Lebesgue) \Af 

for any locally integrable function / is a charge. The other type of standard 
example of charges is the BV-flux F(A) = \d*A div v • vA dJf for continuous vector 
fields v : Rm -• RM and bounded SF-sets A. 

A set in Rm is thin when it is of sigma finite Jf7 measure. If A cz Rm then 
3 : A -> [0, oo) is a gage function on A if its null set {x: S(x) = 0} is thin. 

The collection {(4, x.)}f=i is an s/-partition in A when xt e At cz A holds for all 
i and the sets At e s/ are non-overlapping. Given a gage function the above 
partition is <5-fine when At cz B(xf, (̂Xj)) for each i. Finally if the regularity of each 
At is bigger than r > 0 then the partition is called r-regular. 

Definition. If Ae stf, then / : A -> R is ^/-integrable on 4̂ if there exists 
a charge F such that for all s > 0, there exists a gage 3 on A satisfying 

£i/(x.)iAj--r(4)i<« 

for each ^-regular (5-fine ^/-partition {(4, xi)}f=i in ^4. Then (stf) \Af = F(A). 
Using the ^^-integral a very general divergence theorem (generalization of 

formula (1.1)) can be stated, for the details see [PI], [BuP]. 
One natural question in this field is whether the classes of &- and J^-integrable 

functions are different. W. F. Pfeffer in [PI] proved the following. 

Theorem 3.1. If K is a figure then f is ^-integrable on K iff it is Sb'V*-in
tegrable on K. 

On the other hand an unpublished example of the present author (for details see, 
[PI]) inplies that there exists A e SSif and an / : A -> R which is ^^"-integrable 
on A but has no #"-integrable extension onto a figure containing A. 

Given a bounded BV-set A and a function / : A -> R denote by / its extension 
which equals f on A and 0 or Rm \ A. The function / is R-integrable on A if / is 
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^iT-integrable on any subfigure of Rm (in view of Theorem 3.1 we could assume 
^-integrability as well). The class of i?-integrable functions on A is denoted by 
R(A) and (R) \Af = (SSV) \Kf where K is a figure containing A (it is easy to see 
that the value of the integral does not depend on the choice of K). 

The multiplier problem for the K-integrable functions is the following: 

Classify the class M of those functions g: A -> R for which from / e R(A) it 
follows that fg e R(A) as well. 

The 1-dimensional case of this problem was solved by Bongiorno and Skvortsov 
in [BS], by showing that multipliers are the functions of bounded variation. On the 
other hand the higher dimensional case turned out to be more difficult. Mortensen 
and Pfeffer in [MP] verified that all Lipschitz functions are multipliers. Later 
Pfeffer [P4] showed that characteristic functions of BV-sets are multipliers and 
each multiplier is a bounded BV function on A (BVco(A) function). 

In [D] De Pauw related the multiplier problem to the description of the dual 
space of the i?-intregrable functions endowed with a suitable topology. 

Finally in the recent paper [BDP] Buczolich, De Pauw and Pfeffer prove that 
the class of multipliers M equals the class BV€C(A). 

We remark that in the paper [CLL] the multiplier problem is considered for 
double Henstock integrals. 
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