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An elementary proof is given of Brouwer’s theorem on the invariance of a domain. It is shown that
this theorem is an easy consequence of the Bolzano-Poincaré intermediate value theorem.

The purely topological problem of the invariance of a domain was arisen from
the geometrical theory of analytic functions. It was solved by Brouwer [3] in 1911.
In paper [4] which is a record of Brouwer’s lecture delivered 27 September 1911,
at a meeting in Karlsruhe of the German Mathematical Society Brouwer wrote
“... Poincaré gives a proof of the existence of a linearly-polymorphic function on
a Riemann surface by the method of continuity, accepting without discussion the
following two assertions:

Theorem 1. Classes of a Riemann surface of genus g form a (6g — 6)-dimen-
sional manifold without singularities.

Theorem 2. A one-to-one and continuous image of an n-dimensional domain in
an n-dimensional manifold again forms a domain.

Due to a small change in the method we can avoid applying Theorem 1... and,
thus it all reduces to a justification of Theorem 2 — the theorem of the invariance
of domain, a proof of which I shall publish in the near future.”

Theorem 2 usually is presented in an equivalent form as

Domain Invariance Theorem. If h: U — R" is a continuous one-to-one map
from an open set U < R" then h(U) is an open subset of R", too.

We shall derive this theorem from the

Lemma. Let f:X — R"\{0} be a continuous map from a compact subset
X < R" Then for each ¢ > 0 and for each compact boundary subset Y — R"
there exists a continuous map F : X U Y — R"\ {0) such that |F(x) — f(x)| < &
for each x € X,
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and the

Poincaré-Miranda Theorem. Let f: I" — R", f = (f,, ..., f;), be a continuous
map such that for each i < n, f(I7) < (—o0,0] and f(I;") = [0, +0). Then
there exists a point ¢ € I" such that f(c) = 0,

where 0:= (0, ..., 0)e R" I" = [ —a, a]" is an n-dimensional cube and
I7 :={xeI":x; = —a}and I} := {xeI": x; = a} its i-th opposite faces.

Let us leave until later the task of proving Lemma. A proof of the Poin-
caré-Miranda theorem and its applications one can find in [6]. For convenience of
the reader we shall repeat the proof. In fact, this theorem is due to Poincaré [8] who
in 1883 announced without proof the following result (in Browder’s translation [5]):

“Let fi,..., f, be n continuous functions of n variables xi, ..., x,: the variable
X; is subjected to vary between the limits +a; and —a;. Let us suppose that for
X; = a;, f; is constantly positive, and that for x; = —a,, f; is constantly negative;
I say there will exist, a system of values of x for which all the f’s vanish.”

This theorem is sufficient to prove Brouwer’s theorem. Theorem of Poincaré
was rediscovered by Miranda [7], who in 1940 showed that it was equivalent to
Brouwer’s fixed point theorem. Now let us proceed to the

Proof of Domain Invariance Theorem. Fix u € U. Without loss of generality
we may assume that u = 0. Let I" := [ —a, a]” be an n-dimensional cube such that
I" = U. In order to prove the theorem it suffices to check that b := h(0) € Int h(I").

Since I" is a compact space, the map h|I" is a homeomorphism from I" onto
h(I"). Therefore there exists & > 0 such that h~*(B(b, 26)) < Int I". Suppose that
b € oh(I"). Then one can choose a point ¢ € B(b, 6)\ h(I"). It is clear that b belongs
to the ball B(c,d) and h~'(B(c, 6)) = Int I". Let us put X := h(I")\ B(c, 6) and
Y := 0B(c, 6). Define a continuous map !: h(I") U B(c, 6)\ {c} > X U Y such that

X if xeX,

R e RS CLNE

(I: B(c, &)\ {c}— 0B(c, 6) is a retraction, see Figure 1).

Applying Lemma to ¢ = a and to the map h™!|X : X — r"\ {0} we can find
a continuous map g: X U Y — R"\ {0} such that ||g(x) — h~'(x)|| < a for each x € X.

Finally, define /' = (f}, ..., f,) : I" > R"\{0}as f:= g O 1O h. This map does
not assume the value 0. On the other hand it satisfies the assumptions of
Poincaré’s theorem; f{(I;) = (—c0,0) and f(I;*) = (0, + o). To see this, fix
tel;. Note that I(h(t)) = h(t), because h(t)e X. Let us check; | f(t) — ¢t =
Ig(i(r(z))) — b= (R(e))]| = llg(h(z)) — h~'(h(¢))l| < a. Since t;= —a we get | f{t) — t] =
If(t) — (—a)l < I f(t) — t| < a. This implies that f{t) < 0. Similarly one can
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f:=g eloh

Fig. 1

check the other case. Thus, according to the Poincaré theorem f must assume 0,
a contradiction. |

Remark. For the reader who prefers analytical methods Lemma is superflous.
Since Y := 0B(c, d) is a compact set of measure zero, it suffices to know that maps
of class C' preserve measure zero of compact sets. Now, applying the Weierstrass
Approximation Theorem it is easy to find a polynomial map g : R® — R" such that
0¢g(X U Y)and |g(x) — h™'(x)|| < a for each x € X.

To see this, let us choose #7; 0 < 25 < a, such that h~(X) N B(0, 27) = ¢ and
let p: R" - R" be a polynomial map such that |p(x) — h=*(x)| < # for each
x € X. Since p(Y) is a set of measure zero there is a point d € B(0, )\ p(Y). Define
g:XuY—->RY,

g(z):=p(z) —d foreach ze X U Y.

Note that 0¢g(Y) if and only if dé¢p(Y). Let us see that for each
xeX: |h7'(x) — g(x)| < |h~(x) — p(x)Il + lld]| < 2#. Since h~}(X) N B(0, 217) = @
we infer that 0 ¢ g(X). Now, it is clear that 0 ¢ g(X U Y). [ |
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The Poincaré-Miranda Theorem. Fix n,k = 1,2,... and a > 0. Using the
Certesian notation let ¢;:= (0, ..., 0, a/k, 0, ..., 0), e(i) = a/k, be the i-th basic
vector. Let Z, := {j- :j € Z}, where Z is the set of integers. Denote Zj to be the
Cartesian product of n-copies of the set Z;;

pi={z:{1,..., n} > Z,|z is a map}
Let P(n) be the set of permutations of the set {1,..., n}.

Definition. An ordered set S = [z, ..., z,] < Z} is said to be a (n-dimensional)
simplex if there exists a permutation o € P(n) such that

zy =12+ eoc(l)a Z =121+ eoc(Z)a ves Zn = Zp_y + ea(n)'

Observation. Let S = [z, ..., z,] < Z} be a simplex. Then for each point z;€ S
there exists exactly one simplex T = S[i] such that

ST = {2,..; Zi_1, Zix1, o> Zn}-

Proof. We shall define the i-neighbour S[i] of the simplex S (see Figure 2) as
1) If0 < i < n, then S[i]:= [20, es Zi_1, Xis Zis 1 +er Zn)s
where X; = z;_1 + (Zis1 — 2) = Xi_1 + €gis)
2) If i = 0, then S[0]:= [z, ..., Zy X, Where Xo = z, + (2; — 2),
3) If i = n, then S[n]:= [x,, Zp, ..., Z,_1], Where X, = zy — (2,41 — Z,),
We leave to the reader the prove that the simplexes S[i] are well defined and
that they are the only possible i-neighbours of the simplex S. n

Any subset [z, ..., Zi_1, Zip1, .. 2] © S, i =0, ..., n, is said to be ((n — 1)-di-
mensional) i-face of the simplex S. A subset C = Zj of the form

=1 Q

C:= C(k)= {xel”:x,-=j- , where j =0, +1,..., -i_—k}

is said to be a combinational n-cube.
Define the i-th opposite faces of C;
Cr:={zeC:z(i) = —a}, C':={zeC:z(i) = a}
and the boundary
oC:=J{G uCr:i=1,..,n}
From the above observation we get the following

Observation. Any face of a simplex contained in the cube C is a face of exactly
one or two simplexes from C, depending on whether or not it lies on the boundary 0C.

Proof the Poincaré-Miranda Theorem. For each i = 1,..., n define H; :=
fi7(—0,0], Hi := f;7'[0, o). Since for each sequence of simplex S, = C(k),
diameter S, — 0 as k — o0, in order to prove the theorem it suffices to show that
for each k there exists a simplex S, = C(k) such that
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(1) H nS,#0+H'nS, foreachi=1,...,n.
Indeed, using the compactness argument we infer that the intersection
H:={H nHf:i=1,..,n}

is not empty set. It is clear that f(c) = 0 for each c € H.
Define a map ¢ : I" - {0,..., n};

(2) ¢(x):= max {j: x e [I_oFi},

where Fg :=I" and F;' := H;*\I;7 for each i = 1,..., n. The map ¢ has the
following properties:

3) if xelI;, then ¢(x) < i, and if x eI, then ¢(x) +i — 1.
From (3) it follows that for each subset S < I

(4) o(S N I}) = {0,..., n — 1} implies that i = n and & = —.

Observe that from (2) and the fact that I" = H; u H}t, imply that

(5) if ¢(x)=1i— 1 and ¢(y) =i, then xe H; and ye H; .

Let us call a finite subset S of [ + 1 points in the combinatorial cube C = C(k)
to be proper if ¢(S) = {0,..., I}. From (1) and (5) it follows that the theorem will
be proved if we show that for each k there exists a proper simplex S < C(k). It
will be proved that for each k the number ¢ of proper simplexes will be odd.

Our proof will be by induction on the dimensionality n of C. This is obvious for
n = 0, because C = {0},9(0) =0, ¢ = 1.

According to (4) any proper face s — dC lies in C, and by our induction
hypothesis the number a of such faces is odd. Let o(S) denote the number of proper
faces of a simplex S <= C.

Now, if S is a proper simplex, clearly «(S) = 1; while if S is not a proper
simplex, we have «(S) = 2 or ofS) = 0 according as ¢(S) = {0,...,n — 1} or
{0,...n — 1]\ o(S) + 0.

Hence

(6) ¢ = Y.S), mod 2
On the other hand, a proper face is counted exactly once or twice in ) a(S)
according as it is in the boundary of C or not.

Accordingly
(7) Y ofS) = o, mod 2
hence
(8) o =g,mod2.
But « is odd. Thus ¢ is odd, too. n
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We shall describe briefly, without proofs, one of simplicial methods which were
initiated in topology by Poincaré.

A subset S = (z,..., z,y) = I" is said to be an n-dimensional geometrical
simplex (a simplex for brevity) if z,..., z,€ C and there exists a permutation
a € P(n) such that

1) zy =2y + ety 22 = Z1 + €y ooes Zn = Zy_1 Tt Eyn) and

2 S={x:x= i};lti-zi, Yroti =1, t; > 0}.

The sum ) ;_otiz;, where Y 7_ot; = 1 and t; > 0, is said to be a convex combi-
nation of points z, ..., z,.

A family Q = Q(k) consisting of the all n-dimensional geometrical simplexes is
said to be a regular triangulation of the cube I" (see Figure 2).

C

Fig. 2

In the proof of Lemma we shall use the following facts;
(a) For each point x € I" there is a simplex S € Q such that x € S. Each point
X €<{2y, ..., 2,y is uniquely determined by its barycentric coordinates t; = t,(x);

n n
x=Ytz, yt=1,6>0,
i=1 i=1

which are continuous functions of x, ¢;: S — [0, 1].

132



(b) Each map h:C — R" uniquely determines a piece-wise (affine) linear
continuous map h:I" — R"

h(x) = it,-- h(z), x €2y .er Zay,
i=0

where x is a convex combination of the points z, x = ) I_ot; * z..
Now, let us start the

Proof of Lemma. Fix ¢ > 0. Since X U Y is a bounded subset of R" there is
an a > 0 such that X UY < I", where I = [—a, a]. Extend the map f to
a continuous map g : I" — R" and let us choose a 6,0 < 26 < ¢, such that f(X) N
B(O, 25) = (. Let P be a covering of R" consisting of open balls of diameter less
than ¢. Since g is a uniformly continuous map there exists a regular triangulation
Q = Q(k) of I" such that for each simplex S € Q, g(S) is contained in some ball
B e P. Define a piece-wise (affine) linear map h : I" - R" induced by the map g|C:

h(x):= Z”:Ot,- 9(z),

where x € (%, ..., z,» € Q and x is a convex combination of the points z;.

Observe that | f(x) — h(x)|| < 6, because for each S € Q there exists a ball
B e P (being a convex set) such that g(S) = B. Since h(S) is a convex set, in view
of the definition of h we get that h(S) = B, too.

Now let us note that if the points g(zo), ..., g(z,) are linearly dependent (in the
affine sense) then the h(S) lies in an (n — 1)-dimensional hyperplane and therefore
h(S) is a compact boundary subset of R". If the points g(zo), ..., g(z,) are linearly
independent then h(S N Y) is a compact boundary subset as a image of a compact
boundary set under a linear homeomorphism from R" onto R"!

This yields that h(Y) is a boundary set as a finite union of compact boundary
sets h(S N Y), S e Q. From f(X) n B(0,25) = @ and || f(x) — h(x)|l < & for each
x € X, we obtain that i(X) n B(0, §) = §. Now, it is clear that we can choose
a point d € B(0, 6) \h(X U Y).

Define the map F: X UY > R" as F(z):= h(z) — d. Let us note that
IF(x) — f(x)I < lIk(x) — f(x)Il + ldll <26 < ¢ for each xe X and F(z) + 0
for each ze X U Y (because F(z) = 0 implies h(z) = d, a contradiction with
d ¢ h(X U Y)). This completes the proof. |

Domain Invariance Theorem implies

Dimension Invariance Theorem. There is no continuous one-to-one map
f:R" > R" form < n.

Proof. Define h:= i Of, where i: R™ — R", i(Xy, ..., Xp) = (X1, .., X, 0,...,0) is an
embedding. The set h(R") is a boundary subset of R". On the other hand, according
to Domain Invariance Theorem, it is an open subset of R", a contradiction. |
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The first correct proof that Euclidean spaces R" and R™ are not homeomorphic
unless n equals m was given in 1911 by Brouwer [2]. This theorem was very
important in view of results of Cantor 1877 on existence of 1 — 1 maps between
R" and R™ and a result by Peano 1890 implying existence of continuous maps from
R" onto R™ for n < m. In years 1911 —1924 Lebesgue published not quite correct
proofs of theorems on the invariance of dimensions and domains. This caused
a quarrel between Brouwer and Lebesgue on the priority of results and involved
some known mathematicians to public reactions. In 1924 Lebesgue gave Brouwer
full credit for the invariance of dimension but claimed for himself the theorem of
the invariance of domains. Lebesgue’s papers, not quite correct, were not fruitless.
They led to discovery of a notion of covering dimension.

Remarks. The Poincaré-Miranda theorem can be expressed also for
non-continuous maps.

Assume that f: X — R" is a map from a metric space X. The least number
n =n(f), 0 < n < oo, such that lim sup | f(x,) — f(x)l < # for each sequence
X, = X, is said to be a number of discontinuity of the map f. It is clear that
n(f) = 0 whenever f is continuous.

The following version of the Poincaré-Miranda theorem for not necessarily
continuous maps holds:

Poincaré-Miranda Theorem. Let f :I" - R, f = (fi, ..., f,), be a map such
that for each i < n, f(I7) = (—,0] and f(I}¥) = [0, + o). Then there exists
c € I" such that for each i < n, |f{c) < n(f).

Proof. For each i = 1,..., n and x € I" define
g{x):= d(x, ;7 (=0, 0]) — d(x, i7'[0, + ),

where d(x, A) := inf{||x — al| : a € A} is the distance function from the set 4.
The map g:I" > R" g = (gy, .., g), satisfies the assumptions of the Poin-
caré-Miranda theorem and therefore there exists ¢ € I" such that g(c) = 0.
This means that for each i < n,

d(c, fi}(—o0,0]) = 0 = d(c, fi'[0, + 0)).

Fix i < n, and choose sequences of points x,,, y,, € I"; X,, = ¢ and y,, — ¢ such that
f{xm) < 0 and f{(yn) = O for each m. According to definition of the number of
discontinuity we get that | fi(c)| < n(f)- |

The Bohl-Brouwer Fixed Point Theorem. For any continuous map g : 1" — I"
there exists a point ¢ € I" such that |c; — g{c)| < n(g;) for each i < n.

Proof. Let us put f(x):= x — g(x). The map f satisfies the assumptions of the
Poincaré-Miranda Theorem and therefore there is a point ¢ € I" such that | fc)| <
n(f) = n(g;) for each i < n.
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When children amused themselves by blowing bubbles with a soap solution and
when the arising bubble burst then they first learn by experience the following
consequence of the Poincaré-Miranda theorem.

Exploding Point Theorem. Let X — R" be a compact subset such that
(—9,6) = X for some 6 > 0. Then each map f:X — X \(—0, 6)" which is the
identity map on the boundary of X, has an exploding point i.e., there are c € X
and j < n such that for each & > O there are two points x,y € B(c,¢) with

flx) < —é and f(y) = 6.

Proof. Let I" be an dimensional cube such that X < I" and extend the map f to
the map f:I" — I" such that f(x) = x for each x € I"\ X. Similarly as in the
preceding proof define

g{x) 1= d(x, f;~(= o0, —8]) — d(x, £;~'[8, + 0)).
The map g:I" > R", g =(gy,..., g,) satisfies the assumption of the Poin-
caré-Miranda theorem and therefore there is c € I" such that g(c) = 0.

Since f(c)¢(—9,8)" there exists j < n such that |f{c) > 6. This yields,
d(c, ;7 (=0, —6]) = 0 or d(c, f;~'[4, +)) = 0.

From gfc) = 0 we infer that 0 = d(c, f;~(— o0, —9d]) = d(c, fi7'[J, + 0)).
This implies that for each ¢ > 0 there exist points x, y € B(c, &) n X such that
f{x) < —dand fy) > 6. [ |

The effect of bursting bubbles as an illustration of Exploding Point Theorem can
be observed also while a yeast dough is waiting to be ready for baking.

Exploding Point Theorem implies the Borsuk non-retraction theorem stating that
there is no continuous map from a ball onto its boundary which keeps each point
in the boundary fixed.

Conclusion. It is easily to observe that the Poincaré theorem can be strengthened
to a weak version of the invariance of domains theorem:

If f=(fu. fo):I"> R" is a continuous map such that for each i < n;
AI7)  (—,0) and f(I;*) = (0, + c©), then 0 € Int f(I").

To prove this, note that by compatness of I" and from the assumptions it follows
that there exists 6 > 0 such that f{I;") = (— oo, —8) and f{I;") = (8, + o) for each
i < n. Now observe that for each beJ":= [—4,8]" the map fi(x):= f(x) — b,
x € I", also satisfies the assumptions of the Poincaré theorem. Therefore, there is
c € I" such that fi(c) = 0 i.e., f(c) = b. Thus we have proved that J* = f(I"). W

Developing methods presenting here it is possible to give an elementary proof
of the following Poincaré-Bolzano intermediate value theorem:

If a map f=(f,.... f):I"> R, I:=[—a,a], is a composition of two
continuous maps h:I" - X < R", and G: X - R", f = g O h, and if it satisfies
the Bolzano condition:
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fx)- fly) <0, foreach i <n and xel7,yel},
then h(0I") disconnets R" and g='(0) n Int X =+ .

In the case when h is a homeomorphism and g = h~' we immediately obtain
the Brouwer theorem on the invariance of a domain and a weak version of the
Jordan separation theorem. When g is the identity map then we get Poincaré’s
theorem [8] from 1883, which for n = 1 is Bolzano’s intermediate value theorem
[1] from 1817; if f(—a)- f(a) < O, then f must assume zero.

There is no doubt that the sources of inspirations for Brouwer were Poincaré’s
works. Poincaré had formulated the problem of invariance of dimension, and in
1883 (see [11], pp. 368 —370) used without proof the theorem on the invariance
of domains in a proof in the theory of automorphic functions. Ideas of proofs of
theorems of invariance of domain and dimension were suggested by Poincaré using
separations “coupures” in his papers [9], [10] from 1903 and 1912.

Poincaré, finding himself under constant influx of a set ideas in the most diverse
fields of mathematics and physics did not have time to be rigorous. His strong
geometrical intuition allow him to ignore the pedantic strictness of proofs. He was
often satisfied when his intuition gave him confidence that the proof of a theorem
could carried out, then assigned the completion of the proof to others.
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