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Location of Min-Max Critical Points for Multivalued Functional 

ALEXANDRU KRISTALY and CSABA VARGA 

Cluj-Napoca 

Received 11. March 2001 

In this paper we show how quantitative deformation lemma (for continuous func-
tionals) can be used to obtain location of min-max critical points for multivalued 
functionals with closed graph. Finally, we obtain mountain pass type results for 
multivalued functionals, using the suitable compactness condition. 

1 Introduction 

Brezis and Nirenberg [1], Ghoussoub [8] and Willem [17], using the Ekeland's 
variational principle and the deformation arguments for "homotopy stable family 
with boundary", obtained general location results for C^functionals. Same results 
in non-smooth case have been obtained by Ribarska-Tsachev-Krastanov [15], [16]. 
Our main goal in this paper is to get some information about the location of the 
critical points for multivalued functionals, using the notion of invariance with 
respect to deformation for a family of sets, which generalizes the notion of 
"homotopy stable family with boundary". 

A critical point theory for multivalued functionals with closed graph is devel
oped by M. Frigon in the paper [7]. 

First we recall some definitions and results from this paper and from [4], [5]. 
Let (X, d) be a metric space and let F : X —> R be a multivalued mapping with 
closed graph and nonempty values. We denote by 

graph F = (u, c) e X x R | c e F(u)}. 

The set graph F is a metric space endowed with the metric 

dg((u, b), (v, c)) = <Jd2(u, v) + \b — c\2 

Now, we recall the definition of weak slope for F, see [7]. 
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Definition 1.1. Let F : X -» Rbe a multivalued mapping with closed graph and 
let (u, b) e graph F be a point. The weak slope of F at (u, b), denoted by \dF\ (u, b) 
is the supremum of a e [0, oo [ such that there exists 5 > 0 and a continuous 
function 

itf = (jf-, J^2); B((u, b), S) x [0, 3] -> graph F, 

(where B((u, b), 3) is the open ball in graph F centered at (u, b) of radius 3) such that 

iLOa) dj^((v9 c), t), (v, c)) < t V l + <T2; 

(1.06) ^f2((v,c), t) < c - a t . 

Definition 1.2. Let (X, d) be a complete metric space and let f: X —> R be 
a continuous function and ueX a fixed element. We denote by \df\ (u) the 
supremum of the a e [0, oo [ such that there exist a > 0 and a continuous map 

tf : B(u, 3) x [0, 5] -+ X 

such that Vv e B(u, 3) for all t e [0, (5] we have 

(a) d(JlP(v91), v) < t 

(b) f(^(v,t))<f(v)-at 

The extended real number \df\ (u) is called the weak slope of f at u. 
In the case where F(u) = {f(u)} is a continuous single-valued function then 

\dF\ (u, f(u)) = \df\(u), see [7, p. 737], and it coincides with the norm of the 
derivative when f is of class C1 defined on a Finsler manifold of class C1. 

We define the function ^ F : graph F -> R given by ^F(u, c) = c, where (u, c) e 
graph F. 

Remark 1.3. [7] For (u, c) e graph F 

|d^F| (u, c) 

,,_. . | v i - W P M , | * H ( * , : ) < 1 

m ( " i < ; ) = { o a . l « f l ( U . C ) = l 
Definition 1.4. Lcl F: X -+ R be a multivalued mapping with closed graph, 

and let c e R. We say that ue X is a critical point of F at level, c, if c e F(u) and 
\dF\ (u, c) = 0. The set of critical points of F at level c will be denoted by Kc. We 
say that c is a critical value of F if Kc 4= 0, i.e. (u, c) is a critical element of F for 
some u. 

Definition 1.5. We say that the multivalued function F : X —> R satisfies the 
Palais-Smale condition at level c (short (PS)C), if every sequence (uk) cz X for 
which cn e F(xn) with cn —• c and \dF\ (um cn) —> 0, has a convergent subsequence 
in X. 
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Remark 1.6. The multivalued function F : X -> R satisfies the condition (PS)C 

if and only if the function &F satisfies the Palais-Smale condition at level c. 

Remark 1.7. The element (u, c) e graph F is a critical point for <&F if and only 
if u is a critical point of F. 

We introduce the following notations 

fc = {xeX\f(x)<c} 

f = {xeX\f(x)>c} 

Cs:= {xeX\d(x,C) < $},$ > 0. 

To prove the quantitative deformation lemma for continuous functionals, we 
need the following results and notions. 

Definition 1.8. Let f : X —• R u {oo} be a lower semicontinuous function. We 
define the function 

% : epi(f) -> M 
putting 

epi(f) = {(u,Z)eXxM: f(u) < £} and 9/u, £) = .?. 

In the following epi(f) will be endowed with the metric 

dep((u,t;),(v,n)) = (d(u,vf + (t; - tff. 

Of course epi(f) is closed in X x R and <Sf is Lipschitz continuous of 
constant 1. Consequently \d^f\ (u, £) < 1 for every (u, )̂ e epi(f). 

Proposition 1.9. ([5, Proposition 2.3]) Let f : X -> R be a continuous function 
and let (u, £) G epi(f). Then 

r \df\(u) 
,_$7l + \df\(uf iff(») = Z™d\df\(u)<c°> 

\d$f\(u,{)-^u jf f{u)<^or m{u) = O0m 

Theorem 1.10. ([4, Theorem 2.11]) Let (X, d) be a complete metric space and 
let f : X -> R be a continuous function, C a closed subset ofX and S, a > 0 such 
that 

d(u, C) < S => \df\(u) > a. 

Then there exists a continuous map r\: X x [0, b\ —> X such that 
1) d(r](u, t)) < t, 
2) f(r,(u, t)) < f(u) 
3) d(u, C) > S => r/(u, t) = u, 
4) u e C => f(r](u, t) < f(u) - at. 

Theorem 1.11. Let (X, d) be a complete metric space, f : X -> R a continuous 
function, C a closed subset of X, c e R and s, X > 0. Suppose that 
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/ v , „. e minis, X } 
(1.0) C n / c + e n /_£- 4= 0, where e' = — , 2

 and 

L yj1 + e 

(1.1) Vu-f~l([c - 2e,c + 2e]) n C2e => \df\ (u) > e. 

Then there exists a continuous map rj: X x [0, 1] -• X such that: 
a) d(rj(u, t), u) < kt, Vt e [0, 1], Vu e X, 
b) /(>/(n, t)) < f(u), W e [0, 1], Vu e X, 
c) if u $f-\[c - 2e, c + 2e\) n C2e: rj(u, t) = u, W e [0, 1] 
d) rj(fc+&' n C, 1) c /c"e ' , 
ej W G ]0, 1] arid Vue fc n C we have f(rj(u, t)) < c. 

Proof. First, we suppose that the function / : X -> R is Lipschitz continuous 
with constant 1. We consider the set: 

(1.2) C*:= {ueX\c - e < f(u) < c + e,d(u,C) < e). 

Obviously the set C* is a closed subset of X, and is not empty from (1.0). We 
observe that d(u, C*) < e implies u e f~\[c — 2e, c + 2e]) n C2e. 

Indeed, let d(u, C*) < e. Then u e C2e by triangle inequality and u e f~\[c — e, 
c + 2e~\) as / is 1-Lipschitz. 

£ £ 

Because e > — = from the above we obtain \df\ (u) > , for all 
VI + £2 V 1 + e2 

u s.t. d(u, C*) < e. 
Now we can apply Theorem 1A0, for C := C*, 5 := e, a := —==-. We get 

Vi + 2 

a continuous function r/' : X x [0, e] -> X which satisfies the conditions 1)—4) 
from Theorem 1.10. Let Xx: = min{/l, e) and define the function rj: X x [0, 1] -> X 
by rj(u, t) = rj'(u, Xxt). The properties a) and b) are obvious. Using 3) from Theorem 
1.10 and the above reason, we get rj(u, t) = u. 

For the proof of d) we distinguish two cases: 
(1.3) If u e / c + £ n C and f(u) > c — e' it follows that u e C*, hence we have 

P2 P) 

f(rj(u, 1)) = f(rj'(u, X,)) < f(u) - - ^ = < c + s> - - p = 
Vi + s V1 + £ 

(1.4) If u e fc+e' n C and f(u) < c — e', then from b) we get 

f(fj(u, 1)) < f(u) < c - e'. 

For the proof of e) we use also the 4) from Theorem 1.10. 
Now we consider the general case. For this let C** = {(u,£) e epi(f) | u e C}. 

The set epi(f) is closed i n l x # and it follows that epi(f) is a complete metric 
space with the metric dep. In the next we prove that for every (u, £) e epi(f) with 

(u, £) e yf-\[c - 2e, c + 2e\) n C*£*, we have \d$f\ (u, £) > & 

y/l +£ 
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We distinguish two cases: 

I) Let f(u) = £. In this case we have two subcases. 
a) |d/1 (u) < oo. If (u9 f(u)) e <&f\c - 2e, c + 2e]) n C*e* then we get u e 

f~\[c - 2e, c + 2e]) and d,p((u, /(u)), C**) < 2e. Since d(u9 C) < dep((u, f(u))9 C**) < 
2e we get ue f~\[c — 2e, c + 2e]) n C2e and using (1.1) it follows that 
W\(u) < £• Since \df\ (u) < oo from Proposition 1.9 we have \d&f\(u, f(u)) = 

| d / | ( u ) i • , ^ , , r . x . . 
and using the fact that the function x i—> = is increasing we Jl + \dfҢu) y/í+X2 

have \d&f\ (u9 f(u)) > 
Vl + e2 

b) If |d/1 (u) = oo using Proposition 1.9 we get \d^f\ (u9 f(u)) = 1 > 
V l + £ 2 

£ 

II) If f(u) < £, then from Proposition 1.9 we have \d&/\ (u9 g) = 1 > —== also. 
V1 + e2 

From these we get that if (u9 £) e <3f\c - 2e, c + 2e]) n C*e* then |d^| (u9 £) > 
e 

Vl + e2 

We apply the previous step for X := epi(f), f := ^/ and C := C**, using the 
fact that fy is Lipschitz continuous with constant 1. Of course C** n ^/+ £ n 
(^/)c-«' + $• Then there exists a continious mapping tj • = (rfl, rf2): epi(f) x [0, 1] -> 
epi(f) such that the following hold: 
(1.5) dJHt}{u, £), t), («, £)) < At, V(M, f) e epi(f), Vt 6 [0,1]; 
(1.6) ^ ( u , £), t) = Jj2((u, §, t)<£ = <S^u, £), for all (u, £) e epi(f), and Vf e [0,1]; 
(1.7) ti((u,£),t) = (u,Z) for every (u, £) e epi(f), t e [0, i] with (u, £) $ 
<$f-\[c -2s, c + 2s])nC2**; 
(1.8) J](^+e' n C**, 1) c Wf*; 
(1.9) S#/((M, £), t)) < c for every t e ]0, 1] and V(w, <_:) e #/ n C**. 

We define the function ^ : I x [0, 1] -> I by 
(1.10) »/(«, f) = m((u, f(u)), t). 
Because ^ takes its values in epi(f), we have 
(1.11) f(m((u, f(u)), t)) < Tj2((u, f(u)), t). 
From (1.5) we have: 

d(ri(u, t), u) = d(J7.((u, f(u)), t), u) < 
< [d2mu, f(u)), t), u) + (n2((u, f(u)), t) - f(u))2f = 

= djrj((u, f(u)), t), (u, f(u))) < Xt. 

From the relations (1.6) and (1.11) we get 

f(n(u, t)) = f(rj{((u, f(u)), t)) < rj2((u, f(u)), t) < f(u). 
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From u $ f l([c — 2s9c + 2e\) n C2e we have (u9 f(u)) $ <&f
 l([c — 2s, c + 2e]) n 

Cfe*. Therefore if u <£f_1([c — 2s9 c + 2s]) n C2e, then from (1.7) we get 
n(u91) = ^((u, f(u))91) = u. 

If f(u) < c + e' then from (1.8) and (1.11) we get 

f(n(u9 1)) = f{YJx(u9 f(u))9 1) < rj2((u9 f(u))9 1) < c - &'. 

From (1.9) and (1.11) we get the relation e). 

Remark 1.12. If the function f is of class C1, we obtain the "Quantitative 
deformation lemma" of Willem, see [17]. In the non-smooth case, similar results 
have been obtained by Ribarska-Tsachev-Krastanov [15], [16]. 

In the next we use the following remark. 

Remark 1.13. If (X9 d) is a metric space and A is a subset of X9 then we have 
the following relation d(x9 A) = d(x9 ~A). 

The following result represent the multivalued version of the "Quantitative 
deformation lemma". 

Theorem 1.14. Let (X9 d) be a complete metric space and let F : X -> R be 
a multivalued functional with closed graph and nonempty values. Let C a subset 
of graph F, ce R and X9 s > 0. Suppose that C n %+s' n (^F)c-S' 4= 0, where 

e min U9 X} 
s = =^=± and 

2yJ\ + £ 2 

V(M, b) e <$F\c - 2s9 c + 2e]) n C2e => \dF\ (u9 b) > e. 

Then there exists a continuous map n = (n{9 rj2): graph F x [0, 1] -> graph F such 
that: 

1) dg((n(u9 b)91)9 (u9 b)) < It; 
2) n2((u9 b)91) <b9Mte [0,1] and V(u, b) e graph F; 
3) if (u9 b) $ <§f\c -2s9c + 2s]) n C2e, then n((u9 b)91) = (u9 b)9 Vf e [0, 1]; 
4) n(C n (X x ( - oo, c + e'], l ) c l x ( - o o , c - e']; 
5) Vt e ]0, 1] and V(M, b) e C n (X x (— oo, c]) w have r/2((u, &)•f) < c-

Proof. We have that X x R is a complete metric space with the metric dg 

defined on (X x R) by d0((u, b), (v9 c)) = ^Jd2(u9 v) + \b — c\2 for every (u9 b)9 (v9 c) e 
X x R. Since graph F is a closed subset of X x R9 we have that (graph F, d0) is 
a complete metric space. For (u9 b) e ^f{([c — 2s, c + 2s]) n C2£, we have 

|d^F | (w, b) > —= . Indeed, if \d&F\ (u9 b) = 1, the above is trivial. Otherwise, 
V g 2 + ! IdFKw b) 

if | d ^ l ("• &) < 1, then from Remark 1.3 we have \d&F\ (u9 b) = ' v ? L . 
V |dP|2 (u9 b) + 1 

Now, we apply the first step from the proof of Theorem 1.11 with X : = graph F, 
f : == <gF and we get the assertion. 
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2 Location theorem and minmax principle 

In this section we prove a minmax result in the case of multivalued functionals. 
The main tool used for the proof of this result is Theorem 1.14. 

Let Q be a subset of graph F. We denote by 

r ( 6 ) = {L7czgraphF |Qc= U} 

and suppose that U #= 0 if Q = 0. 

Definition 2.1. ([7, Definition 2.9]) Let Q be a subset of graph F, and let F0 be 
a subset of F(Q). We say that F0 is invariant with respect to (F, (^-deformation, if 
the set n(U, 1) e F0for every U e ro, and every continuous map n : graph F x [0,1] -> 
graph F such that n = id on graph F x {0}u Q x [0, 1] and n2((u, b), t) < b for 
every t e [0, 1] and (u, b) e graph F. 

Let A, B cz graph F, then in the next we use the following notations: 

A3 = {xe graph F | dg(x, A) < 3}; 

d(x, A) = inf{4(x, y) \ y e A}; 

d(A, B) = inf{dg(x, y) | x e A, y e B}. 

Definition 2.2. Let A, Q be two subsets of graph F, and let ro be a nonempty 
subset ofF(Q). We say that F0 intersects the set A if U n A =# 0for every U e F0. 

The main result of this section is the following. 

Theorem 2.3. Let (X, d) be a complete metric space, and F: X -> R a multi
valued mapping with closed graph. We assume that, there exists a closed subset 
A of graph F, and exists Q cz graph F, FQ cz V(Q) a nonempty and invariant subset 
with respect to (F, Q)-deformation such that FQ intersects A. In addition we assume 
that c = inf sup ^F(U) is finite and that 

UET0 

cA = inf sup %F(U nA)> sup &F(Q) 

with strict inequality if d(A, Q) = 0. Let s > 0 be a real number such that 

(2.3a) s < ^ Q , if d(A,Q)>0; 

(TIU\ ^ c A - sup ^A[Q) ., A(A n\ n (2.3b) £ < y—L, if d(A, Q) = 0; 

s < - 3 , У 

cл- sup <Š ÁQ) 
S < 2 , 

C 

s < — 
— sup MQ) (2.3c) s< ~ - ^ - , if o c 

Let 
\Af, if C = CA 

(2.3d) E = ' " J 

A? 

r o , otherwise, 

where V0 = \JU(EroU. 
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Then there exists (u, b) e graph F satisfying the following assertions 
a) c — 2s < b < c + 2s; 
b) dg((u, b), E) < 2s; 

c) \dF\ (u, b) < s. 

Proof. We proceed by contradiction, i.e. we assume that 

V(u, b) e &F\[c -2s,c + 2s]) n E2s => \dF\ (u, b)> s. 

The proof is divided in five steps. 

Step 1. We verify that E n <SC
F+* n (^F)c^ + 0, where s' = 

2 y/l + S2 

If c = cA (hence E = Ae) let U e F0 such that sup %(U) < c + s'. It's enough 
to prove that A nU n (^F)c_c + 0. It this is false, we have that sup &F(A n U) < 
c — s'. From the definition of the c and from the hypothesis, we obtain that 
c = cA< sup %(A n U), i.e. c < c — s', contradiction. From this, it is clear that 
Ae n %+£' n (%\_, + 0_ _ 

If c > cA (hence E = T0) we prove that T0 n %+£' n (^F)c_fi' + 0. Let U e T0 

as above, i.e. sup @F(U) < c + s'. Let us suppose, that U n {*8F)c-4 = 0. From 
this, we obtain sup &F(U) < c — s'. From the definition of the number c we get 
that c < sup &F(U), i.e. c < c — s', contradiction. 

Step 2. For X\= s we use Theorem 1A4 and we get a continuous function 
r\ = (r\i, rj2): graph F x [0, 1] -• graph F such that: 

(2.3c) dg^((u> b), t), (u, b)) < st 

(2.3/) n2((u,b),t)<b 

(23g) V(u, b) $ <$F\c -2s,c + 2e]) n E2e => r/((u, b), t) = (u, 6) 

(2.3h) r/(^+£'nK, 1) c_ ^ - £ ' . 

Slcp 5. We prove that 

(2.3/) n((u, b), t) = (u, b), V(u, b)eQ,te [0, 1] . 

If c = cA we prove that Q cz C^^^f^c — 2s,c + 2e]) n A3e), where 
CgraphE(-) 1s t n e complement in rapport of graph F. We assume the contrary, i.e. 
there exists an (u,b)eQ such that (u, b) e ^f\\_c — 2s, c + 2s]) n A3e, then 
follows that c — 2 e < b < c + 2e and dg((u, b), A) < 3s. From these we have: 

1. If d(A, Q) > 0 using the relation (2.3a) we have 

44,6) < d(A,(u,b)) < 

3 3 " ' 
which is a contradiction. 

2. If d(^, Q) = 0, from the relation (2.3b) we have 

cA — sup ^p(Q) c — sup %(Q) c — b 

2 2 " 2 

But from the relation c — 2fi < b we get a contradiction. 
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If c > cA we prove that Q c C ^ p h ^ ^ F ^ c - 2e, c + 2s]) n (T^)2e). We assume 
that there exists (u, b) G Q such that c — 2a < b < c + 2e. From this relation and 
relation (2.3c) we get 

c — sup ^r(G) c — b 
s < ^ -< ^ x — -^ £> 

2 2 
which is a contradiction. Therefore from (2.3g) we get the relation (2.3i). 

Step 4. It is clear, that there exists an U0 e T0 such that 

(2.3/) sup %(U0) < c + s' 

Because r0 is invariant with respect to (F, Q)-deformation, from the relation r/((u, b), 0) = 
(u, b) for every (u, b) e graph F and from (2.3i), (2.3f) we have that rj(U0,1) G ro. 

Step 5. We have that 

(2.3k) r/(c70,1) n ^ c: r/(C/0 n A , 1). 

Indeed, let w- e r/(C/0, 1) n ,4. Then there exists an w2 G U0 such that w2 = r/(w2, 1). 
But d^(w2, /̂(w2, 1)) < £, therefore dg(w2, A) < s, i.e. w2 e ^4e n [70. In conclusion 
W- G r/(Ae n U0, 1). 

If c = cA, using the fact that rj(U0, 1) G ro and the relations (2.3k), (2.3h), (2.3j) 
we obtain 

c < sup $F(r](U0, 1) n ,4) < sup %(r\(U0 n A& 1)) < c - e', 

which is a contradiction. 
If c > C4, let us consider U0 e T0 as in relation (2,3j). Then from (2.3h) we have 

r/(C/0,1) <z gc
F-E'. Since ^/(L70,1) e T0 we have c = inf sup ^F(U) < sup %(t](U0,1)) < 

Ucr0 

c — e\ which is a contradiction. The proof of theorem is complete. 
In the smooth case, similar results have been obtained by Brezis and Nirenberg 

[1], Ghoussoub [8] and Willem [17], in non-smooth case by Fang [6], Ribar-
ska-Tsachev-Krastanov [15], [16]. As a direct consequence of the above result is 
Theorem 2.12 from [7]. 

Corollary 2.4. Let X be a complete metric space, and F : X -» R be a multiva
lued mapping with closed graph. We assume that, there exists a closed subset A of 
graph F, and exists Q a graph F, and T0 a T(Q) nonempty and invariant with 
respect to (F, (^-deformation such that Y0 intersect A. In addition we suppose that 

inf sup %{U nA)> sup %(Q) 

u r0 

with strict inequality if d(A, Q) = 0. Let c = inf sup (SF{U). 

Ifceffi, and F satisfies the condition (PS)C, then we have 

Kc x {c}n T0 #= 0, where T0 = {JUeToU. 

Moreover, if c = inf sup CSF{U n A) then we have Kc x {c}n A 4= 0. 
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Proof. Theorem 2.3 implies the existence of a sequence {(u„, bn)} cz graph F 
such that: 
Case I. %(um bn) -> c, d(um bn\ T0) -> 0, |dF| (um bn) -> 0. 
Case II. ^F(un, bn) -> c, d(un, bn), ,4) -» 0, |dF| (urt, bn) -> 0. 
Using the condition (PS)C and the fact that the sets ro and A are closed we get that 
Kc x {c}n ro 4= 0 and X cx{c}n/4 + 0, respectively. 

Acknowledgment. The authors wish to thank the referee for many valuable 
suggestions, for the fast refereeing process and improving the exposition of the 
paper. 
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