
Acta Universitatis Carolinae. Mathematica et Physica

Libor Veselý; Luděk Zajíček
On D.C. mappings and differences of convex operators

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 42 (2001), No. 2, 89--97

Persistent URL: http://dml.cz/dmlcz/702080

Terms of use:
© Univerzita Karlova v Praze, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702080
http://project.dml.cz


2001 ACTA UNIVERSIT ATIS CAROLINAE - MATHEMATICA ET PHYSIC A VOL. 42, NO. 2 

On D.C. Mappings and Differences of Convex Operators 

LIBOR VESELÝ and LUDĚK ZAJÍČEK 

Milano, Praha 

Received 11, March 2001 

Introduction 

Let C be an open convex set in a (real) normed linear space X. A real-valued 
function fon C is d.c. if it can be represented as the difference of two continuous 
convex functions on C. (For a survey about d.c. functions see [3].) 

In this article we study relationships between two possible generalizations of the 
notion of a d.c. function to mappings between normed spaces: "d.c. mapping" and 
"order d.c. mappings". 

Let (Y, = )̂ be an ordered normed space. A mapping G: C -> Y is a convex operator 
if G((l - t) x + ty) < (1 - t) G(x) + tG(y) whenever x, y e C and 0 < t < 1. 

Definition 1. Let X, Y be normed linear spaces, C cz X be an open convex set, 
and F : C -» Y be a mapping. 

(a) F is a d.c. mapping on C if there exists a continuous convex function 
f: C -> U (control function) such that y* O F + f is a continuous convex 
function on C for each y* e Y* with | |)/*| | < 1. 

(b) If (Y, ^Q is an ordered normed space, F is order d.c. if F can be represented 
as the difference of two continuous convex operators on C. 

The notion of a d.c. mapping was introduced by the authors and widely studied 
in [5], where a theory of d.c. mappings was built. In contrast to order d.c. 
mappings, the class of d.c mappings is quite stable. 

It is easy to see that the notions from Definition 1 are equivalent for Y = W 
(equipped with the standard coordinate-wise partial ordering). The situation is 
much more complicated for infinite-dimensional Y. 
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The articles [5] and [1] contain examples of order d.c. mappings which are not 
d.c. Namely, Proposition 21 of [1] says that for each separable normed linear space 
X there exists a mapping F : X -> fa which is order d.c. but is d.c. on no open 
convex set C c l . (Note that it is not difficult to prove by the same method that 
the same holds with an arbitrary normed linear space X and fv (1 < p < oo), 
instead of fa.) 

In the present paper, we consider the implication "d.c. implies order d.c." for 
mappings F: Rd -> Y, where Y = 4 , Y = Co or Y is a member of a large general 
class of sequence spaces. 

The main consequences of our results are the following. 
a) Each d.c. mapping F: tR -» 4 (1 < p < oo) is order d.c. 
b) There exists a d.c. mapping F : OR -> Co which is order d.c. on no open 

interval. 
c) For each 1 < p < oo there exist an integer d > 2 and a d.c. mapping 

F: Ud -> 4 which is order d.c. on no open convex set. 
Note that the case Y = *£» is exceptional and almost trivial —each d.c. mapping 

F: X -> /oo (where X is an arbitrary normed linear space) is order d.c Indeed, if 
f : X —> R is a control function for F, then G : = (f, f...) and G — F are clearly 
continuous convex operators and therefore F = G — (G — F) is order d.c. 

In the sequel we will need the following characterization of d.c. mappings of 
one real variable. 

Theorem 2 ([5]). Let I cz U be an open interval, Y be a normed linear space. 
Given a mapping F : I -» Y, the following are equivalent: 

(i) F is d.c. on I; 
(ii) the right derivative F+(x) exists for each xel and F+ has locally finite 

variation on I. 

We shall use the following notations for balls: Bx is the closed unit ball of 
a normed linear space X, B(a, r) denotes the open r-ball centered in a. 

Results 

We are going to show that d.c. mappings of one real variable are order d.c. for 
a large class of sequence spaces, requiring the following definition. (Similar spaces 
were considered in [4].) 

Definition 3. Let V be a nonempty set, and ||-|| : Ur -* [0, oo] be a norm, i.e. 
a function which is convex, even, positively homogeneous and attains the value 
0 only at the origin. We denote by S\\ \\(T) the ordered normed space 

SINI(r) = {ye IRr: ||y|| < TO} 

with the norm ||*|| and the standard pointwise partial ordering. 

90 



Theorem 4. Let I a U be an open interval, T be a nonempty set. Let a norm 
||-|| : IRr -» [0, oo] have the following properties: 

(a) ||y|| < oo whenever y has a finite support; 
(b) | y|| < K - sup{||y^0 | | : r0 c: V is finite) for some K > 0 and each y e Ur; 
(c) | y|| < ||z|| whenever y, z e Mr, \y\ < \z\. 

Then each d.c. mapping F : I -> Sy \(T) is order d.c. 

Proof. For y e T and xe I denote Fy(x) = F(x) (y). It easily follows from (c) 
that each projection y !—> y(y) is continuous. Using this fact and Theorem 2, it is 
easy to see that gy(x): = i+(x) (y) = (Fy)'+ (x). Fix x0e I and put 

fy(x) = 1 ^ogydt, 

where Va
bcp denotes the variation of a function cp on the interval [a, b], with the 

obvious change of the sign if a > b. By [5] (Theorem 2.3, proof of the implication 
(Hi) => (/)), for each y, Fy is controlled by fy. 

Define / : I -> Ur by f(x) (y) = fy(x). It remains to show that the values of / 
belong to SU(Y) and f is continuous as a mapping into Sun(r). (Indeed, then f will 
be a continuous convex operator such that also F + f is a continuous convex 
operator). 

Consider a finite set T0 cz T and e > 0. Let xe I, x > x0. There exists 
a partition {*b = s0 < sx < ... < sn = x) such that, for each y e T0, 

n 

Vx
x
0gy < e + £M S *) - 0y(si-i)|. 

i = l 

Let ey e Ur be the characteristic function of the singleton {y}(y e T). Then we have 
(using (c)) 

l/Wzrdl = I гo ̂ Jxo 
gľ dt e. <(x- x0) !(KвУ)ey 

yeYo 

< (x - x0) e £ eJ + (x - x0) 
11 y є Г 0 II 

Z Z l^ľ(Sí) ~ бфi-l/l ^ 
i = l yєГ 0 

= (x - x0)8||zroll + (x - x0) ^\П(^-К(^)\хт0 

< (x - x0) e||Xr0ll + (x - x0) X ||F;(s() - ^ ( s , . , ) Zr0ll 

< (x - x 0 )e | | Z r o | | + (x - xo) i\\Fl(Sl) - ^(s^Oll 

< (x - x0) ellzroll + (x - x0) V/oI7; • 

Since e > 0 was arbitrary, we have proved that || f(x) Xr0\\ < (x — x0) VXQF+. Then 
(b) implies that f(x) e S ^(T). For x < x0 the proof is analogous. 
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Let us prove that / is ||i|-continuous. Let [a, ff\ cz I be an arbitrary interval 

containing x0. For a < Xi < x2 < /? and a finite set r 0 cz V, we have 

II Г*2 

о11 = Е ^ ll(/N-/(xi)zr„ll = I Oydt-e < (x2 - xľ) 
уеГ 0 

Proceeding as above we obtain that | |(/(x2) — f(xi)) Xr0\\ -̂  (x2 — xi) V^Ff

+. Since 
V/F+ is finite, (b) implies that / is Lipschitz on [a, /?]. • 

Corollary 5. Let T be a nonempty set, I cz U be an open interval, 1 < p < oo. 

Then every d.c. mapping F : I -> ^p(r) is order d.c. 

The following example shows that the assertion of Theorem 4 fails if the range 

space is c0. A mapping is called nowhere order d.c. if it is order d.c. on no open 

convex set. 

Proposition 6. There exists a d.c. mapping G : U -> c0 which is nowhere order d.c. 

Proof. For each n e N define gn: U -> IR by: gn(2k/rz) = 0, gn((2k + \)/n) = 1 n 
(k e Z) and gn is affine on each interval [{,7-^]. Then gn is Lipschitz with constant 
1,0 < gn(x) < \/n for each x e BR, and V^gn = /? — a for each interval [a, /?] cz IR. 
It follows that g(x) := (gi(x), g2(x),...) defines a 1-Lipschitz mapping of IR into c0. 
Then the mapping G(x) : = j0g(f) dt is d.c. on IR (cf. Theorem 2). 

Suppose that G is order d.c. on some open interval / cz U. There exists 
a continuous convex operator F = (Fh F2,...) : I -> c0 such that the two mappings 
+ G + F are continuous convex operators on I. (Indeed, if G = Gx — G2, where 
Gh G2 are continuous convex operators, we can put F: = Gj + G2.) Denoting 
/ „ : = ( F „ ) ' + ( W G N ) , it follows that all the real functions ± g n + / „ are non-
decreasing on I. This easily implies that fn(fi) — fn(a) > V^gn = (3 — a whenever 
a < jS are points from I. 

Consider three points a < b < c from the interval I. By convexity, 

Mb) - Fjci) ^ ^ Fjjc) - Fn(b) . 
b — a c — b 

which implies that f(b) -> 0 as n -> GO. Since f(x) > fn(b) + (x — b) for each 
.x e [b, c], we get 

Fn(c) - Fn(b) = [f(x) dx > (c - b) fn(b) + ( C " ^ 
2 

But this contradicts the fact that lim Fn(c) = lim Fn(b) = lim /n(b) = 0. • 

Now we are going to construct an example (Proposition 9) showing that the 
assertion of Corollary 5 does not hold for arbitrary finite-dimensional domain 
space instead of IR. In what follows, Xd denotes the d-dimensional Lebesgue 
measure in Ud, and X := X{. 
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Lemma 7. Let positive numbers R, r, c such that R/4 > r be given. Let f, g, h 
be real functions on (-R, R) such that f = g — h,g and h are convex, f( — r) = 
f(r) = 0 and f(0) = c. Then 

(1) ^{x:^<\x\<R,\h(x)\>f}>^. 

Proof. Convexity of g implies g(r) + g( — r) — 2g(0) > 0. Since f(r) + 
f(-r) - 2/(0) = -2c and h = g - / we obtain h(r) + h(-r) - 2h(0) > 2c. 
Elementary properties of convex functions imply that 

h'+(r) > h'_(r) > r~\h(r) - h(0)) and h'_(-r) < h'+(-r) < r~\h(0) - h(-r)). 

Consequently 

(2) h'+(r) = h'_(-r) > r~\h(r) + h(-r) - 2h(0)) > —. 

To prove (1), it is sufficient to prove that at least one of the intervals Ix'.= 
(-R, -3R/4), I2:= (-R/2, -R/4), I3:= (R/4, R/2), I4: = (3R/4, R) is a subset 
of {x: \h(x)\ > (8r)_1 cR}. Suppose to the contrary that there exist points Xi e Iu 

x2 e I2, x3 e I3, x4 e I4 such that |/J(T;)| < (8r)_1 cR, i = 1, 2, 3, 4. Then we clearly 
have 

h'+(r) < h'+(x3) < hM____ < 2J_tp_ _ £, 
x4 — x3 R/4 r 

and h'+(r) — h'_( — r) < 2cjr which contradicts to (2). • 

We will need also the following easy lemma. 

Lemma 8. Let d > 2 be a natural number and 1 < p < d be a real number. 
Then in the d-dimensional open unit ball B(0, 1) cz Ud there exists a sequence 
B(xn,rn), n= 1,2,... of pairwise disjoint open balls such that xn - • 0 and 

zy-l(r„y = co. 

Proof. First observe that in an arbitrary open ball U there exists a finite system 
of pairwise disjoint open balls £F(U) = {B(yh px), ..., B(yk, pk)} such that 
YJ=I{P)P — 1- T° this end denote for each & > 0 by V(U, s) the maximal number 
of disjoint open balls which have radius s and are subsets of U. It is easy to see 
that s d = 0(V(U, s)), s -> 0 + . Since e~dep - • oo, s -> 0 + , existence of ^(U) 
easily follows. Now choose a sequence Un = B(zn, an), n = 1, 2,... of disjoint 
open balls such that zn -> 0. Order all members of the system (J^°=i^r(U„) in an 
arbitrary way to a sequence B(xn, rn). It is easy to see that it has the desired 
properties. • 
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Proposition 9. Let d > 2 be a natural number and let p be a real number 
such that 1 < p < d. Then there exists a d.c. mapping F :Ud -> £p which is 
order d.c. on no open convex neighbourhoud of 0 e Ud. Moreover, F is bounded 
and controlled by a function K||'||2, where K > 0 and \\m\\ is the Euclidean norm 
on Ud. 

Proof. By Lemma 8 we can find in 5(0,1) c Ud a sequence B(xm rn), n= 1,2,... 
of pairwise disjoint open balls such that xn -> 0 and ^ ° = i (r„)p = oo. It is 
well-known that there exists a C00 function (p on Ud such that supp cp cz B(0, 1/2) 
and <D(0) = 1. Put 

fn(x):=(rn)
2cp(^^y xeUd 

and F(x) := (f\(x\ f2(x\ ...). Clearly F is a mapping to tfp. 
It is easy to see that the derivative cp' is Lipschitz on Ud with a constant K > 0. 

Therefore Proposition 1.11 of [5] gives that cp is d.c. on Ud with the control 
function q(x):= K\\x\\2, where ||-|| is the Eucliden norm. It is easy to see 
(cf. Lemma 1.5. of [5]) that fn(x) = (rn)

2 cp((rn)-
1 (x - xn)) is d.c. on Ud with 

the control function qn(x) = (rn)
2 q((rn)~

l (x — xn)) = K\\x — xn\\
2. Since 

the function qn — q is clearly affine, we see that q is a control function of 
each fn. (This can be deduced also from the fact that each fn has a K-Lipschitz 
derivative.) 

Now we are ready to prove that F is a d.c. mapping. To this end consider the 
mappings Fn(x) := (f(x), f2(x),..., fn(x), 0, 0, . . .}. Clearly all Fn are continuous 
mappings Ud -> tv. Fix arbitrary 

y* e (lp)* = €\ y* = (yu y2,...), \\y*\\q = 1 and n e M . 

Since \yt\ < 1, i = 1,..., n, and the sets supp f, i = 1,..., n are pairwise disjoint, 
we easily see that the function 

n 

y*OFn + q= Zy,f + g 

is locally convex and therefore also convex on tR .̂ Therefore each Fn is a d .c 
mapping with the control function q. Since Fn(x) -> F(x), x e Ud, and both F and 
q are clearly bounded on a ball, Corollary 1.15 of [5] implies that also F is d.c. on 
Ud with the control function q. 

Now suppose to the contrary that F is an order d.c. mapping on a neighbourhood 
U of 0 and choose R > 0 such that 23(0, 3i^) cz U. By definition, there exist 
continuous convex operators 

G, H : B(0, 3R) - 4 , G = (gh g2,...), H = (hl9 h2,...) 

such that F = G — H on B(0, 3R). Thus all gt and ht are convex real functions on 
£(0, 3#) and fn = gn - K on B(0, 3R) for each neN. 
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Because xn -> 0 and also rn -• 0 (since Yirn)d clearly converges), we can find an 
index n0e N such that B(xn, rn) cz B(0, R) and rn < R/4 for each n > n0. Now fix 
an index n > n0 and a vector u e Md, \\u\\ = 1, and consider real functions 

f(t): = fn(xn + tu), g(t): = gn(xn + tu), h(t): = hn(xn + tu) 

for t e( — R, R). Applying Lemma 7 with r : = rn and c : = (rn)
2, we obtain 

(3) X{t: R/4 < \t\ < R, \hn(xn + tu)\ > (R/S) rn) > R/4. 

Let S := {ue Ud: \\u\\ = 1} and denote by v the surface measure on S. Applying 
to h*(z):= \hn(xn + z)\p the well-known formula (cf. [2], 3.2.13) rewritten using 
Fubini theorem, we obtain 

/: = J h*{z) dЦz) = 1 ( 1 rd-lh*(ru) dr) dv(u). 
B0,R) Js^Jo ' 

Using the fact that v is invariant w.r.t. the mapping u i—• — u (u e S), and (3), we 
easily obtain 

/ = (1/2) I ( I \r\d~lh*(ru) drj dv(u) > (1/2) v(S) (R/4)d (Rrn/S)p 

Consequently, since 5(0, 2R) =» B(xm i?), we have 

f \hn(z)\p dXd(z) > f \hn(z)\p dXd(z) = I > C(rn)
p, 

JB (0 ,2R ) jB(xn, R) 

where C > 0 is a constant which does not depend on n. Thus 

J* 00 oo p 00 

X \k(zf dAd(z) = X \K(z)\" dXd(z) > C X (rny = oo . 
B(0,2R) n = n0 n = n0 JB(0 2R) " = "o 

On the other hand, the real function (||H(x)||p)p is continuous on B(0,2R) 
B(0, 3R) and therefore 

/• 00 p 

Y,\h{zf dxd{z) < {\\H{x)\\py dit 

JB (0 ,2R ) n = n0 JB(0, 2R) 

(z) < 00 . 

which is a contradiction. 
Since cp and {rn) are bounded and the functions fn have disjoint supports, F is 

bounded. • 

Using Proposition 9, it is possible to accumulate singularities to obtain d.c. 
mapping that are nowhere order d c. 

Proposition 10. Let d e N and p GU be such that d > 2 and 1 < p < d. Then 
9 

95 

there exists a d.c. mapping F: Ud —• <?p which is nowhere order d.c. 



Proof. By Proposition 9, there exists a bounded d.c. mapping G: Ud -» *fp, 
G = (Gl9 G2,...), controlled by ||-||2, such that G is order d.c. on no open convex 
neighbourhood of 0. (Indeed, it is sufficient to put G : = ^F.) 

Let M > 0 be such that ||G(x)|| < M for each x e Ud. 
Fix a sequence {x̂ } which is dense in Ud and positive numbers cn such that 

cvmax{l, | | x j , ||xj2} < 2~n. 
For x e Ud, define 

Fn,k{x) = cnGk{x - xn) {{n, k) e N x N) 
00 

/(*) = £ C J * ~ XnW l|2 

The choice of {ĉ } easily implies that the (convex) function / is bounded on 
bounded sets and therefore continuous. The functions Fnik define a bounded 
mapping 

F : Ud -> fp{N xN), F := (F-J M ) e N x N 

since 

IWII? = IcSZ|G*(x - x„)|" = V>£||G(x - x„)||£ < M"Y,2-p. 
n k n n 

Let y* = (>>**) e^(N xN) = £P(N x l\l)* be such that ||y*||, < 1. For each n, 
consider the element y* = (y*t)r=i of ^ = (4>)*> an(^ t h e function 

00 

<Pn{x):= Eyn*fc' Gfc(x - x„) + ||x - x j | 2 = y* O G(x - x„) + ||x - x j 2 

k=i 

which is convex and continuous, since ||y*||^ < 1 and G is controlled by ||-||2. Then 
also the function 

y*OF + / = Y,nCn(Pn 

is convex. Moreover, it is also continuous being bounded on bounded sets (indeed, 
F is bounded and / is bounded on bounded sets). Thus F is a d.c. mapping 
controlled by the function / 

Let us show that F is order d.c. on no open convex set C a Ud. Choose n0e N 
such that xno e C, and consider the following continuous linear projection 

P : SP{N xN)^ 4, {yn,k)(n,k) • - {yno,k)k. 

Then P is order-preserving and P O F(x) = cnoG{x — xno). Thus P o F is not order 
d.c. on C. Consequently, neither F is order d.c. on C. 

Since ifp{N x N) can be identified with *fp, we have proved that there exists a d.c. 
mapping G : Ud -> tfp which is nowhere order d.c. • 
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