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Received 14. March 2002 

In this paper we give new proofs of the theorem of Mackowiak and Tymchatyn that every 
metric continuum is a weakly-confluent image of some one-dimensional hereditarily 
indecomposable continuum of countable weight. One is a model-theoretic argument; the 
other a topological one. Both proofs make essential use of two (topological) lemmas. 

1. Introduction 

In [5] Mackowiak and Tymchatyn proved that every metric continnum is the 
continuous image of a one-dimensional hereditarily indecomposable continuum by 
a weakly confluent map. In [3] this result was extended to general continua, with 
two proofs, one topological and one model-theoretic. Both proofs made essential 
use of the metric result. 

The original purpose of this paper was to (re)prove the metric case by model-
theoretic means. After we found this proof we realized that it could be combined 
with any standard proof of the completeness theorem of first-order logic (see e.g., 
Hodges [4], 6.1]) to produce an inverse-limit proof of the general form of the 
Mackowiak-Tymchatyn result. We present both proofs. The model-theoretic argu
ment occupies section 5, and the inverse-limit approach appears in section 4. 

We want to take this opportunity to point out some connections with work of 
Bankston [1], who dualized the model-theoretic notions of existentially closed 
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structures and existential maps to that of co-existential maps are weakly confluent, 
that co-existentially closed continua are one-dimensional and hereditarily indecom
posable, and that every continuum is the continuous image of a co-existentially 
closed one. The map can in general not be chosen co-existential, because 
co-existential maps preserve indecomposability and do not raise dimension. 

The paper is put together in such a way that readers who are only interested in 
the topological (model-theoretic) proof can simply ignore section 5 (section 
4 respectively) without loss of continuity. 

2. Preliminaries 

A continuum is decomposable if it can be written as a union of two proper 
subcontinua, it is called indecomposable if this is not the case. We call a continuum 
hereditarily indecomposable if every subcontinuum is indecomposable. This is 
equivalent to saying that of every two subcontinua that meet, one is contained in 
the other. As in [3] we can extend this notion for arbitrary compact Hausdorff 
spaces. So a compact Hausdorff space is hereditarily indecomposable if for every 
two subcontinua that meet, one is contained in the other. We call a continuous 
mapping between two continua weakly confluent if every subcontinuum in the 
range is the image of a subcontinuum in the domain. 

Theorem 1 (Mackowiak and Tymchatyn [5]). Every metric continuum is 
a weakly confluent image of some one-dimensional hereditarily indecomposable 
metric continuum. 

For our purposes it is necessary to have a characterization of hereditary 
indecomposability that does not mention continua. 

Theorem 2 (Krasinkiewicz and Mine). A compact Hausdorff space is hereditarily 
indecomposable if and only if it is crooked between every pair of disjoint closed 
nonempty subsets. 

Which the authors translated in [3] into terms of closed sets only as follows. 

Theorem 3. [3] A compact Hausdorff space X is hereditarily indecomposable 
if and only if whenever four closed sets C, D, F and G in X are given such that 
CnD = CnG = FnD = 0 one can write X as the union of three closed sets 
X0, Xi and X2 such that C a X0, D cz X^ X0 n Xx n F = 0, X0 n X2 = 0 and 
X{nX2nG = 0. 

Further on in the paper we will make use of the following characterization of 
the covering dimension dim for normal spaces. 

Lemma 1. A normal space X satisfies the condition dim(X) < n if and only if 
for every (n + 2)-element family {Bh B2,..., Bn+2) closed subsets of the space X 
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satisfying f]?=?Bt = 0 there exists a closed cover {Fu F2,..., Fn+2} of the space 
X such that D--?R = 0, and B, cz R for all i. X such 1hal f)Ui Ft = 0, and B, cz F;/or a/Z i. 

3. Two main lemmas 

The two lemmas in this section stand at the basic of the topological as well as 
the model-theoretic proof in section 4 and section 5 respectively. 

Lemma 2. If X is a continuum and a, b and c are nonempty closed subsets of 
X with empty intersection then there exist a continuum Y and a monotone closed 
onto map </>: Y -» X such that w(X) = w(Y) and Y has a closed cover {A,B, C} 
with the property that (/>_1[a] cz A, 4>~l[p] cz B, </>_1[c] cz C and AnB nC = 0. 

Proof. We apply normality to find a partition of unity \KU, Kb, KC} subordinate to 
{X\a, X\b, X\c}, i.e. the support of Ka is a subset of X\a, etc. Define the function 
/ : X -> U3 by f(x) = (KU(X), Kb(x), KC(X)). The function / maps the space X into the 
triangle T = {(th t2, t3) e U3: th t2, t3 > 0 and tx + t2 + t3 = 1}. The resulting 
embedding of X into X x T defined by x i—> (x, /(x)), will be denoted by g. 

Now consider the space dT x [0, 1], where dT = T\int(T) in (R3. Let h be the 
map from dT x [0, 1] onto T defined by 

h((x,t)) = x(l-t) + tQĄ,^. 

The map h restricted to dT x [0, 1) is a homeomorphism between dT x [0, 1) and 

We define Y cz X x (dT x [0,1]) by Y = (id x h)"1 [g[K]]. And let 0 : Y -> X 
be the (onto) map a-1 O (id x h). As the inverse images of points (x, (tu t2, t3)) under 
the map id x h are points for (x, (tu t2, t3)) in X x T with (tu t2, t3) 4= (3,3,3) and 
equal to {x}x dT x {1} for those (x, (tu t2, t3)) i n l x T with (tu t2, t3) = (|, 3 , 3 ) , 
we find that the map id x h : X x (dT x [0,1]) ->• X x T is monotone. Further
more it is also closed. 

Let p be the line segment between (0, 1, 0) and (0, 0, 1), q the line segment 
between (1, 0, 0) and (0, 0, 1) and r the line segment between (1, 0, 0) and (0, 1, 0). 
The sets A = Y n (X x (p x [0, 1])), B = Y n (X x (q x [0, 1])) and C = Y n 
(X x(r x [0, 1])) form a closed cover of Y such that </>-1[a] cz A, 4>~l[b~\ cz B, 
(j) ! [ c ] cz C, and A n B n C = 0. As it is easily seen that Y and X have the same 
weight, we have proven the lemma. ~~ 

Lemma 3. If X is a continuum and a, b, c and d are nonempty closed subsets 
of X such that anb = and = bnc = 0 then there exist a continuum Y and 
a weakly confluent onto map \j/ : Y -> X such that w(X) = w(Y) and Y has 
a closed cover {U,V, W} with the property that ij/~l(a) cz U, ^ _ 1 ( b ) c= W and 
U nV n $-\c) = U nW = V nW n il/~l(d) = 0. 
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Proof. We are going to use an idea from [3]. Let a, b, c and d be nonempty 
closed subsets of X with the property stated in the lemma. With the aid of 
Urysohn's lemma we can find a continuous function f:X --> [0, 1] such that 
fH c {0},/[>] c: {l}, f[c] <r [0,H and f[d] c= fi 1]. 

Let P denote the (closed and connected) subset of [0,1] x [0, 1] given by 

Let Z cz [0, 1] x X denote the pre-image of the set P under the function id x f: 

Z= {(t,x)e[0,l]xX:(t9f(x))eP}. 

As P is closed and id x f is continuous the set Z is compact. Define the (continuous) 
map K : Z -» X by K((t, x)) = x for every (t9 x) e Z. 

Let 3F be the set of all clopen subsets of Z that are mapped onto X by K. 

Claim 1. The set 2F is a nonempty ultrafilter in the family of clopen subsets ofZ. 

Proof. Suppose we have closed sets F and G such that Z = F + G. Define 
closed subsets Ai9 Bt of X, where i E {0,1, 2}, by 

A0 = LEX:(^9X)EF\9 B0 = IXEX:(^X)EG 

A, = LEX:(^X)EF\9 B{ = LEX:(^9X)EG 

A2 = \XEX:(-,X)EFI, B2 = \XEX:(-9X)EG 

It is clear that At n Bt = 0 for every i e {0,1, 2}. 
If x E (A0 n Bi) u (B0 n A^) then f(x) < f as f(x) = \ is clearly impossible. 

Similarly we see that f[(^4i n 52) u (.Bi n A2)] cz (3, 1]. 
Let ^4* and ^ * be closed sets of X, such that A* is equal to the following union 

of closed sets 

u{f-] o,Л 
nAo,/-1 1'" пЛ2,.Л()п.,41пЛ2,-4опВ1пВ2»-8оП.В1пЛ2,.ВоП AinB2}9 

and we get a description of the closed set B* by interchanging _4's and £Ts in the 
above equation. The sets A* and H* are disjoint closed subsets of X and their 
union is the whole of X. As X is connected one of these sets must be empty. So 
without loss of generality we can assume that B* = 0. We see that 7r[F] = X and 
furhermore, that K maps G, the complement of F into the set f~l\j9 f], a proper 
subset of X. 

This argument shows that if FbF2E3F then K\X\(FX nF2)] cz f~l[\, | ] , whence 
3? is seen to be a filter; it also shows that J^ is an ultrafilter. n 
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Let Y cz Z be given by Y = p | #- a n d let i/t: Y -* X be the restriction of TT to 
the continuum Y,\j/ = K \ Y. 

Claim 2. i/t: Y -> X /s weak/y confluent. 

Proof. Suppose we have i c X connected. If we look at the image of A under 
the function f there are a number of possibilities: 
1. f[A] cz [0,f] and f[A] n [0, \) = 0. As 7i[Z\Y] cz f~%\] we know that 

§} x 4̂ must intersect Y. As {|} x 4̂ is connected we even have that {!} x A is 
a subset of Y. 

2. f[-4] cz [ | , | ] . The component Y of Z must intersect at least one of the 
connected subsets {*} x A, {̂ } x A or {f} x 4̂ of Z, because Y is mapped onto 
X. And so Y must contain at least one of these connected sets. 

3. f[A] n [0, |) * f[A] n (§, 1]. As above, assuming that A+(= n'^A]) = 
F + G, we can construct closed and disjoint subsets A* and B* of zl which 
cover it. Again the image under i/t is either all of A or a proper subset of A. 
The (unique) component of A+ that maps onto the whole of A must intersect 
the set Y, and so is contained in it. 

This ends the proof of the claim. • 

If we let U be the set {(t, x)eY:te [0, §]}, V = {(t,x) eY:te[i §]} and 
W = {(t,x) eY:te[i 1]}, then {[/, V, PV} is a closed cover of the space Y such 
that i//-l[a] cz [/, i/}-1^] cz W, U n Vn ^ - i [ c ] = 0, V n PV n ^ [ d ] = 0 
and C7 n VV = 0. This ends the proof of the lemma as it is easily seen that X and 
Y are both of the same weight. • 

4. A topological proof of the M a c k o w i a k - T y m c h a t y n theorem 

Before we start with the proof of the theorem we restate the following well 
known lemma on a base for the closed sets of some (transfinite) inverse sequence. 

Let {Ka, fa, K] be an (transfinite) inverse sequence with XK as its inverse limit 
space. Let for every a < K the continuous function 7ia be defined by 7ca = 
proja \ XK : XK -> Xa, where proj a : I l a < KX a - • X a is the projection. The following 
lemma is well known. 

Lemma 4. The family of all sets of the form K~1[F], where F is a closed subset 
of the space Xa and a runs over a subset C cofinal in K, is a base for the closed 
sets of KK, the limit of the (transfinite) inverse sequence {Ka, fa, K\ Moreover, if for 
every a < K a base 93a for the closed sets of space Xa is fixed, then the subfamily 
of those K~1[F]for which F e 93a, also is a base for the closed sets of XK. 

Let X be a metric continuum. We are going to define a inverse sequence 
\Xm fn, CO), 

y Jo \r J !« l y Jn 

— JLQ < Aj< . . . < SLn < . . . , 
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in such a way that the inverse limit space Xw is a hereditarily indecomposable 
one-dimensional continuum of countable weight such that 7i0: Xw -> X is a weakly 
confluent map onto X. 

For every n we will define a metric continuum Xn, an onto map f n : Xn -> Xn x 

and a countable base 93n for the closed sets of Xn that is closed under finite unions 
and intersections. Lemma 4 tells us that 93 = (Jn<w7Cn~1[®n] will be a countable 
base for the closed sets of Xw. If we choose the bases 93n in such a way that 
fn

-1[93n_i] c 93n, then we even have that 93 is closed under finite unions and 
intersections. 

By theorem 3 and lemma 1 we know that Xw is a one-dimensional hereditarily 
indecomposable continuum of countable weight if we can make sure that the base 
93 has the following two properties 
1. For every a, b, C e 93 with empty intersection there are A, B, C e 93 such that 

aa A, bc= B, ccz C,AnBnC = Q and AvBvC = Xco. 
2. For every a, b, c, d e 93 such that anb = and = bnc = 0 there are 

U,V,We® such that a <= U9 b a W, U n V n c = 0, V n W n d = 0, 
U n W = 0 and Xw = U u V u W. 

To consider all the triples and quadruples of 93 it is more than enough, by 
the definition of the bases 93n, to consider all the triples and quadruples of 
every 93n. As there are countably many of those we can find an enumeration o 
of those triples and quadruples of length co in such a way that the n-th element 
o(n) of this enumeration will be some triple or quadruple of some base 93w with 
m < n. 

Furthermore, if all the bonding maps fn are weakly confluent then the map 
TC0 will be weakly confluent. This is easily seen: given some subcontinuum A of 
X we can define an inverse sequence {A„, gn, co}, where A0 = A and, for all n, An+l 

is some subcontinuum of Xn such that gn[-4„+i] = -4W. Where gn is the restriction 
of fn to the set An+l. The inverse limit of this sequence is a subcontinuum of 
XM which is mapped onto A by the map TT0. 

We will use lemma 2 and lemma 3 in the construction of the inverse sequence 
{Xn, fn, co}. Suppose we have defined all Xm, fm and 93w for m < n. If o(n) is some 
triple of 93m then we look at {a,b, c], their pre-image under the map fw in Xn. We 
use lemma 2 to find Kn+1 and fn+1, and we choose a countable base 93n+1 for the 
closed sets of Xn such that it contains {A,B, C} and f„+i[93n], where {A,B, C} is 
the closed cover of Xn+i we get from lemma 2. When o(n+ 1) was a quadruple of 
93w then we do something similar as above but this time we use lemma 3. 

In a similar way we can construct for any continuum X, using lemmas 2 and 3 
some (transfinite) inverse sequence {Xa, f, w(X)} such that X0 = X and the 
inverse limit of this sequence will be a one-dimensional hereditarily indecompos
able continuum of weight w(X) that is mapped onto X by the weakly confluent 
map 7T0. This provides an independent proof of a theorem in [3] which states just 
this. The proof in that paper made essential use of the metric case. 
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5. A model-theoretic proof of the Mackowiak-Tymchatyn theorem 

For the remainder of this section we fix some metric continuum X. In this 
section we will prove the Mackowiak-Tymchatyn theorem for this X in two steps. 
First we show that X is a continuous image of some metric one-dimensional 
hereditarily indecomposable continuum, and then we show that the map can even 
be weakly confluent. Both steps will be proved by model-theoretic means, which 
means that that we will prove the statements by showing that some specific theory 
in a specific language has a model. 

5.1. Preliminaries 

5.1.1. Wallman spaces and lattices. In the proof we will consider the lattice of 
closed sets of our metric continuum X and try to find, through model-theoretic means, 
another lattice in which we can embed our lattice of closed sets of X. This new lattice 
will be a model for some sentences which will make sure that its Wallman 
representation is a continuum with certain properties. So at the base of the proof is 
Wallman's generalization, to the class of distributive lattices, of Stone's representation 
theorem for Boolean algebras. Wallman's representation theorem is as follows. 

Theorem 4 ([6]). If L is a distributive lattice, then there is a compact Tx space 
X with a base for its closed sets that is a homomorphic image of L. If L is also 
disjunctive then we can find a base for its closed sets that is an isomorphic image 
ofL. 

We call the space X the Wallman space of L or the Wallman representation of 
L, notation: wL. 

A lattice L is disjunctive (or separative) if it models the sentence 

(1) Vab 3x[a Hb * a) -> ((a Hx = x) A (b Hx = 0))] . 

Furthermore the space X in theorem 4 is Hausdorff if and only if the lattice L is 
a normal lattice. We call a lattice normal if it models the sentence 

(2) Vab 3xy[(a Hb = 0) -> ((a Hx = 0) A (b Hy = 0) A (X Uy = 1))]. 

Note that, if we start out with a compact Hausdorff space X and look at a base for 
its closed subsets which is closed under finite unions and intersections, i.e., 
a (normal, disjunctive and distributive) lattice, then the Wallman space of this 
lattice is just the space X. 

Remark 1. From now on we refer to a base for the closed subsets of some 
topological space X, which is closed under finite unions and intersections, as 
a lattice base for X. 

The following theorem shows how to create an onto mapping from maps between 
lattices. In this theorem 2X denotes the family of all closed subsets of the space X. 
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Theorem 5. [2] Let X and Y be compact Hausdorff spaces and let <% be 
a lattice base for Y. Then Y is a continuous image of X if and only if there is 
a map 0 : # -> 2X such that 

1. 0(0) = 0, and if F =# 0 then 0(F) -# 0 
2.ifFKjG=Y then 0(F) u 0(G) = X 
3. /fF! n ... n Fn = 0 fAe/i 0(FX) n ... n 0(Fn) = 0. 

So Y is certainly a continuous image of X if there is an embedding of some 
lattice base of the closed sets of Y into 2X. 

5.1.2. Translation of properties. Our model-theoretic proof of theorem 1 will 
be as follows. Given a metric continuum X, we will construct a lattice L such 
that some lattice base of X is embedded into L, the Wallman representation 
wL of L is a one-dimensional hereditarily indecomposable continuum and that 
for every subcontinuum in X there exists a subcontinuum of wL that is mapped 
onto it. 

For this we need to translate things like being hereditarily indecomposable, 
being of dimension less than or equal to one and being connected in terms of 
closed sets only. 

Using the characterization of hereditary indecomposability as stated in 3, we see 
that a compact Hausdorff space Y is hereditarily indecomposable if the lattice 2Y 

models the sentence 

(3) Vabcd 3xyz[((a H b = 0) A (a ll d = 0) A (b II c = 0)) -> 
-> ((aH(yUz) = 0) A (bf\(x Uy) = 0) A (X HZ = 0) A 
A (x Hy He = 0) A (y Hz Ud = 0) A (x Uy Uz = l))]. 

Using lemma 1, we see that a space Y is of dimension less than or equal to one if 
the lattice 2Y models the sentence 

(4) \/abc 3xyz[(a H b H c = 0) -> 
-> ((a n x = a) A (b ry = b) A (c nz = c) A (X ry rz = o) A (X uy Uz = 1))]. 

A space Y is connected if the lattice 2Y models the sentence conn(l), where conn(a) 
is shorthand for the formula Vxy[((x l~1 y = 0) A (x U y = a)) -• (x = a) v (x = 0))]. 

5.2. The space I is a continuous image of some one-dimensional hereditarily 
indecomposable metric continuum 

Using theorem 4 and 5 of the previous section we see that to get a hereditarily 
indecomposable one-dimensional continuum of countable weight that maps onto X 
we must find a countable distributive, disjunctive normal lattice L such that it is 
a model of the sentences 3, 4 and conn(l), and furthermore that some lattice base 
of X is embedded into this lattice L. 

Fix a lattice base 93 for X. 
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For some countable set of constants K we will construct a set of sentences Z in 
the language {11, U, 0, 1} u K. We will make sure that E is a consistent set of 
sentences such that, if we have a model 2t = (A, J) for E then 

L(2I) = S\K 

is the universe of some lattice model in the language {11, U, 0,1} which is normal, 
distributive and disjunctive and models the sentences 3, 4 and conn(l). To make 
sure that 23 is embedded into L(2t) we simply add the diagram of the lattice 23 to 
the set S and make sure that there are constants in K representing the elements of 
23. The interpretations of II, U, 0 and 1 are given by their interpretations under 
J in the model 21. 

Let K be the following countable set of counstants 

K= [j Kn= U {km'.rrKco}. 
— l<n<co —\<n<co 

We define sets X„ of sentences by an cO-recursion and set 2 = (J„<WE„. 
To begin we define K_{ = 23 and E0 = A©> the diagram of 23. 
The sets £„ will have the following properties: 
1. The £5lI+1's will be sets of sentences that will make sure that the L(2I) is 

a distributive lattice and that the Wallman space wL(2I) of the lattice L(2l) 
is connected. 

2. The S5n+2's will be sets of sentences that will make sure that the lattice L(2l) 
is normal. 

3. The £5„+3's will be sets of sentences that will make sure that L(2l) is 
a disjunctive lattice. 

4. The .S5n+4's will be sets of sentences that will make sure that the lattice L(2I) 
will be a model of the sentence 4. 

5. And the £5(n+i)'s will be sets of sentences that will make sure that the lattice 
L(2I) will be a model of the sentence 3. 

5.2.1. Construction of £ in {II, U, 0, 1} u K. We now how to define the sets 
of sentences of {II, U, 0, 1} u {jm<5n+4Km as described in 1—5. 

We have a natural order < on the set K = [jm Km defined by 

K,m< Kt <-* [(w < r) v ((n = r) A (m < *))]. 

Let {pi}i<co be an enumeration of 

{pe[{jKm]2
:p\ (J Xm + 0}. 

m<5n m<5(n—1) 

For every / < co write p, = {p(fy, P/(l)}-

- 4 + i = {fl(0) r\p(l) = k5n+U2l :l<co} 

21+1 = {ft(°) ^Pi(l) = fes»+i.2i+i: / < o ) 
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Furthermore we let X5n+1 be a set of sentences in {11, U, 0, 1} u [Jm<5nKm 

(without quantifiers) consisting of 
1. sentences that state that according to the constants from (Jm<5„Km we are 

dealing with a distributive lattice with a 0 and a 1, 
2. sentences that make sure that no pair of constants from will refute conn(l). 
Define X5n+1 by 

-^5n+l = -^5n + l U -^5n+l U - ^ 5 n + l -

This set of sentences will make sure that any model of X in the language 
{I-!, U, 0 , l } u X will be a distributive lattice with a 0 and a 1, and also a model 
of the sentence conn(l). 

£5„+2 = {[(Mo) n M i ) = o) - (Wi) n/c5n+2,2/ = o) A 
A (p/(0) nk5n+2;2/+1 = 0) A (/c5n+2,2/ Uk5n+2,2/+1 = 1))] : / < CO}. 

This set of sentences will make sure that any (lattice) model of X in the language 
f l , U, 0, 1} u K will be normal. 

The following set of sentences makes sure that any model of X in the language 
{l~1, U, 0, 1} u K which is also a lattice is a disjunctive lattice. 

-3»+3 = {[(H(O) n P ; ( i ) * P(o)) -> ((/c5n+3>2;+1 nP;(o) = /c5n+3>2;+1) A 

A(/c5„+3,2(+,nP;(l) = 0))]:/<a>} 

- 4 + 3 = {[(w(i)np;(o) * p,(i)) -> ((/c5„+3,2,np;(i) = k5„+3>2;) A 

A(/c5n+3,2,np;(0) = 0)) ] : /<co}. 

And define X5n+3 by 
X5 n + 3 = X5 n + 3 U X5 n + 3 . 

Let C denote the following formula in {11, U, 0, 1} 

((a, b, c; x, y, z) = \_(a l ib lie = 0) -> ((a \~\x = a) A (b fly = b) A (c llz = c) A 

A ( x n ^ Z - - O ) A (xUyUz = 1))]. 

Let {-1/}/<a, be an enumeration of the set 

{qe[{JK^:q\ [j Km * 0}. 
m<5n m<5(n—1) 

For every / < co writte qx = {g/(0), g/(l), q/(2)}. 
Now define X5n+4 by 

25n+4 = {C(q/(0), q(l), q(2); k5n+4,3/, ^5n+4,3/+1, k5n+4,3/+2): / < CO}. 

This will make sure that the Wallman space of any lattice model of 2 will be at 
most one-dimensional. 

For making sure that the Wallman space of any model of X will be hereditarily 
indecomposable we introduce the following formulas in the language {II, U, 0, l}: 
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4>(a, b, c, d) = [(a r\b = 0) A (a V\d = 0) A (b Uc = 0)] 

ip(a,b, c,d;x,y,z) = [(x L\y L\z = 1) A (X l~l- = 0) A 

A (a H(y L\z) = 0) A (b \l(x Uy) = 0) A 

A(xn y n c = o)A( jnzn^ = o)] 

(5) 6(a, b, c, d; x, y, z) = (f>(a, b, c, d) -*• \j/(a, b, c, d; x, y, z) 

Let {r,},<cu be an enumeration of the set 

{ r e 4 [ U ^ m ] : r a n ( r ) \ IJ Km + 0}. 
m<5n m<5(n — 1) 

Let £5(n+1) be the set of sentences defined by: 

2-5(/,+ l) = {°{r(0\ ^(l), V(2\ r/(3); k5(n+l),3b ^5(n+l),3/+l, h(n+ l),3l + l) '. I < CI)}. 

Here the formula 9 is as in equation 5. 

5.2.2. Consistency of S in {l~1, U, 0, 1} u K. In this section we show that S is 
a consistent set of sentences by finding, for every finite subset V of X a metric 
space Y and an interpretation function J : K -> 2 y such that (2y J) is a model for 
the theory V u As- The interpretations of l~1, U, 0 and 1 will always be n , u (the 
normal set intersection and union), 0 and Y respectively. 

For V = 0 we let Y = X and we interpret every constant from K_x as its 
corresponding base element in 23. Extend the interpretation function by assigning the 
empty set to all constants of K\K_1. It is obvious that (2y, J) is a model of A©. 

Remark 2. As the interpretation of l~l and U in the metric continuum Y will 
always be the normal set intersection and set union, all the sentences in 2 5 n +i /^r 
some n < co are true in the model (2y, J>). So we can ignore these sentences and 
for the remainder of this section concentrate on the remaining sentences ofH. 

We can define a well order C on the set S\{5?„+1: n < co} by stating that 
4> \Z \\f if and only if there are n < m < co such that (AeS„ and i/> e Sw or there 
are k < I < co and n < co such that (/>, \j/ e En and 0 is a sentence that mentions 
pk (qk or rk respectively) and i/t is a sentence that mentions px (g; or r, respectively). 

Suppose V is a finite subset of Z such that each of its proper subsets has a model 
as stated as above. Let 6 be the C-largest sentence in V\{l|„+1 : n < co} and let 
Y be a metric continuum and J : K -> 2 y be an interpretation function such that 
(2y, J) is a model of the theory r\{fJ'}u A B -

We will show that there exists a metric space Z and an interpretation function 
f : K -> 2Z such that (2Z, f) is a model of the theory V u A B - We consider three 
cases: 6 e S5 n + 1 u S5 n + 2 u .£5„+3, 9 e S5 n + 4 and 9 e 2-5(„+1) for some n < co. 

1. If r9 e E5 n + 1 u S5 n + 2 u S5n+3 , we can simply let Z = Y and either interpret 
the new constant under f as the intersection or union of two closed sets in 
Y if 9 is in some S5 n + 1 or, if 9 is an element of some £5„+ 2 or -£5n+3, using 
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the fact that the space Y is normal find /-interpretations for the newest 
constants, in an obvious way. 

2. If 9 e X5n+4, then 9 is a sentence of the following form 

e = [(anbnc = o)-»(anx = a) A(bny = b) A 
A(CI~IZ = C) A(x\lyr\z = 0) A ( x U y U z = 1)]. 

Suppose the preamble of 9 is true in the model (2Y
9 J). If a has a zero 

interpretation then we can choose x = 0, y = 1 and z = 1, and this 
interpretation of x, y and z makes sure that 9 holds in the model (2Y

9 J). So 
we may assume that a9 b and c have non zero interpretations. 

By lemma 2 there exist a metric continuum Z, a closed, monotone and onto 
map / : Z -» Y, and a closed cover {A9 B9 C} of Z with empty intersection 
such that f-l\/{a]\ c ,4, /_1[./(&)] <= B and /_ 1[ . /(c)] c C. 

Define an interpretation function / : K -> 2z by 

/(k) = / - V ( / c ) ] for all kGK\{x,y,z} 
f(x) = A9f(y) = Bmdf(z) = C. 

With this interpretation function (2Z, / ) is a model for T. 
3. If 0 G S5(w+1) then it is of the form 9(a9 b9 c; x9 y9 z) as in equation 5. Suppose 

the preamble of 9 is true in the model (2Y
9 J). 

If the interpretation of a is zero we can simply take x = y = 0 and z = 1 
to make (2Y

9 J) a model of 9. So we may again assume that the interpretations 
of a9 b9 c and d are nonzero. 

By lemma 3 there exists a metric continuum Z, a weakly confluent onto map 
f:Z -> Y and a closed cover {[/, V, !-V} of Z such that / -1 |>(fl)] c V, 
/_ 1[/(*)] <= WJ L7n Vn/"1^)] = 0, Un W = 0, and Vn Wnf~l[J(dj] = 0. 

Define an interpretation function / : K -> 2z by 

/(fc) = Z " 1 ^ ) ] for all kGK\{x,);,z} 
f(x) = U9 f(y) = V and / (z) = KV. 

The structure (2Z, / ) is a model for Y. 
So the theory L is a consistent theory in the language {11, U, 0, 1} u K. 

5.3. The Mackowiak-Tymchatyn theorem 

Apart from the weakly confluent property of the continuous onto map we have 
proven the Mackowiak-Tymchatyn theorem, theorem 1. 

In this section we will extend the language of the previous section and construct 
a consistent theory in this extended language that shows that there exists 
a one-dimensional hereditarily indecomposable continuum Y (of the form wL(2I)) 
that maps onto the continuum X by a weakly confluent map. By this approach the 
weight of the continuum Y will be greater than the weight of the our space X. We 
can amend this by taking a countable elementary sublattice of L(2I). 
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To make sure that the continuous map following from the previous section is 
weakly confluent, we must consider all the subcontinua of the space X. 

We let Iv be the following set 

_ = U * » = U {**,«:«< |2*|}. 
— 2<n<co —2<n<co 

We will construct a theory £ = (J _i <-„<„£„ in the language {11, U, 0, 1} u £ 
similar as in the previous section such that given any model 21 = (A, J) of £, the 
set L(2I) = J \ R will be the universe of some normal distributive and disjunctive 
lattice such that it is a model of the sentences 3, 4 and conn(l), we can embed the 
lattice 2X into L(2l), so there exists a continuous map / from wL(2I) onto X and, 
for every subcontinuum of X there exists a subcontinuum of wL(2I) that is mapped 
onto it by / 

5.3.1. Construction of £ in {Tl, U, 0, 1} u i_. We let ___- = {fc_u < |2X|} 
correspond to the set 2X = {xa: a < \2X\} in such a way that the set of all the 
subcontinua of X corresponds to the set {x2a: a < /?} for jsome ordinal number 
/? < \2X\. Let the set of sentences £0 in {11, U, 0, 1} u Iv_! correspond to A_*> the 
diagram of the lattice 2X. 

We want to define a set of sentences £_L in {II, U, 0, 1} u Iv_2 u Iv x that will 
make sure that if 21 is a model of £ in the language {11, U, 0, 1} u i t then we have 
for every subcontinuum in X a subcontinuum of wL(2I) that will be mapped onto it 
by the continuous onto map we get by the fact that 2X is embedded in the lattice L(2I). 

£_., = {conn(fc_2,a) A (fc_2,a rifc_ lfa)): a < £} 

£_i ={(conn(fc_2,a) A (fc_2,an/c_1>y = fc_2>a)) -> 

->(fc-i,« nfc_1>y = fc_u):a < fry < \2X\} 

t_l = {k_2,y = 0:P<y<\2x\}. 

And define the set of sentences £_- as £_j = £°_! u £_i u £_.j. 
Suppose 21 is a model of £. The set £_! will make sure that for every sub

continuum C of X there is some subcontinuum C of wL(2I) that is mapped into C 
by the continuous onto map / we get from theorem 5 and the fact that 2X is 
embedded into wL(2l). The set £1_1 will then make sure that C is in fact mapped 
onto C by the map / 

Let us further construct the sets £n for 0 < n < co in the same manner as we 
have constructed the set __„ in the previous section. So that if we have a model 
21 of £, the lattice L(2I) will be a normal distributive and disjunctive lattice that 
models the sentences 3, 4 and conn(l). 

5.3.2. Consistency of £ in {II, U, 0, 1} u it. Suppose we go about as in section 
5.2.2 and try to prove by that given a model (2y, J) for the theory Y and 
y a sentence of £ constructed after the sentences from T, that there exist a model 
(2Z, f) for the theory T u {7}, either by using lemma 2 or 3 or the fact that Y and Z 
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are metric continua. A problem may arise if we use lemma 3 to find the space Z, as 
in this case f:Z-> Y is only weakly confluent so we cannot just take the f-inverse 
image of the ./-interpretation of constants from i__2 as their ^-interpretations, as 
these might not be connected. We can however always find a connected subset that 
maps onto the ./-interpretation under the map f These ^/-interpretations of the q's 
(might) affect all other ^/-interpretations, and it could happen that some sentence in 
r true in the model (2y J), because its premise was false, has now a true premise 
in (2z, f) and we have to find ^/-interpretations for the constants introduced by this 
sentence to make it a true sentence in (2Z, f). This again could affect the 
interpretations and the truth value of other sentences in T, and so on. 

To bypass this problem we will consider every finite set Y of £ separately, and 
find a model for it. 

We fix such a finite set Y from now on. 
Note that there is only mention of finitely many constants {cb ..., ck} from the 

set i£_2. We start by construction a model (2X+, J+) from X which is not only 
a model of A?* and all the sentences from Y n ___! but also models c,ric; = 0 
for all i #= j . Denote r\____! by {yh ..., ym} in such a way that the y in r\____! which 
are in i_w have lower index than those in £„, when m < n. We will construct 
models (2y j£) such that 

(2y J) |= (r n £_-) u __2- u {qHcj = 0 : i * ;} u {yl9 ..., yt}. 

All these metric continua are related in the following way 

v+ 4 - - Vf -L y <—̂- <--- Y 

where the g/s are either the identity map or come from lemma 2 or 3. 

Construction of (2X+, J+). Note that the constants from i__2 u fc_x correspond 
with closed sets from the metric continuum X. So ct corresponds with some sub-
continuum C, of X, and a e ___! corresponds to some closed set A of X. 

Let X+ be the space X x [0, 1] and define the interpretation map J>+ : it -> 2X+ 

by 

J+(a) = Kxl[A] for all ae&_{ 

J+(c) = Ct x | | | for all i 

jf+(a) = 0 for all a e £ \ ( £ _ i u {cb ..., ck}) 
By construction, we have 

(2X+, Jf+) \= (Y n £_-) u _ 2 , u {qnc;- = 0 : i 4= j} . 

Suppose now that we have already taken care of the sentences {yu ..., y,^} of 
r . We will show how to find a model (2y _/)) for different y,-. Let Y = Yt_{ and 
^ = J't-i. We have 

( 2 y
5 / + ) N ( r n _ ; _ 1 ) u A 2 , u { q . n c i = 0 : i +j}u{rj:j < /}. 
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The sentence yt is in £5n+;- for some j = 1, 2, 3, 4. If yt is some sentence in 
one of the sets £5n+i, £5^+2 ° r £sn+3 f° r some n then we let Z = Y, let 
the ^/-interpretation of all constants of R_! and those that are mentioned in 
some yt with j < i equal their ./-interpretation. We use normal set intersection 
or union to find interpretations for the constants introduced by yt if it is an 
element of some £5n+i if necessary, and normality of the space Y to find 
interpretations for the constants introduced by yt if it is a sentence in £5,,+2 o r 

£571+3 f°r some n. 
If yt is a sentence in one of the sets £s„+4 and its premise is true in the model 

(2y, J) and there is no triple in 2y that can make the sentence a true sentence in 
2y then we use lemma 2 to find a continuum Z and a closed monotone map 
f : Z -> Y such that if we let the ^/-interpretation of a e £ , a not equal to one of 
the constants introduced by yt be defined by 

/(«) = / 1 4 ) ] , 
then with the interpretation of the constants introduced by yt by the closed sets of 
Z we get from the lemma, we made, with this interpretation f the sentence 
yt a true sentence in (2z, f). None of the other sentences is affected by this 
construction as we take pre-images of their ^-interpretations as their ^/-inter-
pretations, and by the fact that f is closed and monotone. 

The sentence yt is in £5(n+i). Without loss of generality we can assume that the 
premise of yt = y,(a, b, c; x, y, z), but not its conclusion is true in the model (2y J>). 
With the aid of lemma 3 we find a metric continuum Z and closed sets U, V and 
W of Z such that 

(6) y.[/-Ma)]> f~l[Ab)l f-^m u, v, W] 
is a true statement. We will show how to find an interpretation map #: $L -> 2Z 

such that (2Z, f) models the sentences from {y7 :j < i}, A2* and {q l~l Cj: i 4= j). 
1. Choose </(c;) cz f_1[^(ci)] such that it is a continuum that is mapped onto 

J>(c) by the map f 
2. Let the ^/-interpretation of all the constants from f__{ be equal to the 

f-inverse of their ^-interpretation. 
With the interpretation map fl we have so far we already have that (2Z, f) is 

a model of the theory (T n £_2) u /\^x u [q- l~l c} = 0 : i 4= j). 
Now we will consider the sentences from r \ £ _ j = {y :j < i) one at a time in 

the order given by their index. These y/s will be restrictions on the ^/-interpretation 
of constants for which we have so far no ^/-interpretation in 2Z. We will find 
^/-interpretation for a constant a introduced by one of the y/s inside the 
f-pre-image of the ^-interpretation of a. So far all constants mentioned in some 
y, with j < i we have 

S{a)<zf-*[S(a)\. 
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Note that so far we have that / [ / ( « ) ] = S(a) for all constants a which 
/-interpretation we have determined. We will make sure that when we consider 
the next y; in the list and find a /-interpretation of the introduced constant a it has 
the following two properties 

1. If x e J (a) n J(c) and y e /(c,) is such that f(y) = x, we have y e /(a). 
2. If for all i we have x $ J(c) and x e J(a) then we have / _ 1 (x ) <= /(a) . 
This will make sure that the premise of the next y; to consider (if it has any) has 

the same truth value in the model (2r, J) as it has in the model (2Z, / ) we have 
constructed so far, as for any finite number of constants au..., an for which we 
have defined its /-interpretation we have 

/[ /(f l i ) n... n f(an)] = J(a{) n ... n J(an). 

1. Suppose y, is of the form a = bncora = bl_lc. The /-interpretation of 
a is fully prescribed by / (b ) and /(c), and it easily seen that / (a ) has the 
properties 1 and 2 above if / (b ) and / (c) have it. 

2. Suppose yj is of the form b^c-^a<bAaric = O.Ifthe premise is false 
then J(a) = 0 and thus f(a) = 0 will suffice. 

If the premise is true J(a) is a nonempty closed set that witnesses that J(b) 
is not a subset of J(c). We choose the ./-interpretation of a by 

f{a)=f-\J(a)]nf(b). 

As / (b ) maps onto J(b) under the map / and as J(a) is a nonempty subset 
of J(b) we see that with this /-interpretation of a, we have a witness for 
b ^ c in (2Z, / ) . It is also easily seen that / ( a ) has properties 1 and 2 if / (b ) 
has these properties. 

3. Suppose a is one of the constants introduced by y, from some £5n+I where 
i = 2, 4, 5. The /-interpretation of these constants will be given by 

f(a) = f-\J(a)]. 

This will make the sentence we are considering a true sentence in (2Z, / ) . 
Again / (a ) will have properties 1 and 2. 

The closed subsets U, V and W of Z we got from lemma 3 will make the 
sentence yt a true sentence in the model (2Z, / ) as the premise of this 
sentence has the same truth value as in the model (2y, J) and the /-inter
pretation of the contants mentioned in the premise are subsets of the /-inverse 
of their ^-interpretation. 

All the constants for which we have not yet determined a /-interpretation will 
have the /-inverse image of their ^-interpretation as their /-interpretation, which 
of course is the empty set. 

Remark 3. This consistency proof also shows that there will be a set of disjoint 
continua in the Wallman representation of the lattice L(2I), where 21 is a model of 
£ that will map onto all the continua in X by the map given by theorem 5. 
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5.3.3. The Mackowiak-Tymchatyn theorem. As _£ is a consistent theory in the 
language {l~1, U, 0, 1} u i t there is some model 91 for it. This model gives us 
a normal distributive and disjunctive lattice L(9I) which models the sentences 3, 
4 and conn(l). There also exists, using the interpretations of the constants in Jt_x, 
an embedding of 2X into the L(9I). So the Wallman space wL(9l), is a one-dimen
sional hereditarily indecomposable continuum which admits a weakly confluent 
map onto the metric continuum X. 

Now we only have to make sure that there exists such a space that is of 
countable weight to complete the proof of the Mackowiak-Tymchatyn theorem. 

Theorem 6. [3] Let f: Y -» X be a continuous surjection between compact 
Hausdorff spaces. Then f can be factored as h O g, where Y -» Z -> X and Z has 
the same weight as X and shares many properties with Y (for instance, if Y is 
one-dimensional so is X or if Y is hereditarily indecomposable, so is X). 

Proof. Let 23 a minimal sized lattice-base for the closed sets of X, and identify 
it with its copy {f_1[-5] : B e 93} in 2y . By the Lowenheim-Skolem theorem there 
is an elementary sublattice of 2 r , of the same cardinality as 23 such that 
23 cz D -< 2Y. The space wD is as required. • 

Applying this theorem to the space wL(2l) and the weakly confluent map 
f: wLftl) - > I w e get a one-dimensional hereditarily indecomposable continuum 
wD which admits a weakly confluent map onto the space X and moreover the 
weight of the space wD equals the weight of the space X. This is exactly what we 
were looking for. 
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