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ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 43, NO. 2 

On Nash Theorem 

WLADYSLAW KULPA and ANDRZEJ SZYMAŇSKI 

Katowice, Slippery Rock 

Received 14. March 2002 

The aim of this paper is to extend the Nash equilibrium theorem onto simplicial spaces. 

1. Simplicial Structures 

The main result of this paper is a theorem called here as Infimum Principle. As 
applications we derive some well-known results related to fixed points, minimax 
and equilibria theorems. We give another proofs for the most celebrated theorems 
in game theory, the Nash equilibrium theorem and the Gale-Nikaido theorem. Our 
study is based on and utilizes the techniques of simplicial structures and dual 
families. This approach enables us to derive not only classical theorems but also 
stimulates new research. 

A collection {#>, pi,..., pn) c Rm of points of the m — dimensional Euclidean 
space Rm is said to be (affinely) independent if the vectors px — p0, p2 — Fo> •••> 
pn — p0 are (linearly) independent. 

Let p0, p1?..., pn be independent points of the m — dimensional Euclidean space 
Rm The n-dimensional simplex [p0, Fi,..., P«] w i t n vertices Po,P\,~-,Pn 1 s t n e 

subspace of Rn given by 

\x e Rm : x = £f{p;, tt > 0 for each i = 1, 2, . . . , n, and YJ
ti = I f • 

I i o i=0 J 
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If {p;0, ph9..., pik} is a subcollection of k + 1 points of the collection {p0, p b . . . , pn}, 
then [pIO, p I1?..., p j c [p0? p b ..., pn] and the simplex [pIO, p I1?..., p ,J is said to be 
a k-dimensional face of the simplex [p0, p1 ? . . . , pn]. 

The following Theorem on Indexed Families (due to W. Kulpa [7]) is our main 
tool in proving facts about dual families. We reprove it here for the reader's 
convenience. 

Theorem 1. (Theorem on Indexed Families). Let o: [p0, p1 ? . . . , pn] -> X be 
a continuous function. For any covering C/0, Ul9..., Un of the subspace o 
([.POJ PU •••? Pn]) by non-empty open subsets of X there exists a non-empty subset 
of indices {̂ , il9..., ik} ~\ {0,1, . . . , n} such that o ([pt0, ph9..., p j ) n U£o n 

l^n... n ^ + 0. 

Proof. For i = 0, 1,..., k, let d{ be a function on the simplex [p0, Pi,... , pn] 
given by 

d(x) = d(x9 [p0 ,Pi,.. . , pn]\~~l(U$, 

where d(x9 Y) = inf{||x — y\\ : y e Y} is the distance between the point x and the 
subset Y in Rm. Each of the functions dt is continuous and since the sets o~l(Ui) 
are open, 

d(x) = 0 if and only if x 4- c x - 1 ^ ) . 

The function f given by 

' M - , ! ( S ^ ) » 
is a continuous function defined on the simplex [p0, p l 5 . . . , pn] into [p0, p l 5 . . . , pn]. 
According to the Brouwer Fixed Point Theorem, there exits a e [p0, ph ..., pn] such 
that f(a) = a. Thus 

Let {/̂ , i*!,..., ife} be the set of all indices i such that 

to\ ^*(a) 

From (1), a e [pio, p I1? . . . , pik]. From (2), 

i e {IQ9 il9..., ifc} if and only if ae o~x(U^. 
Subsequently, 

o(a) e o([pio9 ph9..., p j ) nUionUhn... nUik. D 

In the n—dimensional Euclidean space Rn, let the points e0, ei9..., en be given by: 

nh 

e0 = (0,0,. . . , 0) and et = (0,..., 0, 1,0,..., 0) for each i = 1,..., n. 
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The (n + 1) points are affinely independent and the simplex [e0, el9..., e„] is going 
to be called the standard n — dimensional simplex and denoted by A„. Each 
n — dimensional simplex [p0, ph ..., p„] is affinely isomorphic to the n — dimensional 
standard simplex via the isomorphism E given by: 

(3) £ . > > . = I to-
\i = 0 / i = 0 

By abusing slightly preciseness of formal exposition but by gaining some clarity 
in defining simplicial structures (see Definition (ii), below), we are going to 
identify any k-dimensional standard simplex [e0, eh ..., efc] via the affine isomor
phism E (see 3). 

Let X be a topological space. The term singular simplex in X is coined to mean 
any continuous map o from a standard simplex into the space X. The collection 
of all singular simplexes in X is denoted by ^(X). 

A collection Sf of singular simplexes in X is called a simplicial structure on X 
if: (i) For any finite subset {% au ..., an} of (not necessarily distinct) points of the 
space X there exists o e £f such that o : [e0, eu ..., e„] -• X and o-(ef) = a, for each 
i = 0, 1,..., n\ (ii) If o- G 5^ then the restriction of o to any face of the domain of 
o belongs to Sf. 

A topological space X together with a simplicial structure Sf on X is going to 
be referred to as a simplicial space. 

Let (X, £f) be a simplicial space. We say that A c= K is a simplicially convex 
subset of K if for each finite subset {<% al5..., an} of the set A and for each o e 9* 
such that o(et) = at for each i = 0, 1,..., n, the set o (An) is contained in A. 

Example. Let X be a linear topological space. Define Sf = stf(X) to be the 
family of all affine maps, o : [e0, eu ..., en] -> X, given by 

n \ n 

X>i = VXč;). 
í = 0 / i = 0 

Convex subsets of the simplicial space (K, ^(X)) coincide with convex subsets 
of the linear space X. It is tacitly assumed (unless otherwise stated) that 
a linear space X is a simplicial space with the simplicial structure of all affine 
maps. 

Example. Let y be a simplicial structure on X and let / : X -> Y be 
a continuous surjection. Then f(£f) given by 

is a simplicial structure on Y. It is easy to verify that if C - Y and / *(C) is 
a convex subset of the simplicial space (X, £f), then C is a convex subset of the 
simplicial space (Y , /(y)). 
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Let (X1? <9i) and (X2, 5 )̂ be simplicial spaces. The product of the two simplicial 
spaces is the space (X, £F) where: 

Ji. = A J X A2 
and 

if = {o: \ 3aieSei 3a2e^(Ti: An -> Xu o2:An^> X2, and o = (ou o2)}. 

Lemma 1. If (Xh &[) and (X2, 6F2) are simplicial spaces, then their product 
(X, Sf) is also a simplicial space. Moreover, if A is a convex subset of the 
simplicial space (X1? 5 )̂ and B is a convex subset of the simplicial space (X2, Sf2), 
then Ax B is a convex subset of the simplicial space (X, £f). 

2. Dual Families 

For given two sets X and Y, let 3F = {F(x): x e X} be a family of non-empty 
subsets of Y indexed by the elements of the set X. Such a family gives rise to a dual 
family, 3F', of subsets of the set X indexed by elements of Y, defined as follows: 

F* = {F(y):yeY}, 
where 

F'(y) = {xeX:yeF{x)}.1 

We have the following duality: 

(4) y e F(x) if and only if xe F'(y). 

Consequently, we get the following. 
Observation. If the family 2F consists of non-empty sets, then the dual family 

3F' is a covering of X. 

Theorem 2. Let X be a simplicial space and let h: X —> Y be a continuous map 
into the space Y such that h(X) is a compact subset of Y. Let 2F = {F(y): y e Y} 
be a family of non-empty convex subsets of the space X such that F'(x) is an open 
subset of Y for each xe Y Then there exists a point a e X such that 

a e F(h(a)). 

Proof. Since h(X) is compact, there are points x0, xu ..., xm e X such that 

h(X)^F(x0)uF(Xl)u... uF(xm). 

1 The definition of families {F(x): xe X) and their duals can also be given in terms of set-valued 
mappings F : X -> 2y or in terms of subsets of the product X x Y. For instance, if F was considered 
as a map F : X -> 2y, then F' : Y -> 2X and F' would be a kind of inverse map to F. For our exposition, 
we prefer that both F and F' be families of sets. 
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Let us take a singular simplex from the simplicial structure of X, o: [e0, eh..., em] -• 
X, such that <r(e?) = xt for each i = 0, 1,..., m. From the Theorem on Indexed 
Families (Theorem 1), 

o([ei0, eh,..., eik]) n h~\F(xio)) n h~\F(xh)) n ... n h'\F(xik)) * 0 

for some 0 * {$,, fb..., ik} c {1,2,..., n). Let a e a([e/o, eh,..., eik]) n / r ^ ' ( x j ) n 
l i - ^ x j n . . . n h - ^ F ^ J ) . Hence %)GF( .x i o )nF (x h )n . . . n F ' ^ J . It 
follows from (4) that 

{xi0,xh,...,xik}^ F(h(a)). 

Since F(h(a)) is a convex subset of X, 

a([ei0,eH,...,eik]) cz F(h(a)). 

Since ae cr([el0,eh,..., eik]), 

asF(h(a)). • 
The following lemma is simple and probably well known. Since it is indispensable 

for us, we give its short proof. 

Lemma 2. Let f: X x Y -» R be a continuous real function defined on the 
product of two compact spaces. Then the real functions g : X -» R given by 

g(x) = sup {f(x, y): y e Y} 
and h: Y -• R g/verc by 

h(y) = mf{f(x,y):xeX} 
are continuous. 

Proof. Let (a, b) be an open interval in R and let c = g(x0) e (a, b). Since Y is 
compact and f({*b} x Y) ^ (— oo, b), there exists an open neighborhood U of x0 

such that f(UxY)^(—co,b). Let y0 e Y satisfy that f(x0, y0) = c. Let V be an 
open neighborhood of x0 such that f(V x {j/0}) ^ (a, b). Hence g(U n V) _= (a, b). 

To show continuity of the function h use the fact that inf(— f) = —sup f. • 

Let X be a simplicial space. A function / : I x Y - > R is said to be 
quasi-convex with respect to the first variable x if for each y e Y and r e R the set 
{xe X : f(x, y) < r] is simplicially convex, and f is said to be quasi-concave if 
(— f) is quasi-convex. 

3. Infimum Principle 

Theorem 3. (Infimum Principle). Let gs: X x Y -> R, s e S, be a family of 
continuous functions from a product of a compact simplicial space X and 
a topological space Y such that; 
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1. each of the functions gs is quasi-convex with respect to the first variable x, 
2. for each finite subset S0 cz S and for each point yeY there is a point aeX with 

gs(a, y) = inf gs(x, y) for each seS0. 
xeX 

Then for each continuous map h: X -> Y there is a point a e X such that 

gs(a, h(a)) = inf gs(x, h(a)) for each seS. 
xeX 

Proof. Fix a finite set of functions g1?..., gn from the family {gs: s e S}. For 
each i = 1, 2,..., n, the function ~g{ is given by 

giy) = inf g,(x, y). 
xeX 

By Lemma 2, the functions ~gt are continuous. Let 8 > 0 be given. For each yeY 
and for each i = 1,,.., n, the set At(y) is given by 

At(y) = {xeX: g(x, y) < ^(y) + 8}. 

By 1., At(y) is convex for each yeY and i = 1,..., n. 
By continuity of g/s, the dual sets 

A'i(x) = {yeY: g(x, y) < gl(y) + s} 

are open for each xeX and i = 1,..., n. 
By 2., appealing to the definition of 7fo(y) there exists aeX such that g,(a, y) < 

7f(y) + 8 for each i = 1,..., n, which means that aeA(y): = f]{A(y): i = 1,2,..., n}. 
Setting 3F = {A(y): Ye X} we get a family of non-empty convex subsets of 

simplicial space indexed by elements y e X such that the dual set A'(x) is open for 
each xeX. 

Theorem 2 applied to the family 3F and to the function on h: X -> Y yields 
a point aeeX such that ae e A(h(ae)) = f]{Ai(h(ae)): i = 1,2,..., n}. Hence, for 
each / = 1,..., n, at(ae, %e)) < g;(%e)) + 8. 

For a given 2 > 0, we set 

K(2) = {xe X: gt(x, h(x)) — Wt(h(x)) < 8 for each i = 1,..., n}. 

We just showed that the sets K(s) are non-empty for each 8 > 0, and since each 
of the functions gt and g; is continuous, the sets K(s) are also closed. By 
compactness of the space X, there exists a point ae X such that a e K(s) for each 
8 > 0. Thus we have just proved that for each finite set S0 <= S the set 

K(S0): = {ae X : gs(a, h(a)) = inf gs(x, h(a)) for each s e S0 
xeX 

is non-empty. Applying once again compactness argument to the centered family 
of compact set {K(So): S0 finite subset of S} we infer that K(S) = P|{iC(5o): so 
finite subset of S} is non-empty too. This completes the proof. • 
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Applying the Helly Theorem to families of convex subsets {A(y): y e Y} (see 
[8]) in the previous proof we can get the following version of the Infimum 
Principle of the Helly type. 

Theorem 4. Helly Infimum Principle. Let gs: X x Y —• R, s e S, be a family of 
continuous functions from a product of a compact simplicial space X of covering 
dimension less than n, dim X < n, and a topological space Y such that; 

1. each of the functions gs is quasi-convex with respect to the first variable x, 
2. for each finite subset S0 a S of cardinality not greater than n and for each 

point yeY there is a point a e X with 

gs(a, y) = inf gs(x, y) for each seSQ. 
xeX 

Then for each continuous map h: X -» Y there is a point a e X such that 

gs(a, h(a)) = inf gs(x, h(a)) for each s e S. 
x<=X 

Remark. In the version of our Infimum Theorem with conclusions inf one 
could get more versions of the theorem specified as: (1) sup/inf, (2) inf/sup, and 
(3) sup/sup. To state and to prove one of the new versions, one would have to 
replace quasi-convexity by quasi-concavity in part (2) if supremum is involved and 
make appropriate adjustment in the original proof utilizing that inf(—g) = —sup g. 

4. Consequences 

Theorem 5. Let X be a compact simplicial space and let gs: X x X -> [0, oo), 
s e S, be a family of continuous functions quasi-convex with respect to the first 
variable such that; 

1. for each x e X and s e 5, gs(x, x) = 0, 
2. for each two distinct points x, y e X there is s e S with gs(x, y) > 0. 
Then any continuous map h : X —• X has a fixed point. 

Proof. According to Infimum Principle there is a point aeX such that 

gs(a, h(a)) = inf gs(x, h(a)) for each se S. From the assumption it follows that 

a = h(a). xe • 

Remark. If X is a subset of normed space then the family consisting of one 
function g(x,y) = \\x — y\\ realizes the assumptions of the theorem and in this 
case we obtain the Schauder Fixed Point Theorem for convex compact subsets of 
normed space. 

If X is a convex compact subset of locally convex linear space then the family 
of all continuous seminorms realizes the assumptions of the theorem and in this 
case we obtain the Schauder-Tychonoff Fixed Point Theorem. 
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Example. Fix n > 1 and let us set X: = Qu {/?}, where Q: = {xeRn: ||x|| < 1} 
and p : = (1, 0,..., 0) e Rn. The set X is convex subset of Rn. Let JS? be the affine 
simplicial structure consisting of all the affine simplices in X. Describe a new 
topology 2T on X generated by a base of open neighbourhoods; for every xe Q 
and s define neighbourhoods Ux(s):= {yeQ: \\x — y\\ < s} the same as in Euclidean 
topology, and for p, put Up(s) := {p}u {xe Q: \\x\\ > s}, 0 < s < 1, s -> 1. 

The topology 2T is weaker than the Euclidean topology on X and therefore the 
triple (X, 2T, <£) is a topological simplicial space. The space X is locally convex 
at each point x #= p because the neighbourhoods Ux(s) are linearly convex. It is easy 
to see that X is not locally convex at p because for each point x e Up(s), x 4= p, 
the 1-dimensional simplex with vertices x and — x must contain 0 = (0,..., 0). 

It is known that the quotient space Q/dQ is homeomorphic to n-dimensional 
sphere Sn = {xe Rn+i: ||x|| = 1}, and therefore the space has not fixed point 
property. 

Let h : X -> Sn be a homeomorphism and define a metric g : X x X -• [0, oo) 
inducing the topology on X by 

g(x, y): = \\h(x) — h(y)\\ for each x, y e X 

Observe that for each r the set {xe X : g(x, y) < r) is convex for each y =N p and 
it is not convex for y = p. 

This example shows that the assumption on convexity with respect to the first 
variable can not be omitted. It also shows that the assumption on local convexity 
in the Schauder fixed point theorem is essential. But this does not solve the 
Schauder Problem from the The Scottish Book ([11], Problem 54) to simplicial 
affine structures with linear topology (in our example X has simplicial affine 
structure with non-linear topology). 

It is possible to obtain some kinds theorems of Ky Fan type for example (see [2]); 

Theorem 6. (Ky Fan). Let h: X -> Y be a continuous map from a convex 
compact subset X of a normed space Y. Then there is a point aeX such that 

||a - h(a)\\ = inf ||x - % ) | | . 
xeX 

Proof. Apply Infimum Principle to function g(x, y) = ||x — y\\. • 

Theorem 7. (Ky Fan Minimax Inequality). Let g : X x X -• R be a continuous 
function quasi-concave with respect to the first variable x, where X is a compact 
simpicial space. 

Then the following inequality holds 

inf sup a(x, y) < sup g(x, x) 
yeX xeX xeX 

Proof. Applying the Infimum Theorem to the map (-g) and the identity map 
h(x) = x we obtain a point a e X such that 
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g(a, a) = sup g(x, a) 
xeX 

Hence 
inf sup g(x, y) < sup g(x, a) < g(a, a) = sup g(x, x) • 
yeX xeX xeX xeX 

In fact the second theorem of Ky Fan is a simple consequences of the following 
minimax inequality. 

Theorem 8. (Minimax Inequality). Let gs: X x Y -> R, s e S, be a family of 
continuous functions from a product of a compact simplicial space X and 
a topological space Y such that; 

1. each of the functions gs is quasi-concave with respect to the first variable x, 
2. for each finite subset S0aS and for each point yeY there is a point aeX with 

g(a, y) = sup g(x, y) for each seS0. 
xeX 

Then for each continuous map h : X -» Y there is a point aeX such that 

inf sup g(x, y) < gs(a, h(a)) for each seS. 
y*Y xeX 

Proof. Since sup g = — inf ( —g) from the Infimum Principle we infer that there 
is a point aeX such that 

g(a, h(a)) = sup g(x, h(a)) 
xeX 

Hence 
inf sup g(x, y) < sup gs(x, h(x)) = g(a, h(a)). • 
yeY xeX xeX 

Let X := H{XS: s e S} be a Cartesian product of simplicial spaces. For each 
i e S let define the Nash projection Nt?: X x X -> X; 

[iy,(*,y)]s:=i, if---. 

where zs means the 8-th coordinate of a point z e X. It is clear that Nt(x, x) = x. 

Theorem 9. Let be given 1. X = H{XS: s e S) a Cartesian product of compact 
simplicial spaces, 2. non-empty sets Ts, s e S, of indices, and 3. continuous 
functions fts: X -> R, se S and t e Ts, quasi-convex with respect to the variable 
xs and such that for each y e and s e S there is a point ae X with 

MNs(a, y)) = inf fts(Ns(x, y)) for each t e Ts 

xeX 

Then there exists a point ae X such that 

fts(a) = inf(fts(Ns(x,a)). XĚX 

59 



Proof. Let gts(x, y): = fts(Ns(x, y)). Fix y e X. From the assumptions it follows 
that for each s e S there is a as e X such that for each t e Ts, g

y
ts assumes infimum 

in the point as; gts(a
s, y) = inf gts(x, y). 

xeX 

Let flelbe the unique point such that the s-th coordinate of a is equal the s-th 
coordinate of as; as = (as)s. From definition of the Nash projections Ns it follows 
that for each s e S, Ns(a, y) = Ns(a

s, y), and in consequence gts(a, y) = inf gts(x, y) 
for each s e S. 

We have just showed that the assumptions of the Infimum Theorem hold. 
Applying the theorem to the identity map, h(x) = x, and having in mind that 
Ns(x, x) = x, we infer that there is a point a e X such that for each se S, 

fs(a) = 9ts(a, a) = inf fts(Ns(x, a)) • 
XGX 

Theorem 10. (Equilibrium Theorem). Let fs: X ->R,se S, be a family of 
continuous maps from a Cartesian product X = H{XS: se S} of compact simplicial 
spaces such that each composition f O Ns: X x X -> R is a quasi-convex function 
with respect to first variable x. Then there exists a point ae X such that 

f{a)= M{foNs){x,a). 
xeX 

Proof. From compactness of X and continuity of functions gs(x, y): = fs(Ns(x, y)) 
it follows that for each y e Y and se S there is a point as e X such that gy assumes 
infimum in the point as; gs(a

s, y) = inf gs(x, y). 
xeX 

Next, apply the above theorem to one-point sets 7̂  = {s}. • 

Theorem 11. (Nash Equilibrium Theorem). Let f: X -> R, i = 1,..., n, be 
a family of continuous maps from a Cartesian product X = X{ x ... x l „ of 
compact simplicial spaces such that each function f: X -> R is a quasi-concave 
with respect to i-th variable xt e Xt. Then there exists a point ae X such that 

f(a) = sup (f(au..., ai_l,xi,ai+h..., an). 
Xj £ Xi 

Theorem 12. (Minimax Version.) Let ht: X{ x X2 -> R, t e Tf be a family of 
continuous functions from a Cartesian product of two simplicial compact spaces 
and such that each of them is quasi-concave with respect to the first variable Xi 
and quasi-convex with respect to the second variable x2 and assume that for each 
point (xh x2) e Xi x X2 there is a point (ax, a2) e Xx x X2 such that for each t e T, 

K(xu ai) = inf K(xu x2) and ht(au x2) = sup ht(xu x2). 
*2cX2 xiexi 

Then there is a point (ax, a2) e Xx x X2 such that for each t e T, 

ht(au a2) = inf ht(ax, x2) and ht(ax, a2) = sup ht(xu a2). 
X2Gx2 XiGXi 
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Proof. Let S := {1,2} and Tt:= T for each i = 1, 2. Define 

f(r Y\.-i-hixi>x2) i f ' = -
M l ' 2 j - " l /i,(xbx2) if . = 2 

According to Equilibrium Theorem there is a point (al,a2)eXlxX2 such that 

— ht(a{, a2) = inf ( — ht)(xh a2) and /it(ai, a2) = inf ht(aux2) 
XiGx i X2GX2 

Since — inf ( — h) = sup(h) we see that this theorem is a simple consequence of the 
previous theorem. • 

Theorem 13. (von Neumann Minimax Principle). Let X and Y be compact 
simplicial spaces and let ht: X x Y ->R,te T, be continuous functions. Suppose 
further that each of the functions ht is quasi-concave with respect to the first variable 
x and quasi-convex with respect to the second variable y and assume that for each 
point (x,y)e X x Y there is a point (a,b)e X x Y such that for each t e T, 

ht(x, b) = inf ht(x, y) and ht(a, y) = sup ht(x, y). 
y*Y xeX 

Then there is a point (a,b)e X x Y such that for each t e T; 

ht(a, b) = max min ht(x, y) = min max ht(x, y). 
xeX yeY y e Y x e x 

Proof. The following inequality holds true for arbitrary function, in particular 
for every function ht: 

sup inf ht(x, y) < inf sup ht(x, y). 
xeX y^Y yeY xeX 

We can apply our Theorem to obtain 

ht(a, b) = inf ht(a, y) < sup inf ht(x, y) < inf sup ht(x, y) < sup ht(x, b) = ht(a, b). 
y^Y xeX yeY yeY xeX xeX 

Because of compactness of X and Y and continuity of the functions ht, both 
max min ht(x, y) and min max ht(x, y) exist. Hence 
x e x y Y yeY xeX 

max min ht(x, y) = min max ht(x, y) = ht(a, b) for each teT. • 
xeX yeY yeY xeX 

5. Limit Set-Valued Maps 

A set-valued map H: X -+ 2Y, where X and Y are metric spaces, is called 
a subupper limit set-valued map if there is a family {K : X —> Y\n = 1, 2,...} of 
continuous maps such that; 
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If Hindoo (xnk, fnk(xnk)) = (x, y), then y e H(x). 
The family hn : n = 1,..., n is said to be basic for H. 
Denote by Ls hn: X -> 2y; 

W-K30 

(L8 h„) (x): = [y e Y: y = lim h„k(xnk) for some xnk -> xj 
7.->00 ' ^ W-*00 W-»00 ' 

Example. Let D = {d^, du ...} be a countable subset of Y For each n e N set 
/*„: X -» Y to be a constant map; h„(x) = d„ for each xeX. Then H : = Ls hn is 
a set-valued map X -» 2y such that H(x) = D for each x e l n^°° 

Theorem 14. If H: X ^ 2X is a subupper limit set-valued map defined on 
compact metric space X with fixed point property then there is aeX such that 
a e H(a). 

Proof. Let {h„: X -> X\ n = 1, 2,...} be a basic family for the map H. Since X 
has a fixed point property for each n there is a point ane X such that h(an) = an. 
By compactness of X, the sequence {(a„, h(an)) :n = 1, 2,...} contains a covergent 
subsequence, say 

lim (ank, kk(ank)) = (a, b). 
/c->oo 

It follows that a = b and a e H(a). • 

A set-valued map H : X -> 2Y is said to be upper semicontinuous if H l(V) = 
{xeX : H(x) a V} is an open set in X provided that V is open in Y. 

Theorem 15. Let X be a compact convex subspace of a normed space. If 
H: X -> 2X is upper semicontinuous and H(x) is non-empty convex compact set 
for each x e X, then H is a subupper limit set-valued map. 

Proof. To define a function hn from a sequence that witnesses subupper limit 
set-valuedness of H, fix s, 0 < s < -. Let U(x, s) be given by 

U(x, s) = {ye X : H(y) cz B(H(x), s)} n B(x, s). 

By compactness of X, the open covering {U(x,s): xe X} has a finite starrefine-
ment {%(s), Vx(s),..., Vm(s)}, i.e., for each xeX there exists xeX such that 
{J{l{s):xeV(s)}cz U(x,s). 

For each i = 1,..., m let pt be arbitrary point of the set H(Vls)) = {J{H(x): 
x e V{s)}. We set 

where d(x) = d(x, X\V(s)). The function hn: X -> X is continuous. 
For a given xeX , if x e X is such that ( J { ^ ) : x e V(s)} a U(x,s), then 

Pi e B(H(x), S) whenever x e V(s). Since x e V{s) if and only if dt(x) + 0, 
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Pi e B(H(x), s) whenever d(x) 4= 0. Since B(H(x), s) is convex, hn(x): = 
YJ o [(^j(x))/(Zt? o di(xj)] Pi e B(H(x), S). Thus we have proved that for each x there 
is x such that 

\x — x\\ < s and d(hn(x), H(x)) < s 

We shall prove that the sequence {K : n = 1, 2,...} is basic for H. Towards this 
end, assume that lim^oo (xnk, Kk(xnk)) = (x, y). We have just showed that for each 
xnk there is x^ such that ||xBfc - x^|| < £ and d(hnk(xnk\ H(x^)) < j~k. The latter 
means that there exists j ^ e n 7 ^ ) such that \\Kk(xnk) — >Q| < ^. Hence 
lim^̂ oo (xnk, Jn~k) = (x, y). Since H is upper semi-continuous, y e H(x). • 

Corollary (Kakutani's Fixed Point Theorem). Let H : X -» 2X be an upper 
semicontinuous map on a compact subspace X of a normed space. If H(x) is 
a non-empty closed and convex subset of X for each x e X, then the map H has 
a fixed point, i.e., there exists a point a e X such that a e H(a). 

More informations on extensions of Kakutani's Theorem the reader will find in 
[9] and [19]. 

Theorem 16. (Infimum Theorem for Multi-Valued Maps). Let gs: X x Y -> R, 
s e S, be a family of continuous functions from a product of a compact metric 
simplicial space X and a compact metric space Y such that; 

1. each of the functions gs is quasi-convex with respect to the first variable x, 
2. for each finite subset S0 a S and for each point y e Y there is a point a e X with 

gs(a, y) = inf gs(x, y) for each seS. 
xeX 

Then for each subupper limit set-valued map H : X -> 2Y there is a point a e X 
and b e H(a) such that 

gs(a, b) = inf gs(x, b) for each SeS. 
xeX 

Proof. Let {K : X -> Y\n = 1, 2,...} be a basic family of continuous maps for 
the subupper limit set-valued map H. According to Infimum Principle for each 
n there is a point ane X such that 

gs(an, hn(an)) = inf gs(x, hn(an)) for each seS. 
xeX 

Compactness implies that there is converging subsequence such that 

lim (ank, hnk(ank)) = (a, b). 
/c-+oo 

By definition of limit set-valued map, b e H(a). Continuity of maps gS9 and 
gs(y): = MxeX gs(x, y),seS implies that the equality gs(a, b) = MxeX gs(x, b) 
holds for each a e S. • 
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Theorem 17. (Gale-Nikaido Theorem). Let H : An -> 2C be an upper semicon-
tinuous map from the n-dimensional standard simplex An such that H(x) is 
a non-empty closed and convex subset of a compact convex set C cz Rn. Suppose 
further the Walras law in the general sense holds, 

n 

<x,y> = ^(xjyi) > 0 for each xeAn and yeH(x). 

Then there exists a e An and b e H(a) such that bt > 0, for each i = 1,..., n. 

Proof. Applying Infimum Principle for Multivalued Maps to X = An, Y = C, 
the given set-valued map H, the function gi given by gi(x, y) = <x,y> there is 
a point (a, b) e An x C such that b e H(a) and <a,b> = inf {<x,b> : x e An}. By 
Walras law <a,o> > 0 and in consequence 0 < <a,b> < <x,b> for each x e An. 
Since et GA„ ,0 < <^, b> = bt for each i = 1,..., n. • 

This theorem was instrumental in proving the existence of a competitive 
equilibrium for excess supply functions for the workability of decentralized 
economies (in the Walras sense) (cf. [14]). 
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