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We show that two Arbault sets characterized by increasing sequences of natural numbers 
are in inclusion if and only if one of these sequences is derived from another in a special 
way. 

A set X ^ R is called an Arbault set if there exists an increasing sequence 
a e NN such that for all xeX, 

lim sin na(n) x = 0. 

J. Arbault considered this kind of sets when he studied the sets of absolute 
convergence of trigonometric series [1]. We denote by si the family of all Arbault 
sets. 

Here are some properties of the family si (for more, see e.g. [2]). 

Proposition 1. (X) si ^ Ji r\ Jf, where Jt and Jf denote the ideals of all 
meager and null sets, respectively; 

(2) si contains all countable subsets of R, 
(3) si is invariant, i.e. if X e si and u, v e R then [ux + v\xeX}e si; 
(4) if X e si and G is a subgroup of(U, + ) generated by X then G e si; 
(5) si is not an ideal. 

For given a e M ^ w e denote 

Aa = < x : lim sin na(n) x = 0 >. 
( n->oo J 
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Our aim is to answer the following question: when Aa = Ab? This question was 
originally motivated by the study of "A-permitted" sets (see e.g. [4]). 

Let us denote 

S = la e MN : a is increasing A a(0) = 1 A lim , A, = 0>. 
I w a(n + 1) j 

It is easy to see that the family {4,: a e S} is a base of s4, i.e. for every X e sJ 
there exists ae S such that X = Aa. Let us note that the condition 
lim^oo a(n)/a(n + 1) = 0 implies that the set Aa intersects any non-empty open 
set in a set of the size continuum [3]. 

We will answer our question for a,b e S. Before we will do it, we introduce 
some notions. 

Let m e Z and ae S. We say that z e ZN is an expansion of m by a if 

m = Y z{n) a{n) • 
nsN 

This of course implies that z has only finitely many non-zero elements. Further, 
we say that z is a good expansion if moreover for all n e N, 

I-0HЛ 
7 < " 

< 
a(n) 

Lemma 2. For all meZ and ae S, there exists a good expansion of m by a. 

Proof. We show how to find a good expansion z eZN. First, find some keN 
such that \m\ < a(k)/2, and put z(n) = 0 for all n > k. Denote mk+l = m. By an 
induction on n going from k to 0, define z(n) to be the nearest integer to mn+1/a(n), 
and put mn = mn+1 — z(n) a(n). Since a(0) = 1, we obtain m0 = 0, and thus for all 
r.<k, mn+1=£ ;<fcz(j)a(j). Clearly XneNz(n) a(n) = £n<fcz(.n) a(n) = mk+l = m. 
For n < k we have |mn+1/a(n) — z(n)\ < 1/2, hence 

Ш4ІЇ 
7 < « 

= \mn+1 - z(n)a(n)\ < 
a(n) 

Since a is increasing, for n > k we obtain 

IФИ!) 
j<n 

. , a(k) a(n) = \m\ < ~Y < ~Y. П 

Let us note that we did not use the third condition from the definition of the set 
S. It will be used later, in the proof of Theorem 4. 

A good expansion of m by a is not necessarily unique. In the previous proof, 
there may exist two nearest integers to mn+l/a(n) for some n. Any choice then leads 
to a good expansion. It can be however proved that this is the only case of 
non-uniqueness. 
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T h e following l e m m a shows that for a fixed a, all good expansions by a are 
bounded by a function depending only on a. 

L e m m a 3. If z is a good expansion by ay then 

. ( v. 1 A a(n + 1) 

for all neN. 

Proof. For a fixed n, w e have 

\z(n)a(n)\< 

hence 

ixjмj 
<n 

+ Ш<j)\ 
śn 

a(n) a(n + 1) 
~ 2 + 2 ' 

/ M / \ I ía(n) a(U + -)\ - A fl(" + -)\ D 

Now we are ready to formulate our result. 

Theorem 4. Let a,beS. For keN, let zk eZN be a good expansion of b(k) by 
a. Then Aa <= Ab if and only if 
(1) Vw G N V°°k e M zk(n) = 0, and 
(2) 3m G M Vk G M £ n e N M " ) l < w. 

W e will now prove the easier direction of this theorem. 

P r o o f of (1) A (2) -» Aa c ^4fc. Assume that (1) and (2) hold true. By (2), there 
exists m > 0 such that for all k, £ „ G N |Z*(H)| < m. If X G Aa9 and if £ > 0 is given, 
then there exists n0 such that for all n > n0, |sin na(n) x\ < e/m. B y the condit ion 
(1), there exists k0 such that for all n < n0 and k > k0, zk(n) = 0. If k > k0, then 

|sin 7rb(k) x | < YJ \zk(n)\ |sin 7ra(rz) x | < — ^ |zfc(n)| < e, 
n e N m neN 

and hence xe Ab. • 

In the proof of the other direction we will use the following notation: for x G R, 
let ||x|| denote the distance from x to the nearest integer. It is clear that the 
sequence {sinna(n) x}neN converges to 0 if and only if the sequence {||«(n)x||}M6 ĵ 
does. Also || - x | | = ||x and ||x|| - \y\\ < \\x + y\\ < \\x\\ + \\y\\f for all x,yeU. 

The proof will go as follows. Assume that (1) A (2) is false. We define 
a sequence {/M}neN of closed intervals such that for all n e N, 

(i) In+1 c Jn, 
(ii) the length of /„ is 4/(3a(n)), 

(iii) for all x e In+h \\a(n) x|| is "small" and | |£7 < n zk(j) a(j) x\\ is "big", for some 
selected k. 

Then we will take x e f]neNh and show that x G Aa\ Ab. 
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Through the following lemmas, it is assumed that a e 5, zeZN is a good 
expansion by a, and some n e N is fixed. We denote by h(l) the length of an 
interval I. 

Lemma 5. Let a(n)/a(n + 1) < 1/4. Then for every interval I such that A(l) = 
4/(3a(n)) there exists an interval J .= I such that k(J) = 4/(3a(n + 1)) and for all 
XGJ, 

n / \ „ 2a(n) 
w " 3a(n + 1) 

Proof. Let F be an interval of the length l/a(n) co-centric with I. There exists 
x0e F such that ||a(n)x0|| = 0. Let J be an interval of the length 4/(3a(n + 1)) 
with the center x0. For all x e J we have 

x0| < 
1 m - w 

Зa(n + 1) 6a(и) 

2a(и) 
hence xel and \\a(n) x|| < a(n) \x — x0\ < 

Ъa(n + 1)' 
D 

Lemma 6. Let \z(n)\ > 2 and a(n)/a(n + 1) < 1/4. Then for every interval I 
such that X(l) = 4/(3a(n)) there exists an interval J = 1 such that X(J) = 4/(3a(n + 1)) 
and for all x e J, 

a ( " ) x -- TÍVT\ + rn—I 
3a(n + 1) \z(n)\ - -2 

and ľ,z(j)aÜ)x 

jśn 

1 
> -. 
~ 6 

Proof. Let K and x0 be as in Lemma 5. Put m = \Yjj<nz(j) a(j)\- We have 

(\z(n) - fy a(n) <m< (\z(n)\ + \) a(n). 

Since X(F) > 1/m, there exists xx e Y such that Hmxj = 1/2 and \xx — x0| < 1/m. 
Let J be an interval of the length 4/(3a(n + 1)) with the center x-. 

For all x e J we have 

lx xl<
 2

 < i _m-m 
1 ll - 3a(n + 1) S 6a(n) 2 

thus xel. Since also 2/(3a(n + 1)) < l/(3m), we obtain 

||mx|| > - - m|x - xx| > - . 

We have |x — x0| < |x — x-j + \x{ — x0\ < 2/(3a(n + 1)) + 1/m, hence 

2a(и) 
H ^ I ^ ( « ) l ^ ^ o l < 3 ^ T l j + ^ i • 

2 
D 
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Lemma 7. Let a(n)/a(n + 1) < 1/8. If I is an interval such that 1(1) = 4/(3a(n)) 
and for all x e J, ||_£/<nz(./) a(j) x \ -̂  1/6, then there exists an interval J _= I such 
that X(J) = 4/(3a(n + 1)) and for all xeJ, 

\\a(n)x\\ < 
4a(n) 

and E*t/)Ч/)* 
j<n 

1 
> -. 
" 6 

3a(n + 1) 

Proof. Let F, x0, m be as in Lemma 6. We have ||mx01| = ||X1<«Z(I) a(J) xo\\ -̂  
1/6. Let J ' be the longest interval containing x0 on which the condition ||mx|| > 1/6 
is satisfied. We have /l(J') = 2/(3m) > 4/(3a(n + 1)), thus there exists an interval 
J _= J' of the length X(J) > 4/(3a(n + 1)) such that x0 e J. For all x e J we have 

4 ^ i m-w |x - x0| < 

hence x e I and \\a(n) x|| < a(n) \x — x0| < 

Зa(n + 1) 6a(n) 

4a(n) 
D 3a(n + 1) 

Lemma 8. Let c, s be reals such that c > 0 and 0 < s < 1/24. Let z(n) 4= 0, 
and let a(n)/a(n + 1) < 1/16. 7/*/ /s an interval such that k(l) = 4/(3a(n)) and for 
all xel, \\Ysj<nz(j) a(j) x\\ -̂  °y then there exists an interval J _= I such that 
X(J) = 4/(3a(n + 1)) and for all x e J, 

4a(n) 
a(n)x\\ < 

Зa(n + 1) 
+ 2є and Y,z(j)a(j)x 

J<n 

> min <-, c + £ 

|x - x0| < |x - xx\ + \xx - x0| < 

Proof. Let /', x0, and m be as in Lemma 6. We have m > a(n)/2, and ||mx0|| = 
E;<»Z(I) a(f) xo|| -̂  c. Let J' be an interval with the center x0 such that A(J') = 
2e/m. 

If there exists xt e J' such that mxj > 1/6, then we can find an interval J of 
the length 4/(3a(n + 1)) such that xxeJ and for all x e J, ||mx|| > 1/6. For xeJ 
we obtain 

i , £^ i _.M-)-^0t 
3a(w + 1) m 6a(n) 2 

hence J _= I. 
If ||mx|| < 1/6 all x e J', then there exists x{e {XQ — a/m, x0 + e/m} such that 

HmxJ = |mx0|| + e. As in the previous case, there exists an interval J of the 
length 4/(3a(n + 1)) such that xxeJ and for all xe J, ||mx|| > HmxJ > c + s. 
Again J _= 7. 

In both cases we obtain that for all x e J, ||mx|| > min {l/6,c + e}, and 

4a(n) 
||a(n) x|| < a(n) |x — x0| < 

Ab -+ (2). We will si 
x e Aa\Ab. We will consider two cases 

+ 2e. D 3a(n + 1) 

Proof of Aa _= Ab -+ (2). We will show that if (2) is false, then there exists 
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(A) Let the set {\zk(n)\: k, n e N} be unbounded. Then there exist increasing 
sequences of natural numbers {WJ}J6N> {k}ie\ such that 

(i) for all n > n0, a(n)/a(n + 1) < 1/8. 
(ii) for all i e N , I z ^ ) ! > 2, 

(iii) l i m ^ \zk{n)\ = oo, 
(iv) for all i e N, and for all n > ni+l, zk.(n) = 0. 
We will define a sequence of intervals {I„}„>„0 as follows. Take an arbitrary 
interval I„0 such that A(I„0) = 4/(3a(n0)). 

Let n > n0 and let In be an interval of the length 4/(3a(n)). 
If n = n{ for some i, then by Lemma 6 there exists an interval In+l .= In of the 

length 4/(3a(n + 1)) such that for all x e / B + 1 , 

M«)*u< 2a^ + 
1 

and XX(jMj)* 
)<n 

3a(n + 1) \zki(n)\ - \ 

Otherwise, nt < n < ni+l for some i. We have E / ^ z ^ O ) a(j) x\ > 1/6 for all 
x e In. By Lemma 7 there exists an interval In+l c \n of the length 4/(3a(w + 1)) 
such that for all x e In+i, 

l\a(n)x\\ < 

Let xe P|„>„0I„. Since lim 

4a(n) 

Зa(n + 1) 

a(n) 

and Zz4I)ß(I)x 

1 - - И 

1 
> -. 
" 6 

«̂ oo a(n + 1) 
f 6 N, the condition (iv) implies that 

= 0 and (iii), we have x e Aa. For all 

X = E zк,(j)a(j)x 
J<"І+I 

1 

since xeIn.+l. Thus x $ Ab. 
(B) Let the set {sk: k e N} be unbounded, where sfe = | {neN: zk(n) + 0}|.Then 

there exist increasing sequences {̂ },-eN such that 
(i) for all n > n0, a(n)/a(n + 1) < 1/16. 

(ii) for all i e N, sk. >nt + i + 4, 
(iii) for all ieN, and for all n > ni+l, zki(n) = 0. 

For ieN, let mt = \{neN :n > n{ A zk.(n) + 0}|. From the condition (ii) it 
follows that mt > sk. — nt > i + 4, hence lim mt = oo. Put s, = l/(6m,). We have 
mt > 4, hence st < 1/24. 

As in the case (A), we will define a sequence of intervals {I„}„>„0, starting with 
an arbitrary interval I„0 such that A(I„0) = 4/(3a(n0)). 

Let n > n0 and let I„ be an interval of the length 4/(3a(n)). Find i e N such that 
nt < n < ni+l and put 

c„ = min Z-4jM!)* 
J<n 

: x є I, 
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If zki(n) = 0, then by Lemma 5 there exists an interval In+i ^ Inof the length 
4/(3a(n + 1)) such that for all x e In+U \\a(n) x\\ < 2a(n)/(3a(n + 1)). Clearly also 
\\ij<nzki(j)a(j)x\\ = \\Yj<nZk{j)a(j)x\\ > cn. 

If zk.(n) + 0, then by Lemma 8 there exists an interval In+i ^ In of the length 
4/(3a(n + 1)) such that for all x e In+l9 

\\a{n)x\\ < 
4a(n) 

+ 2єř and 

a(n) 
3a(n + 1) 

Let x e f]n>noIn- Since lim , . 
n^oo a\n + l j 

all ieN9 the condition (iii) implies that 

xll = 

Y,zkt(j) a(j) x 
j<.n 

> min<!-,cя 
+ e, 

= 0 and lim st = 0, we have x e Aa. For 

> min 
1 1 

6,m,,ŕp-, I -*,(jMj)* 
j<ni+i 

since we have mrtimes increased the value cn > 0 by et. Hence x $ Ab. 
It is clear that if (2) is false, then either (A) or (B) is the case, and hence Aa ^ Ab 

is false. • 

Peroof of Aa ^ Ab -> (1). We will show that if (1) is false, then there exists 
x G Aa\Ab. Again, we will consider two cases. 

(A) Let us assume that there exist t e N and an infinite set K ^ N such that 
for all k e K, zk(t) + 0, and for all n > t, the set {ke K : zk(n) + 0} is finite. From 
Lemma 3 it follows that the set {zk(n): k e N) is finite for every n < t, hence we 
can find integers y(0),..., y(t) and an infinite set L .= K such that for all k e L and 
for all n < t, zk(n) = y(n). Denote m = X„<ty(n) a(n). There exist increasing 
sequences of natural numbers {^}IGN, {kt}ieN such that 

(i) n0 > U 
(ii) for all n > n0, a(n)/a(n + 1) < 1/8, 

(iii) for all isN, kte L, 
(iv) for all i9 n e N9 if zk.(n) + 0, then n < t or nt < n < ni+l. 
If follows that for all i e N, ^j<nt

zk{j) a(j) = ™ and X1<«I+izJI) aU) = b{k)-
Let us define a sequence of intervals {/„}„>„0 as follows. Take an arbitrary 

interval I of the length 2/(3|m|) such that for all x e I, \\mx\\ > 1/6. Since \m\ < 
a(t + l)/2, we have X(l) > 4/(3a(t + 1)) > 4/(3a(n0)), and thus there exists an 
interval Ino ^ / of the length 4/(3a(n0)). 

Let n > n0 and let /„ be an interval of the length 4/(3a(n)). Let i e N be such 
that nt < n < ni+l. If n = nh then for all xe In we have ||X1<"zfc.(I) aU) x\\ = 

\\mx\\ > 1/6. Hence by Lemma 7 there exists an interval In+l ^ In of the length 
4/3a(n + 1) such that for all xe In+U 

\\a(n)x\\ < 
4a(n) 

and 
3a(n + 1) 

We can find such interval In+i for all ny nt < n < ni+ 

Y,zkt(j) a(j) x 
)<•" 

> 
1 
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Let x e f)n>n0In- We have lim„̂ oo \\a(n) x\\ = 0, thus x e Aa. For every i e N 
we obtain \\b(k^)\\ = \\^j<nt+1

zklJ)a{j)x\\ > 1/6, and thus x$Ab. 
(B) Let (A) be not the case, i.e. for every teN and for every infinite set K c 

[k e N : zk(t) + 0} there exists n > t such that the set {k e K : zk(n) =f= 0} is infinite. 
Then there exist increasing sequences of natural numbers {H;}IGN, {kl}i£N such that 

(i) for all n > rc0, a(n)/a(n + 1) < 1/8, 
(ii) for all ij e N and for all n < min {ri, nj}9zk.(n) = zk.(n), 

(iii) for all i e N and for all n e N such that n0 < n < nh zk.(n) + 0 if and only if 
n = nj for some j < i, 

(iv) for all i e N and for all n > ni+u zk.(n) = 0. 
L e t m = Y,J<nozkoU)a{j)-

We will define a sequence of intervals {/„}„>no as follows. Let I be any interval 
of the length 2/(3\m\) such that for all xe I, \\mx\\ > 1/6. We have \m\ < a(«o)/2, 
hence there exists an interval Ino ^ I of the length 4/(3a(n0)). 

Let n > n0 and let /„ be an interval of the length 4/(3a(n)). Let i e N be such 
that nt < n < ni+l. Let us assume that for all xeln, \^Jj<nzkl(j)

 a{j) x\ -̂  V6-
This is clearly satisfied for n = n0, for other n it will be proved by induction. By 
Lemma 7 there exists an interval In+l ^ In of the length 4/(3a(n + 1)) such that 
for all x e In. u 

\\a(n) x\\ < 
4a(n) 

Зa(n + 1) 
and TJ^U) a{j) x 

j<.n 

1 

We can do this for all n such that nx < n < ni+l. Since by the conditions (iii) and 
(ii), zki+l(n) = 0 for all n such that nt < n < ni+u and zki+l(n) = zk.(n) for all 
n < nh we obtain that for all x e I„ .,, 

E zkí+l(j)a(j)x 
7<n, 

ľ,ziAj)a(j)x 
7<"i 

> 
1 

Moreover, from the condition (iv) it follows that b(k) = X1<».+izfc«(I) ati)> a n (^ 
thus for all x e / , + 1 , | | % ) x | | = \\Zj<n,+1

zkJij)o(J)x\\ > 1/6. 
Let xe n„>„0/„. We obtain xeAa\Ab, and the proof of Theorem 4 is 

finished. • 
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