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Counting and Convergence in Ergodic Theory 

IDRIS ASSANI, ZOLTÁN BUCZOLICH and R. DANIEL MAULDIN 

Chapel Hill, Budapest, Denton 

Received 15. March 2004 

We give a survey of some L! open problems in Ergodic Theory that we hope will also 
be readable to people who are not necessarily experts in this field. Some emphasis is put 
on past and recent results on the return times theorem and the recently solved (L!, 13) 
problem. Part of this paper was presented in a series of three talks by the second author 
at the 32nd Winter School on Abstract Analysis, 2004 January. 

1. Irrational Rotations 

In his talk at this same Winter School D. Fremlin talked about equidistributed 
sequences. For a sequence (xn) the arithmetic average An(f) = -^=1f(x f e) was 
considered and it was investigated whether An(f) converges to J f The most 
common source of these sequences is coming from Ergodic Theory. One considers 
xn = x + not modulo 1 and it is a consequence of Birkhoff s Ergodic Theorem 
that for any irrational a for (Lebesgue) almost every x the sequence An(f) 
converges almost everywhere to \f That is, using the notation T for the unit circle 
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and considering the transformation T: J - • T, with T(x) = x + a we have 
AJJl*) = ̂ LUif(Tkx) - JTf when fe Ii(J). 

If we do not assume that fe L!(T) strange things can happen. From the main 
result of [15] it follows that if a and /? are independent over the rationals, 
T(x) = x + a and S(x) = x + /? on Tthen there exists a measurable f :T-> P 

for which S = i / ( T / C ; c ) ~> L a n d S=i/(s/cx) "> ° f o r a l m o s t e v e r y x e T 0 f 

course, if fe L1 this cannot happen, since both limits should equal the integral of f 
This leads to the question asked during the problem session of this Winter 

School by the second author. Assume that f is a measurable real function defined 
on the unit circle, T. The rotation set of f is 

1 n 

Rf = {aG T : - Yjf{x + ^a) converges almost everywhere}. 
nk=i 

By Birkhoff 's ergodic theorem if fe £ (T) then Rf equals T. It is shown in [14] that 
if Rfis of positive Lebesgue measure then fe ll(J) and hence Rf = T, on the other 
hand given a sequence of rationally independent irrationals one can find f $ Il(J) 
such that Rf contains this sequence. Hence Rf can be dense for a non-L1 function. In 
[29] it was shown that there exist non-integrable f for which Rf is c-dense. This 
means that Rf is of cardinality continuum in every non-empty open interval. 

Nothing is known about the possible Hausdorff dimension of Rf for a non-L1 

function. If one can show that dimH(Rf) > 0 for a measurable f'<£ L(T) then the 
second author offers a prize of one bottle of Hungarian wine (Egri bikaver). For 
an example with dimH(Rf) = 1 two bottles are offered. For a "complete character­
isation" of Rf three bottles are offered. (In case at some of the Czech conferences 
Hungarian wine needs to be converted into Czech beer there is an exchange rate 
of 1 bottle of wine = 3 beers.) 

The above results show that in Ergodic Theory one can obtain drastically 
different results considering the class of L1 functions instead of non-L1 ones. 

In the sequel we will see that sometimes even the L1 functions are bad. 

2. Classical Results 

The first important tool is the Banach-principle, see [17] and Chapter V of [23]. 
We assume that (Q, &, fj) is a probability space, and \x is a non atomic measure. 

We will use the notation L(Q)(=£ Il(Q)) for the linear space of equivalence classes 
of measurable real functions on Q, this class should not be confused with Il(Q). 

Assume that (£f, O) is a metric space. 

Definition 1. We say that the operator A : £f - • L(X) is continuous in measure if 
whenever the sequence yt e £P satisfies lim,-^00g(yIvy) = 0 for a y e Sf then for all 
e > 0 we have XWCL^^^X: \Ayx(x) — Ay(x)\ > s} = 0. 



Given An: Sf -» L(X) we denote the corresponding maximal operator by 
A*y(x) = sup {{\Av(x)\ :neN}. 

Theorem 1. (Banach Principle) Suppose Sf is a Banach space in the norm ||.||, 
and An: Sf —• L(X) is a sequence of linear maps which are continuous in measure. 
Assume that for all f' e Sf, 

A*f(x) = sup |^lnf(x)| is finite fi-almost everywhere. (1) 
n 

Then the set of functions f e Sf such that l i m ^ ^ ^ f ^ ) exists ju-almost every­
where forms a norm-closed subspace of Sf. 

There are many applications of this principle outside Ergodic Theory but to 
understand the way it is used in Ergodic Theory one should think for example of 
Sf = E(Q) and assume that T: Q -» Q is a measure preserving transformation. 
Then consider the operator Anf = ~YA f{Tkx)- ^ *s n o t difficult to verify that An is 
continuous in measure. To verify almost everywhere convergence is usually 
a difficult task. By using the Banach principle this task can be split into two parts. 
First one shows that a maximal inequality, (1) holds and then it is enough to verify 
convergence of An for a dense set in E, say for continuous, or for bounded 
functions. 

Therefore, we have sufficient motivation for studying maximal inequalities. 
Next we recall the Stein-Sawyer result about maximal inequalities of weak type 
see [26], [27]. 

We work again in a probability space (Q, &, /i) and our sequence of operators 
is An: E(Q) -> L(Q). We again assume that each An is continuous in measure 
which in this special case means that from ||f — f | | p —-> 0 it follows that 
Anf(

x) -> Anf(x) m measure. We use the notation for the maximal operator 
A*f(x) = A*(xJ) = sxxVn\Anf(x)\ for feE(Q). 

Assume that T is a measure preserving transformation of Q. The sequence 
An commutes with T if for each n we have An(fo T)(x) = An(f)(Tx), JJL almost 
everywhere. This means in particular that A*(Tx, f)<A*(x, foT)fi almost 
everywhere for all f e E(Q). 

Assume ST is a collection of measure preserving transformations on Q. The set 
X c= Q is fixed by ST if for all Te ST we have X = T \X). We say that ST is an 
ergodic family on Q when from X cz Q is fixed by 2T it follows that JJL(X) = 0, 
or ji(X) = 1. The sequence of operators (An) is distributive if each An commutes 
with every member of some ergodic family on Q. 

To think of an example one can take a sequence of operators commuting with 
one fixed ergodic transformation, T on Q. To be more specific if T is ergodic then 
An{f) = ~nYj<=\f(Tkx) is a distributive sequence. 

Now the first important result in [26] is the following. 



Theorem 2. Let (An) be a distributive sequence of linear operators on E(Q), where 
each An is continuous in measure and maps E(Q) to L(Q). If 1 < p < 2, and 
A*f(x) = supn\Anf(x)\ is finite p almost everywhere for all fe E(Q) then 

there exists a constant C such that 

H{x: A*f{x) >X}<jp ) \f{x)\"dn(x) (2) 

for all feE(Q)andk > 0. 

If displayed formula (2) holds then A* is of weak type (p, p). 

Corollary 3. Let (An) be a distributive sequence of continuous linear transform­
ations on E(Q), where 1< p< 2. Then, either A* is of weak type (p, p), or 
A*f(x) = oo, p almost everywhere for all fe E(Q) with the possible exception of 
a set which is of the first Baire category in E(Q). 

Corollary 4. Let An be as above with the additional assumption that limn_>00,4,?f(x) 
exists p almost everywhere for all f in a dense subset of E(Q). Then A* is of weak 
type (p, p) if and only if Y\mn^(X)Anf(x) exists p almost everywhere for allfG E(Q). 

This corollary can be used the following way: suppose we know convergence 
for a nice set of functions, like bounded, or continuous functions plus we know 
that the maximal operator A* is of weak type (p, p). Then we have convergence 
almost everywhere for all functions. 

In the earlier theorem and corollary the assumption 1 < p < 2 is needed by 
a counterexample of Stein. However, if the sequence An is nonnegative, that is, 
f(x) > 0 implies that Anf(x) > 0 almost everywhere then the following theorem 
holds. 

Theorem 5. Let (An) be a distributive sequence of continuous in measure 
nonnegative linear transformations of E(Q) into L(Q), and 1 < p < oo. Assume that 
A*f(x) is finite p almost everywhere for all fe E(Q). Then for p < oo, A* is of 
weak type (p, p) and there exist C such that \\A*f\\O0<C - ||f||oo holds for all 
feL«(Q). 

Ergodic averages, our standard example of operators An, are nonnegative so 
Theorem 5 is applicable for them. 

The third important classical tool is the Conze principle [16]. A rough statement 
of this says that if a maximal inequality holds for one ergodic dynamical system 
then it does for every dynamical system. 

For a more precise statement of this important result let T be an invertible 
measure preserving transformation on the probability space (Q, M, p) and v a prob­
ability measure on the integers, Z. Given a measurable function f we put 
vTf(x) = £?= „v(fc)/(T\). 
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In case we consider the usual ergodic averages we can consider the sequence 
of measures for which vN(k) = N if 1 < k < N, vN(k) = 0 otherwise. Then 
vfc) = fct.JiT'x). 

Theorem 6. Assume p > 1 is fixed. Let (vN) be a sequence of probability measures 
on Z. Suppose that for some ergodic T there is a universal constant C such that 

n{x:s^\yT
Nf(x)\>k}^Ut (3) 

N>1 X 

for all fe E(Q, JI). Then the same holds for any measure preserving transformation 
if in place of T 

One of the cornerstones of the pointwise convergence in ergodic theory is given 
by the following weak type (1,1) inequality 

Theorem 7. Let Tbe a measure preserving transformation on (Q, @t, JX) and denote 
by A*(f)(x) = sup#£1]vX!Lil/('-™;>c)l ^e maximal function. Then for all X > 0 and 
all fell(p) we have 

li{x:A*(f)(x)>X}<j]\fW(x) (4) 

The importance of L1 for this type of maximal operators is the fact that most of 
the time they map L00 functions to L00 functions. This is the case of the maximal 
function for the ergodic averages in Theorem 7. We clearly have 
||-4*(/) |oo < ll/H oo- The importance of (4) is reflected in the possibility of recaptu­
ring all intermediate weak type inequalities for A* in E for 1 < p < oo by 
interpolation methods. 

3. Bourgain's paper 

The starting point of the paper containing the recent results discussed in Section 
4 is a paper by Bourgain [12]. Here we discuss the minimum amount of result 
which are needed later. 

We assume in this section that (Q, 88, \i, T) is a dynamical system on 
a probability space, and T is an automorphism, that is T and its inverse are both 
measure preserving. 

Consider an increasing sequence of integers nk and the averages ANf(x) = 
= NYA i\f{T"kx)- We will talk then of the convergence of the ergodic averages 
along the subsequence nk. 

The first nontrivial result that started the study of the averages along subsequen­
ces is the paper by A. Brunei and M. Keane [13]. 

Later Krengel [19] showed the surprising result that there are subsequences of 
integers that are universally bad for the pointwise ergodic theorem. This means that 



in any ergodic dynamical system one can find a function / for which the averages 
along this subsequence do not converge almost everywhere. Actually the bad 
function is the characteristic fuction of a set of positive measure. 

Then the natural question became the precise knowledge of the universally good 
subsequences and the bad ones. One of the first nonlinear subsequence that one 
could naturally think of would be the squares and the averages ANf(x) = 
= 7v̂ !̂ = 11 /(T"2x), or for a more general case, n2 is replaced by a polynomial with 
integer coefficients. Observe that this operator is again nonnegative, continuous in 
measure and, whenever T is ergodic, it is distributive. 

The main question discussed in [12] is the almost everywhere convergence of 
ANf Almost everywhere convergence was first established for fe Z3, then later 
for f eE when p > 1. The case p = 1 was left open and this is a situation where 
the change is coming when we have p = 1. Originally the second and third 
author of this paper had an attempt to settle this problem but they did not 
succeed. Fortunately, after the first author had learned about this attempt he then 
suggested to try to use its method on his counting problem and we managed to 
solve that. 

The second and the third listed authors also strongly hope that soon in 
a forthcoming paper they will be able to show that there are L1 functions for which 
we do not have almost everywhere convergence of ANf when the squares are 
considered. 

One of the key steps in Bourgain's paper is again a maximal inequality. 

Theorem 8. Let (Q, 3), jU, T) be a dynamical system, p(x) a polynomial with 
integer coefficients and ANf(x) = NY,n=i\f{T^x). Then there is a maximal 
inequality 

\\sup\ANf\\\r<C-\\f\\r 
N 

for feE(Q, /i), r > 1. The constant C depends only on r > 1 and the polynomial 
p(x). Moreover, ANf converges almost surely as N -> GO. 

Methods for p(n) = n2 are not quite identical to the ones used for the conven­
tional ergodic averages. There is an additional difficulty. The maximal inequality 
helps to prove that the set of convergence is dense in E. But finding a dense 
set where the pointwise convergence holds is not obvious for the averages 
along the squares. In the case of the conventional ergodic averages the dense set 
is given by coboundaries i.e. by functions of the form f — f oT The cancellation 
of the averages for such functions reduces the problem of pointwise converg­
ence to the simple problem of the convergence of the sequence ^~^ to zero. 
This later convergence is obtained in a simple way by using the Borel 
Cantanelli lemma. Note that for each t > 0 we have ^ = 1 ^ { x : ^ r ^ > t} = 
= Xn=iM{x: |/(x)| > tn} < co, as feH(/i). 
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The convergence along the squares is obtained by establishing a stronger 
maximal inequality, sometimes called variation inequality, that shows basically 
that the sequence An(f) is Cauchy pointwise. Observe that if one can find 
a universal constant C such that for any increasing sequence nk going to infinity 
and each positive integer jV we have 

X I sup \An(f) - Ank(f)\ HI < C • log (At + l) | | / | | i , 
k=l nk<n<nk+l 

then we must have the almost everywhere convergence of the sequence An(f). If 
not, we could find a positive integer S and a sequence nk such that 

|| sup \An(f) - Ank(f)\\\\>d. 
nk<n<nk+i 

Thus the previous inequality would give us 

Nd = i 5< £ II sup \An(f) - Ank(f)\ ||i < C log (At + l)||f||2
2. 

k-\ k=\ nk<n<nk+i 

From this one can derive easily a contradiction. This is essentially the path 
followed in [12]. 

There are several variants of the above theorem. An interesting one is 
when A denotes the sequence of prime numbers, AN denotes the prime numbers 
less or equal than JV, and ANf(x) = = -#7^YjnGANf(Tnx). The main result says 
again that ANf converges almost surely for fe Lr, r > 1. 

Bourgain's paper contains a famous appendix by Bourgain, Furstenberg, Kat-
tznelson and Ornstein about Return Times of Dynamical Systems. We describe 
some aspects of it next. 

We assume that (X, ^ , ji, T) is an ergodic system, A is measurable and of 
positive measure. For an xe X, the return time sequence to A is given by 
Ax = {neZ+ : TnxeA}. 

Poincare's recurrence theorem implies that almost every x returns to A infinitely 
often, so Ax is indeed an infinite sequence for almost every x. Birkhoff s ergodic 
theorem implies that Ax has positive density for \x almost every xeX. 

The first theorem in the Appendix of [12] is the following. 

Theorem 9. Ax satisfies for ji almost every x the pointwise ergodic theorem, that is, 

A»3 = Tj I S"d (5) 
iy \<n<N,neAx 

converges almost surely for any measure preserving system (Y, 28, n, S) and 
geI}(Y). 

In this theorem the operator AN is not "normed properly" but this is no problem 
since for almost every x the sequence Ax is of positive density. 

11 



Of course, one can rephrase (5) as 

A»9(y) = l 1 XA(T"x)g{S"y). 
iyi l<n<N 

Now it is quite natural to generalize it by replacing the characteristic function by 
a function coming from a more general class. 

Theorem 10. Given any measure preserving transformation of a probability space 
(X, 3$, ju, T) and fe Lx(/i), there exists X0 a X of full measure such that for all 
x0 e K0 and second dynamical system (Y, %>, v, £f) and g e Ll(v) there exists Y0 of 
full measure, depending on the two systems and x0, such that for all y0 e Y0 

BNg(yo) = ^ Z f(T"x0)g{S"y0) 
-*l<n<N 

converges. 

This can be generalized further to a version where 1 <p< oo, £ + ^ = 1, 
fE L'(K,/<) and gEL^v). 

It is important to observe that K0 is universal for all dynamical systems! 
Otherwise, fixing f and g, by using Birkhoff s theorem for the product system the 
projection of the convergence set onto the first factor obtained by Birkhoff s 
theorem depends on both functions. Hence the Return Time theorem is not saying 
anything about the case of fe L1 and g e L1 while Birkhoff s theorem, on the other 
hand, guarantees convergence for f® g e L1 x L1, \i ® v-a.e. 

This leads to the (L1 x L1) problem of I. Assani see [1], [2], later also mentioned 
by other authors in [18], [25]. This question is about the validity of Theorem 10 
when fe I}(p), g e I?(v). The main result of our joint paper [7] yields a negative 
answer to this question. One can point out that if one considers instead the norm 
convergence in L1, I. Assani [3] has shown that given a function fel}(jj) there 
exists a set Xf of full measure such that for each x e Xf and all measure preserving 
system (Y, <&, v, S) and all g e I}(JJ) the averages ^^= 1 f (T nx)g o Sn converge in 
L(v) norm. Thus we had the universality for pairs of L1 functions with respect to 
the norm convergence. The (L1, L1) problem was the universality for the pointwise 
convergence for pairs of (L1, L1) functions. 

Before discussing some of the key steps in our solution to this (L1, L1) problem 
we briefly talk about past and current work on the returns times. This list is not 
exhaustive. A more exhaustive one can be found in [5]. The results on the return 
times theorem before Bourgain's paper [12] were all respecting the duality. The 
result of [13] by A. Brunei and M. Keane mentioned above was the first return 
times type theorem. Michael Keane at the recent ergodic workshop held at Chapel 
Hill in February 2004, indicated to us that the main idea was already in Antoine 
Brunei's thesis. More can be found also in U. Krengel's book [19]. After Krengel's 
book the next published reference we know of appeared in [9] by A. Bellow and 
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V. Losert. There they did show that with an additional spectral asumption for T (T 
has countable Lebesgue spectrum) the Return Times Theorem holds. The class of 
transformations with this spectral property is known to be strictly bigger than the 
class of K automorphism (Kolmogorov automorphisms). On page 335 of their 
paper they wrote that the Return Times Theorem had been obtained for K auto­
morphism by H. Furstenberg, M. Keane, J. P. Thouvenot and B. Weiss. An 
extension to amenable groups was given by D. Ornstein and B. Weiss in [22]. They 
extended the Return Times Theorem to the setting of group actions. These authors 
assume that G (a countable group) is the union of a F0lner sequence of sets (An) 
(i.e., Ig^A/ lJ / I^J -> 0 for all g e G) for which l / C ^ J / l ^ l is bounded. Then for 
any ergodic action of G on (X, 38, p) and any b e LGO(/i) for almost every x e X the 
sequence b(gx) gives good weights for pointwise convergence almost everywhere 
(with respect to averages over the An). 

In 1991 I. Assani asked if a multiple version of Bourgain's theorem could be 
obtained. At the same time he raised the (L1, L1) problem. 

A partial answer was given in [6] by Assani, Lesigne and Rudolph. A multiple 
L1 return times theorem for i.i.d. random variables was established in [1], 
A multiple term return times theorem for L00 stationary processes was later proved 
by D. Rudolph [25]. 

The first result breaking the duality was obtained by I. Assani in [1] and then in [2]. 

Theorem 11. Let Xn be a sequence of i.i.d. symmetric (X and -X are similar) 
random variables on the probability space (X, $, P) with finite p moment for some 
1 < p < oo then there exists a set officii measure X such that for coe X for all 
1 < r < oo for all measure preserving systems (Y,^,v, S) and g e L(v) the averages 

lix„(co)g(S»y) (6) 

converge v almost everywhere. 

The symmetric assumption was later removed in [4]. Using in part the method 
in [3] related results have been obtained for weighted averages (i.e. averages of the 
form N Yjn=i anXn where s u p ^ ^»=i \an\q < °° f° r some 1 < q < oo) by J. Baxter, 
R. Jones, M. Lin and J. Olsen (see [8]). The case corresponding to an = f(Tnx) 
for some functions fe I3(p) for some 1 < q < oo was obtained in [3] (Theorem 2). 

4. An L1 Counting Problem in Ergodic Theory 

In this section the new results of [7] are discussed. The difficult proof of Theorems 
12 and 13 below are in this paper. Here to illustrate how these theorems work we 
present the details of how to deduce Theorems 14 and 15, which mentioned 
without proof as corollaries in [7]. 

13 



Again (X, ^ , p) denotes a probability measure space, T is an invertible measure 
preserving transformation and fe Ll

+(p), that is, f is nonnegative and belongs to 
If. A consequence of Birkhoff s Ergodic Theorem is that -^p- -> 0 li-almost 
everywhere, hence the following function, N„(f)(x) = # {k: ^p > £} is finite 
almost everywhere. 

We consider the following. 

Counting Problem I. Given fe L+(p) (here and elsewhere the subscript + means 
that f is nonnegative) do we have sup„ " „ ' < oo, p a.e.? 

In Assani [1] and [2] the maximal operator sup„ y ^ is used to study the 
• . • r K„(f)(x) 

pointwise convergence of V„A ;. 
If fe LP+ forp > 1, or fe L± log L± and the transformation T is ergodic, then 
y ' converges almost everywhere to \fdp. 
For non-ergodic T the limit is the conditional expectation of the function f with 

respect to the a field of the invariant sets for T 
Hence, the limit is the same as the limit of the ergodic averages AN(f)(x) = 

= ^N
n=J(T»x). 

By Birkhoff s Ergodic Theorem, AN(f)(x) converges almost everywhere for any 
function fe I?(jtA 

N (f)(x) 

It is natural to ask whether y v ; also converges almost everywhere when 
IeL'O). 

On the other hand, for independent identically distributed random variables 
Xn e I1 it was shown by Assani in [1] that 

#{k:^P>i} 
n 

converges almost everywhere to the common expected value, E(X{). 
Later in [18] by R. Jones, J. Rosenblatt and M. Wierdl the counting problem 

was discussed further. 
To understand the way this counting function works next we discuss a simple 

example of a non-ergodic transformation and a bounded f for which we have 
pointwise convergence of y ^ and we can see some heuristic why can one expect 
a maximal inequality. 

Let X = T = [0, 1) and p = Lebesgue measure. Assume a natural number 
M > 4 is fixed and T(x) = x + ^ mod 1. Put f(x) = 1 if x e [0, M), and 
f(x) = 0 otherwise. 

Then f(Tkx)/k >l/ifTkxe [0,1/M) and k < n, therefore 

Ш--вд*Kä + i 
LЛÍJ " , ч ' L M J 

and 
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£ - 2 ^ N „ ( f ) ( x ) ^ + l 
n n n 

hence, -*&- - £ = Jf 
Assume 2 < m < M, / = 1/m. If x e [1 - 4 1 - V ) with a j e {1, ..., 

A/ - 1} and j + IM < n - 1 < j + (I + \)M with / e {0,1, ...} then N„(f)(x) = 
= 1 + 1 and hence 

N,(/Xx) 1 + l 1 
n (j + 1) + /M 7 + 1' 

Therefore sup„N,v ' = jnrf. From jf, > ^ it follows thatj < m — 2. 

Which shows that in this specific case we have a weak-(l,l) maximal inequality 
as well. In fact, this observation can be extended to any characteristic function of 
a measure preserving system. Indeed, we have 

#{k. k >;} = 1 E M 7 % ) , 

Thus the weak type (1,1) maximal inequality for the ergodic averages gives the 
following inequality 

/ ^ izzz_>Jka - (A 
[i lx : sup— > A\= -fi{A). 

( n n J / 
So we have the weak type (1,1) inequality for characteristic functions of measu­
rable sets. Such a property is called restricted weak type inequality and was 
introduced in [28], The L1 problem for the counting was the search of an extension 
of this restricted weak type (1,1) inequality to a weak type (1,1) inequaliy or the 
non existence of such extension. 

By using a generalized version of the Stein-Sawyer result from Assani [1] one 
can state the following equivalent problem to the counting problem. 
Counting Problem II. 

Does there exist a finite positive constant C such that for all measure preserving 
systems and all X > 0 

,{.:r?^>i}sfi/i1. 
The main result of [7] is to show that this equivalent problem has a negative 
answer: 
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Theorem 12. 

... - f N„(/)(x) J 
0 0 . 

í Ni/)(x) ,) 
sup sup sup X • \i <x : sup —y /v ' > X} 

(X,JÍ,n,T)\\fh = \ Á>0 ( H ti J 

With a little extra work, by using Rohlin towers to transfer our maximal 
inequality type estimates obtained for periodic transformations to all measure 
preserving ergodic systems, this can be rephrased in a stronger form 

Theorem 13. For any nonatomic ergodic system one can find an integrable f for 
which sup„ \"x' = GO almost everywhere. 

The first consequence of Theorems 12 and 13 is linked to the study of the 
maximal function N*(/)(x) = supn

 N y • This result is called the Return Times for 
the Tail (of the Cesaro averages). 

Definition 2. Let (K, J*, //, T) be a measure preserving dynamical system. The 
Return Times for the Tail Property holds in Lr(/x), for 1 < r < oo if for each / e U(p) 
we can find a set Xf of full measure such that for all xeXf for all measure 
preserving systems (Y, &, v, S) and each g e I)(v) the sequence ^—„ "y' -> 0 for 
v almost every y. 

From Theorem 12 it follows that 

Theorem 14. The Return Times for the Tail Property does not hold for r = 1. 

Proof Theorem 14 follows from Theorem 8 in [1], It was shown there that for 
a sequence of nonnegative numbers cn such that lim cjn = 0 the following two 
statements are equivalent 

1. 
#{k:ci>% , 

sup — < oo ; 
n n 

and 
2. for all measure preserving systems (Y, <&, v, S) and all g e l](v), the sequence 

cn - g(Sny)/n converges to zero v a.e. 

Taking the sequence cn = f(Tnx) for an arbitrary ergodic transformation T shows 
that if the validity of the Return Time for the Tail Property in L1 were to hold for 
all transformations, then we should have for all f e L\(fx) for a.e. x, 

= a . / I I ^ ) ^ h 
s u p # { / C - ' > - | < o o . (7) 

n n 

Condition (7) for all feL\(pi) is equivalent to saying that 

#{fc:^>^K 
sup — < 00 . 
a>o a 
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for all feL+(ju) for a.e. x. Consider an enumeration of the positive rational 
numbers rk and define for each k the function T^(/)(x) = N r ^ v \ We have 

sup — * = sup Tk(f)(x) 
a>0 a * 

When T is ergodic it commutes with the family of powers of T By the ergodic 
theorem this family is mixing. Indeed, we have 

lim^X 44 n r(B)) = ^H-B) 
N Z n = l 

so for each Q > 1 there exists an rz such that /i(yl n 7™(B)) < g/i(,4)/i(.B). For each 
y > 1 we have 

supT(yf)(x) = ysupT( f)(x). 

Thus we can apply Theorem 4 of [1] to conclude that there exists a finite positive 
constant C such that for all / e L+, 

fi{x:supTk(f)(x)> 1 } < Cjfdju. 

This means that 

( #{fc;t-g->l} , ) „ „ [ , , , 
lilx : s u p — > \)<C \fdji. 

( a>o a J J 

Replacing the function / by f/X provides a maximal inequality for the maximal 
function 

#{k:f-^>l} 
s u p — -. 
a>o a 

From this we obtain easily a maximal inequality with the same constant C for 

#{fc:^>^} 
s u p — -. 

n n 

Having this constant for one ergodic transformation provides the same constant for 
all ergodic transformations. The ergodic decomposition would then show that 

. f Nn(/)(x) A „ 
sup sup sup A • \x \x : sup —------------ > A\<C < 00. 

(X&fiT) |/ =1 />0 ( n ft J 
This would contradict Theorem 12. • 

Again if we have stronger assumptions than L1 about / then Assani in [1] and [2] 
showed that the Return Times for the Tail Property holds in E for 1 < r < 00 and 
even in L log L. 
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As it was mentioned in the end of the previous section from Theorem 14 it 
follows that. 

Theorem 15. Bourgain's Return Time Theorem does not hold for pairs of(l}, L1) 
functions. 

Proof. We can argue also by contradiction. If we had the validity of the Return 
Times for Pairs property for (L1, L1) spaces then we would have the convergence 
in the universal sense of the averages 

\if(T"x)-g(S"y) = ^ 

for g e Ll(v). This would imply the convergence to zero of 

tfN <7N-i _ f(TNx)g(SNy) oN_{ jV - 1 oN_{ 

N N - 1 N N - 1 N N-l 

This in turn would give the validity of the Return Time for the Tail property in L1, 
but this was disproved in Theorem 14. 

5. Some consequences 

We indicate here two applications of Theorem 14. The second is mentioned in [7]. 

5.1 Random ergodic theorems with universally representative sequences 

In [20] some random ergodic theorems were studied. Assume (Q, 28, P) is 
a probability measure space, _ < o < 1 and Y1? Y>, ... is a sequence of i.i.d. random 
variables of values in {-1, 1} with P{Yn = 1) = o and P(Yn = -1) = 1 - o. Set 
an(u>) — X/Ui Jfc(&>)- By the strong law of large numbers we know that 
l i m n ^ = E(Yl) = 2o — 1. In particular if o > _ then for \i almost every co we 
have limnan(co) = oo. Fix such an co and consider for feLp(/i), 1 <p< oo the 
averages 

\if(T^x). 

It is proved in [20] that if p > 1 and o > _ then the averages 

l£/(7-Hx), 
1 ' n= 1 

converge almost everywhere. In the same paper a question was raised about the 
case p = 1. Based on the reduction made in [20], Theorem 13 immediately shows 
the following 
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Theorem 16. Consider a sequence ofi.i.d. random variables Yu Y2,... defined on 
the probability measure space (Q, &, P) of values in {-1,1}. Assume that 
P(Yn = 1) = o and P(Yn = -1) = 1 - o with o > \. Set an(cu) = £iLi-**(<»)- and 

fix co in the set where limM an(co) = oo. In any aperiodic dynamical system there 
exists a function fe H(p) such that the averages 

iy n = \ 

do not converge almost everywhere. 

5.2 Continuous analog of the counting function 

Most graduate textbooks in harmonic analysis give a proof of the weak type (1,1) 
inequality for the Hardy-Littlewood maximal function 

H(f)(x) = SUP f(x - u)du. 
t v o 

It is also shown that this weak type (1,1) inequality is equivalent to the weak type 
(1,1) inequality for the maximal operator for the ergodic averages. It seems then 
a natural question to ask if the counting function translates also for some maximal 
operator on T and what happens in this case. The continuous analog of the 
counting function is given by 

A(f)(x) = supA-mjo <y < x: " * " y> > A 

and was introduced by the first author. Here again by considering a simple 
characteristic function of a measurable set B one can see that A satisfies 
a restricted weak type (1,1) inequality. However, another consequence of Theorem 
14 is the following result; 

Theorem 17. There exists a function fel!(T) such that A(f)(x) is not finite 
almost everywhere. 

6. Some Open Problems 

We present here some open problems 

Problem A What is the correct Orlicz class of functions for which the averages 
A converge a.e.? 

Problem B What are the precise values for p and q for which the return times 
theorem holds? Does it hold only when the duality is respected? 
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