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We give a survey of some L open problems in Ergodic Theory that we hope will also
be readable to people who are not necessarily experts in this field. Some emphasis is put
on past and recent results on the return times theorem and the recently solved (L, L)
problem. Part of this paper was presented in a series of three talks by the second author
at the 32nd Winter School on Abstract Analysis, 2004 January.

1. Irrational Rotations

In his talk at this same Winter School D. Fremlin talked about equidistributed
sequences. For a sequence (x,) the arithmetic average A,(f) = 7> 4_y f(x,) was
considered and it was investigated whether A,(f) converges to | f. The most
common source of these sequences is coming from Ergodic Theory. One considers
X, = X + noe modulo 1 and it is a consequence of Birkhoff’s Ergodic Theorem
that for any irrational o for (Lebesgue) almost every x the sequence A,(f)
converges almost everywhere to j /- That is, using the notation T for the unit circle
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and considering the transformation T T — T, with T(x) = x + a we have
Af)x) = %ZL]J"(T"X) — [ f when fe L(T).

If we do not assume that f'e L)(T) strange things can happen. From the main
result of [15] it follows that if « and f are independent over the rationals,
T(x) = x + o and S(x) = x + f on T'then there exists a measurable f:T— P
for which %Z?c:lf(T"x) — 1, and %Z’,izlf(Skx) — 0 for almost every xe T. Of
course, if f€ L this cannot happen, since both limits should equal the integral of f.

This leads to the question asked during the problem session of this Winter
School by the second author. Assume that f is a measurable real function defined
on the unit circle, T. The rotation set of f is

Ry = {xeT :% Y f(x + ko) converges almost everywhere}.
k=1

By Birkhoff’s ergodic theorem if f € L(T ) then R, equals T. It is shown in [14] that
if R;is of positive Lebesgue measure then f'€ L(T ) and hence R, = T, on the other
hand given a sequence of rationally independent irrationals one can find f'¢ L(T )
such that R, contains this sequence. Hence R, can be dense for a non-L function. In
[29] it was shown that there exist non-integrable f for which R, is c-dense. This
means that R, is of cardinality continuum in every non-empty open interval.

Nothing is known about the possible Hausdorff dimension of R, for a non-L
function. If one can show that dimy(R;) > 0 for a measurable f ¢ L(7) then the
second author offers a prize of one bottle of Hungarian wine (Egri bikavér). For
an example with dimy(R;) = 1 two bottles are offered. For a “complete character-
isation” of R three bottles are offered. (In case at some of the Czech conferences
Hungarian wine needs to be converted into Czech beer there is an exchange rate
of 1 bottle of wine = 3 beers.)

The above results show that in Ergodic Theory one can obtain drastically
different results considering the class of I! functions instead of non-L! ones.

In the sequel we will see that sometimes even the L' functions are bad.

2. Classical Results

The first important tool is the Banach-principle, see [17] and Chapter V of [23].
We assume that (2, 4, p) is a probability space, and y is a non atomic measure.

We will use the notation L(Q)(# L(&)) for the linear space of equivalence classes

of measurable real functions on £, this class should not be confused with L(€).
Assume that (¥, ¢) is a metric space.

Definition 1. We say that the operator 4 : & — L(X) is continuous in measure if
whenever the sequence y, € & satisfies lim,_, .0(y»y) = 0 for a y € & then for all
¢ > 0 we have lim;,,u{x:|Ay,(x) — Ay(x)| 2 ¢} = 0.
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Given A4,:% — L(X ) we denote the corresponding maximal operator by
A*y(x) = sup {(|4,y(x)|: ne N}.

Theorem 1. (Banach Principle) Suppose & is a Banach space in the norm |.||,
and A,: ¥ — L(X) is a sequence of linear maps which are continuous in measure.

Assume that for all fe &,
A*f(x) = sup |A,f(x)| is finite p-almost everywhere. (1)

Then the set of functions fe & such that lim,_ . A,f (x) exists p-almost every-
where forms a norm-closed subspace of % .

There are many applications of this principle outside Ergodic Theory but to
understand the way it is used in Ergodic Theory one should think for example of
& = I(Q) and assume that T: Q — Q is a measure preserving transformation.
Then consider the operator A4, f = %Z’{ S(T*x). It is not difficult to verify that 4, is
continuous in measure. To verify almost everywhere convergence is usually
a difficult task. By using the Banach principle this task can be split into two parts.
First one shows that a maximal inequality, (1) holds and then it is enough to verify
convergence of A, for a dense set in I/, say for continuous, or for bounded
functions.

Therefore, we have sufficient motivation for studying maximal inequalities.
Next we recall the Stein-Sawyer result about maximal inequalities of weak type
see [26], [27].

We work again in a probability space (2, %, u) and our sequence of operators
is A,: I5(Q) - L(Q). We again assume that each A, is continuous in measure
which in this special case means that from |f; — f|[, > 0 it follows that
A.f(x) = A,f(x) in measure. We use the notation for the maximal operator
A¥f(x) = A*(x, f) = sup,|4,f(x)| for fe I}(Q).

Assume that T is a measure preserving transformation of . The sequence
A, commutes with T if for each n we have A,(f o T)(x) = A,(f)(T.), u almost
everywhere. This means in particular that A*(Tx, f)<A*(x, fo T) u almost
everywhere for all f e I%(Q).

Assume Z is a collection of measure preserving transformations on 2. The set
X < Qis fixed by 7 if for all Te 7 we have X = T '(X). We say that 7 is an
ergodic family on  when from X < Q is fixed by 7 it follows that u(X) = 0,
or y(X) = 1. The sequence of operators (A,) is distributive if each A, commutes
with every member of some ergodic family on €.

To think of an example one can take a sequence of operators commuting with
one fixed ergodic transformation, T on 2. To be more specific if T is ergodic then
Alf) = %ZLI f(T*x) is a distributive sequence.

Now the first important result in [26] is the following.



Theorem 2. Let (A4,) be a distributive sequence of linear operators on IX(Q), where
each A, is continuous in measure and maps L(Q) to L(Q). If 1<p<2, and
A*f(x) = sup,|A,f(x)| is finite u almost everywhere for all f € I(Q) then

there exists a constant C such that

plx: 4702 A< L| () du(x) )
for all feI)Q)and /. > 0.

If displayed formula (2) holds then A* is of weak type (p, p).

Corollary 3. Let (A,,) be a distributive sequence of continuous linear transform-
ations on Ii(Q), where 1<p<2. Then, either A* is of weak type (p, p), or
A*f(x) = oo, p almost everywhere for all fe I5(Q) with the possible exception of
a set which is of the first Baire category in I5(Q).

Corollary 4. Let A, be as above with the additional assumption that lim,_, , A, f1 (x)
exists jt almost everywhere for all f in a dense subset of I)(Q). Then A* is of weak
type (p, p) if and only if lim,_, A, f () exists i almost everywhere for all f€ I/(Q).

This corollary can be used the following way: suppose we know convergence
for a nice set of functions, like bounded, or continuous functions plus we know
that the maximal operator A* is of weak type (p, p). Then we have convergence
almost everywhere for all functions.

In the earlier theorem and corollary the assumption 1< p<2 is needed by
a counterexample of Stein. However, if the sequence A, is nonnegative, that is,

f(x)=0 implies that A,f(x)>0 almost everywhere then the following theorem
holds.

Theorem 5. Let (A,,) be a distributive sequence of continuous in measure
nonnegative linear transformations of I2(Q) into L(Q), and 1 < p < 00. Assume that
A*f(x) is finite p almost everywhere for all f € I%(Q). Then for p < oo, A* is of
weak type (p, p) and there exist C such that |A*f|, < C" | f|. holds for all
fe Q).

Ergodic averages, our standard example of operators A,, are nonnegative so
Theorem 5 is applicable for them.

The third important classical tool is the Conze principle [16]. A rough statement
of this says that if a maximal inequality holds for one ergodic dynamical system
then it does for every dynamical system.

For a more precise statement of this important result let T be an invertible
measure preserving transformation on the probability space (€2, %, u) and v a prob-
ability measure on the integers, Z. Given a measurable function f we put

VIf(x) = Y52 (k) AT
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In case we consider the usual er%odic averages we can consider the sequence
of measures for which vy(k) = 5 if 1<k<N, vy(k) = O otherwise. Then
T, 1
() = AYI (T
Theorem 6. Assume p 2 1 is fixed. Let (vy) be a sequence of probability measures
on Z. Suppose that for some ergodic T there is a universal constant C such that

e sup () > < I o)

forall feI)(Q, ,u). Then the same holds for any measure preserving transformation
& in place of T.

One of the cornerstones of the pointwise convergence in ergodic theory is given
by the following weak type (1, 1) inequality

Theorem 7. Let The a measure preserving transformation on (2, 8, ,u) and denote
by A*(f)(x) = supns %Zﬁ,ﬂ,l S(T"x)| the maximal function. Then for all A > 0 and
all fe L(u) we have

e 4+ > 2} [ 1ty @

The importance of L for this type of maximal operators is the fact that most of
the time they map L* functions to L functions. This is the case of the maximal
function for the ergodic averages in Theorem 7. We clearly have
IA*(f) | < Il fll- The importance of (4) is reflected in the possibility of recaptu-
ring all intermediate weak type inequalities for A* in If for 1<p< oo by
interpolation methods.

3. Bourgain’s paper

The starting point of the paper containing the recent results discussed in Section
4 is a paper by Bourgain [12]. Here we discuss the minimum amount of result
which are needed later.

We assume in this section that (2, %, u, T ) is a dynamical system on
a probability space, and T is an automorphism, that is T and its inverse are both
measure preserving.

Consider an increasing sequence of integers n, and the averages Ayf(x) =
= ,:,Z’,:’ 1|l f(T™x). We will talk then of the convergence of the ergodic averages
along the subsequence n,.

The first nontrivial result that started the study of the averages along subsequen-
ces is the paper by A. Brunel and M. Keane [13].

Later Krengel [19] showed the surprising result that there are subsequences of
integers that are universally bad for the pointwise ergodic theorem. This means that
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in any ergodic dynamical system one can find a function f for which the averages
along this subsequence do not converge almost everywhere. Actually the bad
function is the characteristic fuction of a set of positive measure.

Then the natural question became the precise knowledge of the universally good
subsequences and the bad ones. One of the first nonlinear subsequence that one
could naturally think of would be the squares and the averages Ayf(x) =
=x N S (T"zx), or for a more general case, n’ is replaced by a polynomial with
integer coefficients. Observe that this operator is again nonnegative, continuous in
measure and, whenever T is ergodic, it is distributive.

The main question discussed in [12] is the almost everywhere convergence of
Axf. Almost everywhere convergence was first established for f'e I2, then later
for feI? when p > 1. The case p = 1 was left open and this is a situation where
the change is coming when we have p = 1. Originally the second and third
author of this paper had an attempt to settle this problem but they did not
succeed. Fortunately, after the first author had learned about this attempt he then
suggested to try to use its method on his counting problem and we managed to
solve that.

The second and the third listed authors also strongly hope that soon in
a forthcoming paper they will be able to show that there are L functions for which
we do not have almost everywhere convergence of Ayf when the squares are
considered.

One of the key steps in Bourgain’s paper is again a maximal inequality.

Theorem 8. Let (2, B, p, T) be a dynamical system, p(x) a polynomial with

integer coefficients and Aynf(x) = %Z’,Lll f(T™™x). Then there is a maximal
inequality

HSl,lvplANfI l-=C-1fl:

for feL(Q, W), r > 1. The constant C depends only on r > 1 and the polynomial
p(x). Moreover, Ayf converges almost surely as N — .

Methods for p(n) = n® are not quite identical to the ones used for the conven-
tional ergodic averages. There is an additional difficulty. The maximal inequality
helps to prove that the set of convergence is dense in L. But finding a dense
set where the pointwise convergence holds is not obvious for the averages
along the squares. In the case of the conventional ergodic averages the dense set
is given by coboundaries i.e. by functions of the form f — f oT. The cancellation
of the averages for such functions reduces the problem of pointwise converg-
ence to the simple problem of the convergence of the sequence AT 16 zero.
This later convergence is obtained in a simple way by using the Borel
Cantanelli lemma. Note that for each t > 0 we have z‘;":,u{x'ﬂm > t}=

= Y7 u{x:|f(x)| > tn} < oo, as fe L(p). o
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The convergence along the squares is obtained by establishing a stronger
maximal inequality, sometimes called variation inequality, that shows basically
that the sequence A,(f) is Cauchy pointwise. Observe that if one can find
a universal constant C such that for any increasing sequence n, going to infinity
and each positive integer N we have

N

2|1 osup [A(f) = A (/)3 C-log(N + 1)I113,

k=1 MSn<ng,
then we must have the almost everywhere convergence of the sequence A,(f). If
not, we could find a positive integer ¢ and a sequence n, such that

I sup |A(f) — A, (N)3206.

nm<n<ng 4

Thus the previous inequality would give us

N N
No =3 o< sup |A(f) — A, (f)I3< Clog(N + 1)If]3.

k-1 k=1 MSnSngi
From this one can derive easily a contradiction. This is essentially the path

followed in [12].

There are several variants of the above theorem. An interesting one is
when A denotes the sequence of prime numbers, Ay denotes the prime numbers
less or equal than N, and Ayf(x) = = #;ANZ,,E,\N f(T"x). The main result says
again that Ay f converges almost surely for fe L, r > 1.

Bourgain’s paper contains a famous appendix by Bourgain, Fiirstenberg, Kat-
tznelson and Ornstein about Return Times of Dynamical Systems. We describe
some aspects of it next.

We assume that (X, 4, p, T) is an ergodic system, A is measurable and of
positive measure. For an x € X, the return time sequence to A is given by
A, ={neZ,: T'xe A}.

Poincaré’s recurrence theorem implies that almost every x returns to A4 infinitely
often, so A, is indeed an infinite sequence for almost every x. Birkhoff’s ergodic
theorem implies that A, has positive density for u almost every x € X.

The first theorem in the Appendix of [12] is the following.

Theorem 9. A, satisfies for p almost every x the pointwise ergodic theorem, that is,
1
Ang = 5 Y Sy (5)
1<n<N,neA«

converges almost surely for any measure preserving system (Y, %, n, S) and
ge L(Y).

In this theorem the operator Ay is not “normed properly” but this is no problem
since for almost every x the sequence A, is of positive density.
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Of course, one can rephrase (5) as

Asd) = 5 T 2ATAS™):

1<n<N

Now it is quite natural to generalize it by replacing the characteristic function by
a function coming from a more general class.

Theorem 10. Given any measure preserving transformation of a probability space
(X, B, u, T) and f e L*(n), there exists X, = X of full measure such that for all
xo € X, and second dynamical system (Y, €, v, &) and g € L!(v) there exists Y, of
full measure, depending on the two systems and X, such that for all y,€ Y,
1
Bug(yo) = 7 2 S(T"x0)g(S"yo)

1<n<N

converges.

This can be generalized further to a version where 1< p< oo, % + é =1,
fe (X, p)and g € IY(Y, v).

It is important to observe that X, is universal for all dynamical systems!
Otherwise, fixing f and g, by using Birkhoff’s theorem for the product system the
projection of the convergence set onto the first factor obtained by Birkhoff’s
theorem depends on both functions. Hence the Return Time theorem is not saying
anything about the case of € L' and g € I! while Birkhoff’s theorem, on the other
hand, guarantees convergence for f® ge I! x L, u ® v-ae.

This leads to the (L' x L) problem of I. Assani see [1], [2], later also mentioned
by other authors in [18], [25]. This question is about the validity of Theorem 10
when f'€ L(y), g € L'(v). The main result of our joint paper [7] yields a negative
answer to this question. One can point out that if one considers instead the norm
convergence in L', I. Assani [3] has shown that given a function f e L(u) there
exists a set X of full measure such that for each x € X, and all measure preserving
system (Y, 4, v, S) and all g € L(u) the averages &Y ~—, f(T"x)g © S" converge in
L!(v) norm. Thus we had the universality for pairs of L' functions with respect to

the norm convergence. The (L, L) problem was the universality for the pointwise
convergence for pairs of (L, L) functions.

Before discussing some of the key steps in our solution to this (L, L) problem
we briefly talk about past and current work on the returns times. This list is not
exhaustive. A more exhaustive one can be found in [5]. The results on the return
times theorem before Bourgain’s paper [12] were all respecting the duality. The
result of [13] by A. Brunel and M. Keane mentioned above was the first return
times type theorem. Michael Keane at the recent ergodic workshop held at Chapel
Hill in February 2004, indicated to us that the main idea was already in Antoine
Brunel’s thesis. More can be found also in U. Krengel’s book [19]. After Krengel’s
book the next published reference we know of appeared in [9] by A. Bellow and
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V. Losert. There they did show that with an additional spectral asumption for T (T
has countable Lebesgue spectrum) the Return Times Theorem holds. The class of
transformations with this spectral property is known to be strictly bigger than the
class of K automorphism (Kolmogorov automorphisms). On page 335 of their
paper they wrote that the Return Times Theorem had been obtained for K auto-
morphism by H. Fiirstenberg, M. Keane, J. P. Thouvenot and B. Weiss. An
extension to amenable groups was given by D. Ornstein and B. Weiss in [22]. They
extended the Return Times Theorem to the setting of group actions. These authors
assume that G (a countable group) is the union of a Fglner sequence of sets (4,)
(ie., lg4,A4,)/|4,] — 0 for all g € G) for which |4,'A,|/|A,| is bounded. Then for
any ergodic action of G on (X, 4, p) and any b € L*(u) for almost every x € X the
sequence b(gx) gives good weights for pointwise convergence almost everywhere
(with respect to averages over the A4,).

In 1991 1. Assani asked if a multiple version of Bourgain’s theorem could be
obtained. At the same time he raised the (L', L) problem.

A partial answer was given in [6] by Assani, Lesigne and Rudolph. A multiple
I! return times theorem for i.i.d. random variables was established in [1].
A multiple term return times theorem for L stationary processes was later proved
by D. Rudolph [25].

The first result breaking the duality was obtained by I. Assani in [1] and then in [2].

Theorem 11. Let X, be a sequence of i.id. symmetric (X and —X are similar)
random variables on the probability space (X , 9, P) | with finite p moment for some
1 < p< oo then there exists a set of full measure X such that for we X for all
1 < r < o for all measure preserving systems (Y, %, v, S) and g € L(v) the averages

E X, 0)als) ©

converge v almost everywhere.

The symmetric assumption was later removed in [4]. Using in part the method
in [3] related results have been obtained for weighted averages (i.e. averages of the
form y Y%, a,X, where supyy YA, Ja,J¢ < oo for some 1 < g < oo) by J. Baxter,
R. Jones, M. Lin and J. Olsen (see [8]). The case corresponding to a, = f(T "x)
for some functions f e U(u) for some 1 < g < oo was obtained in [3] (Theorem 2).

4. An L' Counting Problem in Ergodic Theory

In this section the new results of [7] are discussed. The difficult proof of Theorems
12 and 13 below are in this paper. Here to illustrate how these theorems work we
present the details of how to deduce Theorems 14 and 15, which mentioned
without proof as corollaries in [7].
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Again (X, 4, u) denotes a probability measure space, T is an invertible measure
preserving transformation and f e L} (u), that is, f is nonnegative and belongs to
L. A consequence of Birkhoff’s Ergodic Theorem is that —(T—) — 0 p-almost
everywhere, hence the following function, N,(f)(x) = # {k: _(_T_*) > L js finite
almost everywhere.

We consider the following.

Counting Problem I. Given f € L\ (1) (here and elsewhere the subscript + means
that f is nonnegative) do we have sup, Nl o o, nae.?

In Assani [1] and [2] the maximal operator sup,,M,’,M is used to study the
pointwise convergence of M—M

If fel forp > 1,0r fe L log L, and the transformation T is ergodic, then
N0 converges almost everywhere to [ fdp.

For non-ergodic T the limit is the conditional expectation of the function f with
respect to the o field of the invariant sets for T.

Hence, the limit is the same as the limit of the ergodic averages Ay(f)(x) =
)

By Birkhoff’s Ergodic Theorem, A(f)(x) converges almost everywhere for any
function f e L(u).

It is natural to ask whether M%)Li) also converges almost everywhere when
fe L)

On the other hand, for 1ndependent identically distributed random variables
X, € ! it was shown by Assani in [1] that

# (kX 5 1y
n

converges almost everywhere to the common expected value, E(X 1)

Later in [18] by R. Jones, J. Rosenblatt and M. Wierdl the counting problem
was discussed further.

To understand the way this counting function works next we discuss a simple
example of a non-ergodic transformation and a bounded f for which we have
pointwise convergence of M;%) and we can see some heuristic why can one expect
a maximal inequality.

Let X =T = [0, 1) and u = Lebesgue measure. Assume a natural number
M > 4 is fixed and T()—x+Mm0d1 Put f(x) =1 if x€[0, M) and
f(x) = 0 otherwise.

Then f(T*x)/k > 1/ if T*x € [0,1/M) and k < n, therefore

[%] C1SN(f)) < [%] +1
and
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hencejfM ~—ff

Assume 2 <m <M, i=1m If xe[l —# 1 —") with a je{L, ..
—l}andj+lMSn—1<j+(l+1)MW1thle{O,1, .}thenN()(x)
= 1 + [ and hence

N 1+l

no T (j+ 1)+1M‘j+ 1

n

o0 M2 252 <1

Which shows that in this specific case we have a weak-(1,1) maximal inequality
as well. In fact, this observation can be extended to any characteristic function of
a measure preserving system. Indeed, we have

IATX 1 n 1

n nkl

Therefore supnm ,1+1 From ;5 j+, > + it follows that j<m — 2.

Thus the weak type (1,1) maximal inequality for the ergodic averages gives the
following inequality

'lATx 1
,u{x:sup #{k: o} > /1}= %#(A).

n

So we have the weak type (1,1) inequality for characteristic functions of measu-
rable sets. Such a property is called restricted weak type inequality and was
introduced in [28]. The L' problem for the counting was the search of an extension
of this restricted weak type (1,1) inequality to a weak type (1,1) inequaliy or the
non existence of such extension.

By using a generalized version of the Stein-Sawyer result from Assani {1] one
can state the following equivalent problem to the counting problem.

Counting Problem II.
Does there exist a finite positive constant C such that for all measure preserving

systems and all 2 > 0

N z}sgnﬂl?

y{x:sup

The main result of [7] is to show that this equivalent problem has a negative
answer:
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Theorem 12.

(X, 8u0.T)IfIh=1/i>0

sup sup sup A~y{x:supw>l}=oo
n n

With a little extra work, by using Rohlin towers to transfer our maximal
inequality type estimates obtained for periodic transformations to all measure
preserving ergodic systems, this can be rephrased in a stronger form

Theorem 13. For any nonatomic ergodic system one can find an integrable f for
which sup,,J;Qm = o0 almost everywhere.

The first consequence of Theorems 12 and 13 is linked to the study of the
maximal function N*(f)(x) = sup, X This result is called the Return Times for
the Tail (of the Cesaro averages).

Definition 2. Let (X, 4, u, T) be a measure preserving dynamical system. The
Return Times for the Tail Property holds in L(u), for 1 <r < oo if for each f e L(u)
we can find a set X, of full measure such that for all x € X, for all measure
preserving systems (Y, ¢, v, S) and each g € L(v) the sequence AT, 0 for
v almost every y.

From Theorem 12 it follows that
Theorem 14. The Return Times for the Tail Property does not hold for r = 1.

Proof. Theorem 14 follows from Theorem 8 in [1]. It was shown there that for

a sequence of nonnegative numbers ¢, such that llmc o/n = 0 the following two
statements are equivalent

1.

sup#'— < ©0;
n

and

2. for all measure preserving systems (Y, %, v, S) and all g € L(v), the sequence
¢»* g(S"y)/n converges to zero v a.e.

Taking the sequence ¢, = f(T"x) for an arbitrary ergodic transformation T shows
that if the validity of the Return Time for the Tail Property in L' were to hold for
all transformations, then we should have for all f e L' (u) for ae. x,
#{k: 100 5 by
sup —————= < 0. (7)
n n
Condition (7) for all fe L' () is equivalent to saying that

TR L
Sup #é{k—k>a} < 0.
a>0 o4
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for all fe Ll(u) for a.e. x. Consider an enumeration of the positive rational
numbers r, and define for each k the function T,(f)(x) = u‘;{m We have
# e 0 S 1
sup {—k} = sup T,(f)(x)
a>0 o k
When T is ergodic it commutes with the family of powers of T. By the ergodic
theorem this family is mixing. Indeed, we have
N
lim> 3 u(4 0 T'(B) = u(4)u(B)
n=1

so for each ¢ 21 there exists an n such that y(A N T"(B)) < ou(A)u(B). For each
y =1 we have

sup Ty(rf)(x) = v sup Ty(f)(x)-

Thus we can apply Theorem 4 of [1] to conclude that there exists a finite positive
constant C such that for all fe L',

u{x:sxzp T(f)(x) > 1} < C [ fdu.

This means that

k: f(Tkx) 1
y{x:sup&;—w> I}SC fdu.
>0

Replacing the function f by f/A provides a maximal inequality for the maximal
function
. f(T*x) 1

Sup #{l(‘—k>_;}‘

a>0 04
From this we obtain easily a maximal inequality with the same constant C for

J(T*x
sup # (k172 > %}
n n

Having this constant for one ergodic transformation provides the same constant for
all ergodic transformations. The ergodic decomposition would then show that

N

sup sup sup/l-,u{x:sup—"m > X}SC <o0.
(X,8uT)|f =1,>0 n n

This would contradict Theorem 12. O

Again if we have stronger assumptions than L' about f then Assani in [1] and [2]
showed that the Return Times for the Tail Property holds in I’ for 1 < r < oo and
even in L log L.

17



As it was mentioned in the end of the previous section from Theorem 14 it
follows that.

Theorem 15. Bourgain’s Return Time Theorem does not hold for pairs of (L, L)
functions.

Proof. We can argue also by contradiction. If we had the validity of the Return
Times for Pairs property for (L', L) spaces then we would have the convergence
in the universal sense of the averages

1y .
5n§1f (T"x)- g(S"y) = %

for g € L'(v). This would imply the convergence to zero of

ON _ ON-y =f(TNx)g(SNJ’)+ ON-1 'N—l_ ON-1
N N -1 N N-—-1 N N-—-1

This in turn would give the validity of the Return Time for the Tail property in L,
but this was disproved in Theorem 14.

5. Some consequences

We indicate here two applications of Theorem 14. The second is mentioned in [7].

5.1 Random ergodic theorems with universally representative sequences

In [20] some random ergodic theorems were studied. Assume (Q, B, P) is
a probability measure space, %S c<land Y, Y, ... is a sequence of i.i.d. random
variables of values in {-1, 1} with P(Y, = 1) = ¢ and P(Y, = —1) = 1 — 0. Set
aw) = Yi_1 Yi(w). By the strong law of large numbers we know that
lim, % = E(Y;) = 26 — 1. In particular if o > 3 then for u almost every w we
have lim,a,(w) = co. Fix such an w and consider for fe I’(y), 1<p< oo the
averages

1 N
3 LJ(T),
n=1

It is proved in [20] that if p > 1 and 0 > % then the averages

L $ 4o

. f Ta,, mx ,

N,,; ( )
converge almost everywhere. In the same paper a question was raised about the
case p = 1. Based on the reduction made in [20], Theorem 13 immediately shows

the following

18



Theorem 16. Consider a sequence of i.i.d. random variables Y,, Y,, ... defined on
the probability measure space (2, B, P) of values in {-1,1}. Assume that
P(Y,=1)=cand P(Y, = -1) = 1 — ¢ with ¢ > 3. Set a,(w) = Y4, Yw), and
fix ® in the set where lim, a,,(w) = 00. In any aperiodic dynamical system there
exists a function f e L'(u) such that the averages

L ¢ ()

— Y f(T*)).

N 2 (T
do not converge almost everywhere.

5.2 Continuous analog of the counting function

Most graduate textbooks in harmonic analysis give a proof of the weak type (1,1)
inequality for the Hardy-Littlewood maximal function

t

H(f)(x) = sup J.Of(x — u)du.

It is also shown that this weak type (1,1) inequality is equivalent to the weak type
(1,1) inequality for the maximal operator for the ergodic averages. It seems then
a natural question to ask if the counting function translates also for some maximal
operator on T and what happens in this case. The continuous analog of the
counting function is given by

A(f)x) = sgpzl'm{0<y <x:f(x—y_)i)>/1}

and was introduced by the first author. Here again by considering a simple
characteristic function of a measurable set B one can see that A satisfies
a restricted weak type (1,1) inequality. However, another consequence of Theorem
14 is the following result;

Theorem 17. There exists a function fe L(T) such that A(f)(x) is not finite
almost everywhere.

6. Some Open Problems

We present here some open problems

Problem A What is the correct Orlicz class of functions for which the averages
A converge a.e.?

Problem B What are the precise values for p and q for which the return times
theorem holds? Does it hold only when the duality is respected?

19



References

[1] Assan, 1., Strong Laws for weighted sums of iid random variables, Duke Math J., 88, 2, (1997),

217 - 246.

[2] Assany, L., Convergence of the p-Series for stationary sequences, New York J. Math., 3A, (1997),
15 - 30.

[3] Assan, I, A weighted pointwise ergodic theorem, Ann. Inst. Henri Poincaré, 34, 1, (1998),
139 - 150.

[4] Assany, 1., Wiener Wintner dynamical systems, Erg. Th. and Dyn. Syst., 23, 1637 — 1654, 2003.

[S5] Assany, 1., Wiener Wintner Ergodic theorems: 228 pages, World Scientific Pub Co (2003), ISBN:
9810244398.

[6] Assani, I., LESIGNE E., AND RUDOLPH, D., Wiener-Wintner return-times ergodic theorem, Israel J.
Math., 92, (1995), no. 1-3, 375 - 395.

[7] Assani, 1., BuczoLicH, Z. AND MAULDIN, D., An L' Counting Problem in Ergodic Theory,
submitted.

[8] BAXTER, J., JONES, R., LIN, M. AND OLSEN J., SLLN for weighted independent identically
distributed random variables, to appear in Jour. of Theoretical Probability, (2004).

[9] BELLOW, A., AND LOSERT, V., The weighted pointwise ergodic theorem and the individual ergodic
theorem along subsequences, Trans. Amer. Math. Soc., 288, 1, (1988), 307 — 345.

[10] BOURGAIN, J., Return Time sequences of dynamical systems, IHES, Preprint, (1988).

[11] BOURGAIN, J., Temps de retour pour des systemes dynamiques, C. R. Acad. Sci. Paris, t. 306, Série
I, (1988), 483 — 485.

[12] BOURGAIN, I., Pointwise Ergodic Theorems for Arithmetic Sets, with an Appendix by J. Bourgain,
H. Firstenberg, Y. Katznelson, and D. S. Ornstein, Publ. Mat. IHES 69 (1989), 5 —45.

[13] BRUNEL, A., KEANE, M., Ergodic theorems for operator sequences, Zeitschr. Wahrsc. verw.
Gebiete, 12 (1969), 231 — 240.

[14] BuczoLicH, Z., Arithmetic averages of rotations of measurable functions, Ergod. Th. and Dynam.
Sys. 16 (1996), 1185 — 1196.

[15] BuczoLicH, Z., Ergodic averages and free Z* actions, Fund. Math. 160 (1999), 247 — 254.

[16] Conzg, J. P., Convergence des moyennes ergodiques pour des sous suites, Bull. Soc. Math. France
35 (1973), 7-15.

[17] GARsIA, A., Topics in Almost Everywhere Convergence, Chicago, Markham Publ. Co. 1970.

[18] JonEs, R., ROSENBLATT, J. AND WIERDL, M., Counting in Ergodic Theory, Cand. J. Math., 51,
(1999), 996 — 1019.

[19] KRENGEL, U., Ergodic Theorems, De Gruyter Studies in Math 6, (1985).

[20] LAcey, M., PETERSEN, K., RupoLPH, D. AND WIERDL, M., Random ergodic theorems with
universally representative. Ann. Inst. H. Poincaré Probab. Statist., 30 (1994), no. 3, 353 — 395.

[21] NooNAN, K., Return Times for the tail and Birkhoff’s theorem, Master’s thesis, UNC Chapel Hill.
Dec. 2002.

[22] ORNSTEIN, D. AND WEISS, D., Subsequence ergodic theorems for amenable groups, Israel J. Math.,
79, (1992), no. 1, 113 - 127.

[23] ROSENBLATT, J. AND WIERDL, M., Pointwise ergodic theorems via harmonic analysis. Ergodic
theory and its connections with harmonic analysis (Alexandria, 1993), 3 — 151, London Math. Soc.
Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, 1995.

[24] RupoLpH, D., A joining proof of Bourgain’s return time theorem, Erg. Th. and Dyn. Syst., 14,
(1994), 197 — 203.

[25] RupoLpH, D., Fully generic sequences and a multiple term return times theorem, Invent. Math.,
131 (1998), 199 - 228.

[26] SAWYER, S., Maximal inequalities of weak type, Ann. of Math. 84 (1966) no. 4, 157 — 174.

[27] StEIN, E. M., On limits of sequences of operators, Ann. of Math. 74 (1961) no. 4, 140 — 170.

20



[28] STEIN, E. AND WEISS, G., Introduction to Fourier analysis on Euclidean spaces, Princeton
Mathematical Series, No. 32. Princeton Univerity Press, Princeton, N. J., 1971.

[29] SvVETIC, R. E., A function with locally uncountably rotation set, Acta Math. Hungar. 81 (1998) no.
4, 305 -314.

21



		webmaster@dml.cz
	2012-10-06T04:14:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




