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1. Introduction 

Let SC be a Polish space with metric d and /%\9C -» 9C a continuous function. 
We recall the definition of the attacking relation xs-±fy studied in our papers [2, 
3,4]: 

x^fy odf Va > OVm :e N 3t[t > m & d(f(x\y) < e]. 

Our notation is related to a familiar one in dynamical systems: x/-±f y iff y e C0f(x). 
An important example is Baire space, the space of infinite sequences of natural 

numbers, often denoted by Jf or wco, which for each finite such sequence r has 
the basic open set {a| a \ £h(r) = r}. In that space the (backward) shift functions 
s: Jf -> Jf is given by s(a)(n) = a(rc + 1). 

The score, 6(a, / ) , of a point am SC with respect to the function / , is defined 
to be the least ordinal 9 such that Ae(a,f) = Ae+l(a,f), where we define 
recursively a shrinking sequence of sets by A°(a,f) = cOf(a), Av+l(a,f) = 
= [x | 3y()/ e ALv(a, / ) & yr^f x)} and for a limit ordinal 2, A\a, f) = P)v<Ay4v(a,/). 

In [3] we showed, working always with the shift function s, that for Baire space 
WOJ or the Cantor space wl there are points of score any given countable ordinal. 
In [4] we constructed a point in Baire space of score the first uncountable ordinal, 
which by results of [3] is the maximum possible. An unpublished transfer theorem 
of Cristian Delhomme shows that a point of uncountable score and points of all 
countable scores will exist in Cantor space w2. 

The question arises, which other spaces and functions will permit the existence 
of a point of uncountable score? 
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We describe hypytheses on a dynamical system (9£,f) which will permit such 
a transfer. We then describe one setting in which one can establish all but the last 
hypothesis; then we show that an assumption of equicontinuity will yield that last 
hypothesis. However, experts on dynamical systems believe that, in the given 
setting, it is likely that f cannot be equicontinuous. So at present no dynamical 
system is known (to the author) to satisfy all the given hypotheses. 

We work with DC, the mild form of the Axiom of Choice that implies that 
a relation is well-founded if and only if it admits no infinite descending sequences. 

2, Hypotheses leading to high scores 

2-0 THEOREM Suppose that (9£,f) is a dynamical system such that there is 
a continuous surjection *P of' 2£ onto either (0co or some (0m with m ^ 2, satisfying 
these properties, where we say that x is at a rather that *F(x) = a: 

(2-0-0) for all x e f , ¥(/(x)) = s(*F(x)) 
(2-0-1) for all x and y in 3Cy if xr*fy then vP(x)^---5 ^(y) 
(2-0-2) if x is at a and a^- s /J, then there is a y at jS with x^y. 
(2-0*3) tfa^-*6 jS^-s y, a is at a, c is at y and fl^-y c, then there is a point b at 

P with ar^fbr-^fC. 
Then for every xt the f-score of x equals the %-score of ^(x), so that there are 

points in 9C of all scores up to and including cox. 

Proof: We recall the definition from [3], page 263, of the tree TJ,x(f), where 
xr^fy. It is the set of finite sequences (y0,yi,..., yn) such that y0 = y, each 
y,-+i^/jl,-and x^fyn. 

Extend the definition of *F to such finite sequences in the natural way: 
*P((yo>---> yn)) = (^(yo)--- ^(yn))- With this extended definition, *F preserves length 
and end-extension. 

2-1 PROPOSITION Ifx^fy9 ¥ [ - / ? ( / ) ] = T$$\s). 

Proof: by (2-0-1), the restriction of *F to the first tree is into the second; by 
repeated use of (2-0-3), we see that it is onto. H(2-l) 

2-2 LEMMA If x is at a, y is at /?, and x^-y y, then Ty(f) is well-founded iff Tjl(s) 
is. 

Proof: by repeated use of (2-0-1) and (2-0-3) to transfer infinite descending 
sequences from one tree to the other. H(2-2) 

2-3 DEFINITION If ar*f b, Tb(f) is well-founded, and s e Th
a(f)y write Qa,bj(s) f° r ^ e 

rank of s in the tree Tb(f), as given by the recursion 

Qa,bj(s) = sup{&A/(s~<>>) + 1 | s~(y)e 7?(f)}. 
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2-4 PROPOSITION If a^^fb, 0 ^ s e Tl'(f) and Qa,b,f(s) = & then the last element 
tf(s) of the finite sequence s is in AL(a, f)\Ai + l(a, f). 

Proof: by induction on £, much as in the proof of Lemma 2-1 of [3]. -1(2-4) 

2-5 COROLLARY 0(a,f), the f-score of a, equals sup{&lA/(0) | as-*fb). 
Thus the score of a point a is computable from the ranks of the various trees 

rh'(f). 

2-6 PROPOSITION Suppose the two trees are both well-founded. Then they have the 
same ranks: Qa,b,f(0) = e2a,/?,s(0). 

2-7 PROPOSITION If x is at a, then the f-score of x equals the %-score of a; in 
particular if x is at a and a is of uncountable score, then so is x. 

For points of uncountable score we can also argue as follows. A point is of 
uncountable score iff its abode is not a Borel set. Further the image under *F of 
the abode of x is the abode of a, and the image under *F of the escape of x is the 
escape of a. 

Hence if the abode and escape of x were Borel, then both the abode and the 
escape of a would be analytic, and therefore by Souslin's celebrated result, would 
be Borel. 

2-8 REMARK In this connection it might be worth looking again at the "original" 
construction of a point of uncountable score mentioned in the penultimate 
paragraph of [4], and there called c, where c "neatly" attacks ocT for every 
countable well-founded tree T. The nodes of aT survive for £ = Q(T) steps, and 
C can be arbitrarily large. 

2-9 PROPOSITION Suppose that a^- s £^-6 Q. Let a be at a and x be at Q with 
x. 7 yx. Then there are recurrent r and s such that a^±f s^*fx^*fr and 

Proof: by (2-0-2) there is a y at Q such that Xs-*fy. Taking, by (2-0-3), an infinite 
backward sequence of ^'s there are points y{ with y0 = y, each y;+i^--yy; and 
x attacking each y(. By proposition 3.18 of [3] there is a recurrent point r with 
x^±f r^*fy, which by (2-0-1) gives Or-*s ^F(r)^-g O. 

To find s, repeat the argument, inserting a chain of attacks a^*f si+l^*f st^f x. 
H(2-9) 

2-10 COROLLARY If X is at /?, a at a, a^-±fx, and ft is in the abode of a, then x is 
in the abode of a. 

Proof: for some O, a -̂=-s £ ^ 5 O^-=-/?; we can therefore find f-recurrent r with 
ar-±f rs-*f x. 

Many things now fit well together. For example in [3] an operator V was 
introduced: Tf(Z) = [x \ 3y(y e Z & y^f x)}. 
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2-11 LEMMA ¥[ay(x)] = o>Jt?¥(x)). 

2-12 LEMMA *F[I>(Z)] = rs(*F[Z]). 

2.13 PROPOSITION For all v, ¥ [A v (a , / ) ] = 4fF(a),s). 

Proof: the previous two lemmata cover the case of 0 and successors. At limits, we 
must use the analysis of trees. H(2-13) 

2-14 REMARK We have made little use of separability: it has been used only to 
show that any point that vanishes does so at a countable stage, thus giving the 
upper bound of co{ to the score. But for the sake of proving the existence of points 
of uncountable score, it shouldn't be necessary. 

3. Horseshoes 

Following a lecture of Jozef Bobok we make a definition. The setting is 
a compact (Polish) space si with metric d, a continuous function / : si -> si and 
an integer m ^ 2. We write 0 for the sequence of length 0, and 0 for the empty 
set. Of course in many formal presentations of mathematics the two objects are the 
same. 

3-0 DEFINITION An (m,f)-strong horseshoe is a sequence S0> ••• Sm-\ of pairwise 
disjoint non-empty closed sets with the property that for all i and j less than m, 

S , S / [ S , ] . 

3 1 REMARK That is a stronger requirement that the condition met by Smale's 
original horseshoe, which was that S, n / [ S } ] is non-empty for each i a n d / 

3-2 LEMMA S, n / " 1 ^ / ] # 0: indeed f [St nf-^SjJ] = Sj. 

3-3 LEMMA S,nf-l[Sj] nf~2[Sk] * 0;indeed / 2 [ S , . n / - ' [ S j n / " 2 [ S j ] = Sk. 

We shall be able to generalise the above, but must first adopt a less cumbersome 
notation. 

3-4 DEFINITION Set S0 = d f | J k l MS ! - , and for u a sequence of length k + 1 of 
numbers less than m, set Su =d f S

u*k nf-k[Su{k)]. For a ewm, set Sa = f]kS
a^k. 

3-5 PROPOSITION Su # 0; indeed fk[Su] = Su{k). 

3-6 PROPOSITION If u = s^t, the concatenation of s and / = ih(s), then Su = 
= Ss n f~'[Sl] and f[Su] = Sl. 

Proof: The first assertion holds by the identity g_1(C n D) = g_1(C) n g_1(D). 
For the second, the inclusion from left to right is evident, using the first assertion. 
Suppose that x is in Sf. Let v = u \ {£ + 1). By Proposition 3-5, there is a y in Sv 
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with f(y) = x; but then y e Ss n / /(Sr), and so, by the first assertion again, 
xef[Su]. H(3-6) 

3-7 PROPOSITION FaCh S" is a non-empty closed subset of s/. 

3-8 DEFINITION 9C =df {xestf | Vk ^ 0,/*(x) e S0}. 

3-9 LEMMA Kac/z Sa, the intersection along the path cc, is non-empty. 

Proof: by compactness. ~l(3-9) 

3-10 LEMMA 9C = (JaS
a = f\kJ{Si\uekm\. 

3-11 PROPOSITION 9C is a closed non-empty subset of si, and is therefore a compact 
Polish space. 

3-12 LEMMA If xeSC, then f(x) e 9C. 

3-13 LENNA If xk -> x as k -* oo, and x* e S*^nk, where nk -» oo w/th k, then 
X G S a . 

Henceforth we work in the space 9C. 

A map to m-Cantor space 

Let # be the product space wm, where m is given the discrete topology. # is 
compact by Tychonoff. We shall use Greek letters a,/?,y,£ for members of <$. 

On # we define the shift function s by s(a)(n) = a(n + 1 ) . 

3-14 DEFINITON For x e i , define *F(x)(«) to be the / < m such that f(x) is in Sh 

3-15 PROPOSITION For x e f , ¥(/(x)) = s(^P(x)). 

3-16 REMARK This means that *F is an action map in the sense defined by Akin 
and Kolyada [1] 

347 PROPOSITION If X e f]kewS^k, then *F(x) = a; hence *F is surjective. 
[The compactness ensures that the intersection along a is non-empty]. 

3-18 PROPOSITION *F is continuous. 

We shall say that x is at a if *P(x) = a. 

Lifting an attack 

3-19 PROPOSITION 9C is s-±f closed in the sense that if x is in 9C and xs-±fy then 

year. 

3-20 PROPOSITION Ifxr*fy then *F(x) s*s ^(y)-

Proof: Let s = df minrV/Z(S,,S;); thus e > 0 and has the property that two points in 
S0 within distance s of each other are in the same St. 
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Fix a natural number k. We seek £ such that f(x) shadows y for k steps, in the 
sense that for n < k, ^(f^n) = Y(y)(w). 

By the continuity of f f . . . and f ^ - 1 at y, there are bx > 0 such that for each 
i < k 

d(a9y) < 5t => d(f(a)9f(y)) < £ 

Take S to be the minimum of the OVs. Pick £ exceeding k and large enough so that 
d(f(x\y) < 8. -1(3.20) 

3-21 COROLLARY If r is f recurrent then ^(r) is ^-recurrent. 

Proof: Let ^(r) = Q. r^±fr9 so Q^*S Q. H(3-21) 

3-22 PROPOSITION Suppose that a/-*s fi, and that x is at a. Then we can find y at 
p such that x s-±f y. 

Proof: Let P\k = snk(a) \ k. Then put xk = fk(x). Each xk is in Sp*k\ by 
compactness some subsequence of the x's converges, to y say. Then y e Sp and 
x^fy. H(3-22) 

3-23 COROLLARY If X is at a and the abode of a is empty, so is the abode of x. 

Proof: the abode of a point is empty iff it attacks no recurrent points. H(3-23) 
The clauses (200) , (2-0-1) and (2-0-2) are established in the present setting by 

3-15, 3-20 and 3-22. 

4. The effect of equicontinuity 

Suppose now that at every point x of 3C9 f is equicontinuous in the sense that 

Ve > 0 3d > 0 Vn Vy [d(x9y) < 5 => d(f(x)9f(y)) < e]. 

We derive clause (2-0-3): 

4-0 LEMMA Suppose that a /^-s ft r-^s y and that a is at a, c at y and a r*fC. Then 
there is a point b at P with a r^fb r-±fC. 

Proof: Given k, a positive integer, there are (large) integers nk and mk such that for 

each i < k, 

y(i) = P(nk + i) = cc(mk + nk + i) 

and such that fmk+nk(a) -> c. 
Set bk = fmk(a). Some subsequence, say for k e B e \_co]w

9 of those converges, to 
b9 say. We know that fk(bk) -> d. We shall use the equicontinuity of f at b to 
show that fk(b) -> d. 

Given e, we seek K such that for k > K9 k e £, d(fk(b)9d) < s. We know that 
there is a K0 such that for all k ^ K0> d(fk(bk)9c) < e/2. Using the equicontinuity 
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at b, we know that there is a S such that if d(z,b) < 5, then for all k, d(fn'\z\ 
f"k(b)) < e/2. For large enough k e £, we shall indeed have d(bhb) < 5. H(4.0) 

4-1 REMARK Equicontinuity seems formally too strong, as for given k we are only 
interested in the point z = bk. 

Finally we mention a variant of (2-0-3), of which the proof has an interesting 
feature. 

4-2 LEMMA Suppose that a -̂*6 B and that y is at /?. Then there is an x at a with 
X^±fy. 

Proof: By Proposition 3-6, for given k and nk with znk((x) \ k = ft \ k, we may find 
xkeS**nk with fnk(xk) = y (and not just near y\). Let x be the limit of some 
convergent subsequence of the x^'s. x will be at a by Lemma 3-13. Then by the 
equicontinuity of f at x, given e > 0 there is a 3 > 0 such that for each k and 
z d(x,z) < 5 --> d(fnk(k), fnk(z)) < e; taking z to be an xfc in the subsequence that 
is suitably near x, we see that d(fnk(x),y) < e, and so X/~*fy, as required. H(4-2) 
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