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We introduce some guessing principles sufficient for the existence of non-special 
coherent Aronszajn trees and show how they relate to some of the standard principles in 
Set Theory (1 ke MAm and 0). 

A variant of a question of I. Juhasz asks whether the principle * implies the 
existence of a non-special Aronszajn tree. Motivated by this question, we investi
gate when a coherent Aronszajn tree associated with the QI function of Todorcevic 
(see [5]) is not special. To do this, we define principles ^ and ^ and their 
corresponding weak versions w^o and ŵ Ap. The principles -fa and ^ are strong 
enough to construct non-special coherent Aronszajn trees. All these principles are 
weak in the sense that are all consistent with MAo-centered and some of them are 
strong in the sense that they do not follow from 0. 

Our notation is mostly standard (see Kunen [4] and Jech [2]). We will use A to 
denote the collection of all countable limit ordinals. A C B will be used to denote 
that A is an initial segment of B, whenever A, B are subsets of coi. If A is a subset 
of coi, we will use ot(A) to denote the order-type of A. The symbol — denotes 
concatenation. 

By a C-sequence (see [5]) we mean a sequence <G : a e coi> with the following 
properties: Ca+i = {a} Ca is a cofinal subset of a of order-type co, whenever a is 
a countable limit ordinal > 0. 
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Definition 1. The principles ^Ip, w^lp, ^ o w^o are defined as follows: 

ÎTD There is a C-sequence <& : a e coi> such that for every cp : A -> co there 
are a, /? G A such lhal (p (a) = cp (/?), S/3 n a |Z & arta7 a e Sp. 

w^o There zs a C-sequence <& : a G coi> such that for every cp : A -> CO lhere 
are a, jS G A such lhal <p (a) = <D (/J) and a G S/j. 

^|p There ls a C-sequence <&:aGcoi> such that for every stationary set 
S there are a, /? e S such that Sp n a C & aftd a e S/j. 

w^lp There is a C-sequence <&: a G coi> such that for every stationary set 
S there are a, /? G S such that a G S^. 

Following [5], to every C-sequence < C : a < cOi> we associate two functions 
Oo, Qu The function QO = Oo(Ca: a < coi): [coi]2 - • co<co is defined recursively as 
follows 

n (ff R\= f^Cp n a)'> ~ ^°( a ' m i n ( C A a ) ) if a < )8 
^o^a,p) | 0 i f a = j8' 

Even though, Oo is an important function on its own, we use it only as an auxiliar 
tool in some proofs of the theorems in this article. 

The function Oi = QI (C a : a < coi): [coi]2 - • co is defined recursively by 

( p\ _ J m a x { | Q n a|, Oi(a, min(Cis\a))} if a < /? 
W P J - jo if a = j8' 

Thus, £i(a,j3) is simply the maximal integer appearing in the sequence £o(a,j3). We 
will focus on the function QI. Basic properties of the QI function are mentioned in 
the next lemma. 

Lemma 2 (Todorcevic [5]). For all a < fi < coi and n < co, 
(a) {£ ^ a : £i(£, a) ^ n} is finite, 
(b) {£ ^ a : £i(£,a) # ei(f,j8)} is finite. 

Let gia: a -* CD be defined by Qia(£) = Qi (£, a) for every £ < a. Then it follows 
from the previous lemma that the sequence 

gia: a -> co (a < coi) 

of finite-to-one functions is coherent in the sense that O> = *£i£ f a whenever 
a < j8. (Here = * means the fact that the functions agree on all but finitely many 
arguments). The corresponding tree 

T(QI) = {oip \ a : a < /} ^ co} 

is a coherent Aronszajn tree. 
The following two theorems show the relevance of the guessing principles 

*o and Tip. 

Theorem 3. ^ o implies that there is a non special coherent Aronszajn tree. 
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Proof. Let T = T(Q\) be the coherent Aronszajn tree constructed from a ^ - s e 
quence <S«: a < a>\} i.e. ei = Q\(Sot: oc < co\). To prove the theorem it is enough 
to check that A = {Q\ : a e A} = T is not a countable union of antichains. Given 
any partion cp: A -> co of 4̂, we define a new function <p: A -> co by 
<p(a) = cp(eia) for every a e A. It follows, using ^o, that there are a, j8 e A such 
that $(a) = 0(j8), Sp n a jZ Sa and aeSp. Then let us check that gia <= îB.. 
Let {& : k ^ n} be the increasing enumeration of Ŝ  n a. The proof proceeds by 
cases: 

Case 1. If f e [0, <|;o] then eo(£, j3) = < 0 > - eo(£,£o). Since Sp n a C Sa the 
same holds for eo(£,a). Then by the definition of ei we have that Q\(t;,u) = 
= Qi{Z,P). 

Case 2. If f e (6, ^ i] then e<>(& J8) = <|# n f|> - eo(&min(Sp £)). However, 
Sp n a C Sa implies that ^+i = min (S/i ^) = min(Sa\^) and \Sp n £| = |Sa n £1 
so ei (£, p) = ei (£, a). 

Case 3. 
If £e(Uot) then eo(£,j8) = <n>~ eo(£,a)> and eo(£,a) = <|Sx n £|>~ 

-^Qo(^,mm(S^\^)). However, since Sp n a [Z Sa, rz ^ |Sa n £| so we have that 

< ? i M = ei(&/9). 
Then V̂  < a(eia(£) = eij3(£)). So we are done. • 

Theorem 4. ^ implies that there is a coherent Aronszajn tree T which does 
not have stationary antichains. 

Proof. Let T = T(Q\) be the coherent Aronszajn tree constructed from a ^ - s e 
quence <S«: a < coi> i.e. ei = ei (Sa: a < cOi). The result follows using the same 
argument as in the previous theorem and the following claim. 

Claim. T has a stationary antichain if and only if {eia: a e co\} has one. 
Let us prove the claim, let A = [t*: a e S} be a stationary antichain of T, we 

may assume that |7i o >1| = 1 and ht(t) = a for every a e S . Note that S is 
a stationary set. For each Ue A there is an Fa e [cc]<(° such that fa(^) = gia(£) for 
every £ e (a \Fa). By the pressing down lemma, we can find a stationary set S' =] S 
such that Fa = F for every a e S'. Using again the pressing down lemma we can 
find a stationary set S = S' such that ta \ F = tp \ F for every a < P e S. Then 
V a < / J e £ there is a £e(a\F) such that £a(£) ^ £/?(£)• This implies that 
t<x(£) = eia(^) 7̂  (?-.-?(£) = fy(£)- So {eia:ae5} is a stationary antichain in 
{eia: a < coi}, and this finishes the proof. Q 

As we have seen, the principles ^o and ^ are guessing principles which imply 
the existence of non-special Aronszajn trees. In order to have a better understan
ding of these principles we will compare them with some well known principles 
in set theory, summed up in the following diagram. 
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• l -> w-j*p 

ï 4 
*ч - • w-*o 

i î 
There is a NSAT 0 

^MAco, 

Here NSAT is an abbreviation for non-special Aronszajn tree. As the following 
theorem shows all the principles are relatively consistent with ZFC, even with 
JVl S±o-centered. 

Theorem 5.IfV [G] is the generic extension obtained by adding a single Cohen 
real then V[G] N ^ 1 . 

Proof. From now on assume that c : co -> [co]<co is a Cohen-generic real and 
ea: a -» co (a < cOi) is a coherent sequence of finite-to-one functions. Let 
<G: a < cOi> be an arbitrary C-sequence. We change this C-sequence to a C-se-
quence <Sa < cOi> in the following way: 

Sa = {£ < a : C*(n) ^ £ < Ca(n + 1), e*(£) ec(n)}9 

where Ca(0) = 0 and Ca(rc) is the nth element of Ca for 0 < n < co. Note that 
since eis are finite-to-one ot(Sa) = co. Let us check that <Sa: a < coi> is a ^ - s e 
quence. Assume that A is a stationary subset of coi. Note that if A is stationary in 
V[G], then there is a stationary set AoeV such that 4̂o <z .4. So without loss of 
generality we may assume that A is in the ground model. Fix p e Fn(co, [co]<co) 
with dom (p) e co, use the pressing down lemma to find a stationary set S a A such 
that 5a agree with Sp in all the places decided by p for every a, fi e S. Pick an 
accumulation point ft of S, now choose an a e S in such a way that 
Cp(no) < a ^ C (̂no + 1) where dom(p) < no. Let <I be defined by 

ip (n) if ne dom (p) 
0 if dom(p) < n < no 

{ep(cc)} if n = no 
then q \\- "$p n a E & & a e V - • 

Corollary 6. ^ (and hence a/so ^o, w ^ and w-jitp,) are relatively consistent 
With MAa-centered. 

Proof Let Fbe a model of NM and P a forcing which adds a single Cohen real. 
By the previous theorem if G is a P-generic filter then M [G] 1= ^ and by the 
theorem of Roitman (see [1]) the extension M [G] N MAa-centered. • 

The fact that after adding a single Cohen real there is a coherent Aronszajn tree 
without stationary antichains was first observed by B. Konig in [3]. The following 
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propositions give us some relationship between 0 and 0 + with our guessing 
principles. 

Proposition 7. 0 implies w^o. 

Proof. Let <<#*: aecoi> be a O-sequence which guesses elements of co031 (i.e. 
cpa e co01). Define Xa = {n: cp~l (n) is cofinal in a} for every limit a. For every a e A 
choose Sa .= a of order type CO such that Sa n (Da-1^) is a cofinal in a for every 
n e XOL. This is very easy to do. Let us check that the C-sequence <Sx: a < coi> 
has the required properties. Now, let cp : A -> co be given. Set X = {rze co : cp~l (n) 
is cofinal in cOi} and C = {a: Vrc e X (cp~l (n) is cofinal in a)}. It is easy to see that 
C is a club in coi. Let be £0 = max {cp~l (n): n $ X} + 1 and S = {a: <Da = cp \ a}. 
Pick any (1 E C n S n [£o, cOi) then <p (/?) = no E Xp. It follows from the properties 
of Sp that there is an a e Sp such that <p (a) = m. • 

Proposition 8. 0 + implies w^. 

Proof. Let < j / a : a e cO!> be a 0+-sequence. For each a, let Sa cz a be a sequence 
of order-type co such that Sa n A / 0 for every yl e j / a (this can be done by an 
easy induction). Let us verify that (Sa:uE co{} is a w^-sequence. Given 
a stationary set S, there is a club C such that Va e C (S n a e -s/a). Pick any 
P E(C n S) then Sp n(S n fi) ^ 0 , now choose aE Sp n (S n p). Then a, /? e S .̂ 
So we are done. • 

We do not know if in the previous propositions we can replace the weak versions 
for the stronger ones. However, we have some limitations as the following theorem 
shows. 

Theorem 9. 0 does not imply w ^ . 
To prove the theorem we need the following lemmas. 

Lemma 10. For every C-sequence <Sa: a e coxy there is an a such that for every 
P > a, {y: (Sy\a) n ft = 0}is stationary. 

Proof Suppose that this is not the case. Then for every a there is a (1(a) and 
a club Ca such that (Sy \a) n ft (a) ^ 0 , whenever y E Ca. Pick a0 E CO{ and define 
an+1 = P(an). Let £ e P|nGa> Can be greater than a = sup {o^'.nE co}. Since Ŝ  inter
sects each interval [an, an+1), a is an accumulation point of S ,̂ so the order-type 
of S«* is greater than co, which is a contradiction. • 

The following lemma is a well known fact. 

Lemma 11. (1) Countable support iteration of 0-closed forcings is o-closed, 
(2) Every o-closed forcing preserves 0. 

Proof of theorem 9. For every C-sequence # = <Ca: a e cO!>, define the notion 
of forcing P^ where 

Pv = {PE2<W i V a e p " 1 ^ Canp~l(l) = 0 a n d p f a^ = 0} 
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Here a^ is the a in the previous lemma which correspond to the C-sequence # , 
and the order is by extension. 

Claim 1. P^ is a cr-closed forcing. 
Let pn be a decreasing sequence of conditions in P^ and set pw = (JnGC0Pn. 

Obviously, pw e 2<C01 and j?w f a^ = 0. Suppose that there are a, /? G nm
 1 (1) such 

that OLE Cp i.e. C^ n p~ *(1) / 0 , then there are n, me co such that a e dom(pn) 
and jS G dom(pm) but this implies that a, /? e PvU(l) ai1d C/J n Pm+n(l) 7-= 0 w h i c h 
is a contradiction. 

Claim 2. P<# forces that ^ is not a w^-sequence. 
Let fG be the P^-generic function and S = fG

x (1). To see that <€ is not a witness 
for w-jAn in M [ G ] it suffices to prove that S is stationary in M [ G ] . Let C be 
a name for a club and p e P ^ a condition such that p ||- "C is a club". By Lemma 
10, we can find a sequence M0 c= M{ <= ... <= Mn c= ... of countable elementary 
submodels of H(£) for £ large enough, such that p, <Ca:aGcO1>, C e M0 and 
moreover, (C^n\%) n dom(p) = 0 , where (5n = Mn n cOi and we may assume that 
6n G Mn+1. Set Mw = (JnGC0 Mn and (5 = Mw n coj. We will construct a sequence 
pn of conditions such that pn+1 ^ pm pn \\- "dn e C", pn

l (1) n Q = 0 a n d pn G Mn 

by recursion as follows: 
Let £0 = max(C,5 n <50), and extend p to a condition q = p u {(a,0): a G 

G [dom(p), £0]}. Note that qeM0. Since M 0 [ G ] N " C is a club" there is an 
rj0 G cOi n M0 and a p0 G P^ n M0, p0 ^ q such that p0 ||- "r/0 G C". 

For the inductive step assume that we have constructed pk fork^n with the 
required properties. Pick £n+1 < 3n+1 such that £n+1 > max(C3 n Sn+1). Then 
q = pn\j {(a,0): a e [dom(pn), ^ „ + I ] } G M n + 1 is a condition. As g ||- "C is a club" 
there is a r/n+1 < <5n+1 and a condition q>pn+iGMn+1

 s u c h that 

Pn+1 lh \ + i e C " . 
Finally, let 

A» = U ^ " u {(<M)}. 
necu 

Note that pw is a condition as / ^ ( l ) n Cs = 0. As pw ^ p„ for all new, 
Pco lh "{tyi: w G &>} — C". As <5 = supnecorjn and since C is a name for a club 
pw \\- "5 e $ n C". So S is stationary and Claim 2 holds. 

Let V = Land construct a countable support iteration P = <Pa, Q a : a < cO2> so 
that ||- Pa "Q a = P^ for some C - sequence ^" . By a standard book-keeping 
argument one can make sure that all C-sequences in the intermediate models are 
listed. Let G be a P-generic. Since every C-sequence ^ in M [G] has a Pa-name 
for some a < co2, and at some stage /? < co2 we have that Q^ = P^ then ^ is not 
a w^-sequence. So M [ G ] N —iw^ and by the Lemma 11. M [ G ] N 0. 

Finally we show that none of the principles is consistent with Martin's Axiom. 

Theorem 12. MA(a>i) implies —\W^0. 
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Proof. Let <Ca: a < cOi} be a C-sequence. Define 

P = {p:A^(o:Ae [A]«", (Va < p){p{a) = p{[S) -> a £ C,)} 

ordered by inverse inclusion. It is easy to see that, if fG is the generic function, 
thenfG is defined on A and forces that <Ca: a < cLh> is not a w^0-- s e c lu e n c e> t 0 

assure both we need to meet only co1 many dense sets. To finish the proof it 
suffices to check that: 

Claim P is a c.c.c. forcing. 
Suppose that {pa: a e co{] is an antichain. By a standard A-system type argument, 

we can assume that their domains form a A-system with root r, such that there is 
a N ECO with |dom(Pa)| = jV for each a e co{ and all the functions agree on r. 
Moreover, we can assume that dom(pa) n dom(pp) = 0 f o r every a, (5 ecou and 
max(dom(Pa)) < min(dom(pp)) if a < /?. Now, set dom^^+i) = {&, ..., £N}. 
Since /VJV+I is incompatible with pa for every a < co • jV + 1, ({JtLiC^ n 
dom(p ) ?-= 0 f o r every a < co • jV + 1. Then by the pigeon hole principle there 
is a i such that ot(Q.) > co + 1. However, this contradicts the fact that 
<Ca: a < cO!> is a C-sequence, so we are done. • 

We conclude with some open problems. 

Question 13. (1) Does w ^ imply ^ , ? 
(2) Does wico imply -jfcb? 
(2) Does * imply ^0? 
An earlier version of this paper contained also the following questions: (4) Does 

0 + imply ^Ifi? and (5) Does 0 imply ^b? These questions were answered by Paul 
Larson. We present the proofs with his kind permission. 

Theorem 14 (Larson), (i) 0 implies ^ . 
(ii) 0 + implies ^ . 

Proof. Fix for every limit ordinal a < co{ a strictly increasing sequence 
{otn'.nE co] such that supnecootn = ot and let 9 be a sufficiently large regular cardinal. 

To prove (i) let <<pa: a < co{y be a O-sequence which guesses elements of coWl 

(i.e. <Da e co*). Construct recursively a C-sequence <Sa: a e A> and a sequence 
<<̂  : a G A, rc E co} of finite subsets of a with the following properties: 

(i) Sa = (J n G 0 X, 
(ii) el C ejj+i, max(e£+1) > a„, 

(111) ^n+i = elu {£}, where 
£ = min {r/: r; > max(e£ u {a„}) A en C Ŝ  A <pa(£) = rc} if such £ exists, ot

herwise (̂  = otN, where N = min {k: otk > (en u {«„})}. 
Now let us check that <Sa: a E A> is a ^ 0 - s e q u e n c e - It follows from (ii) that 

Sa is cofinal in a with order type co for every limit a < co^ Let cp : cox -> co be 
given. Set S = {a < A : <Da = <D \ a}, since <<pa: a < cO!> is a O-sequence S is 
a stationary set. Since C = {o\n M :M <H(d) such that <p, <Sa: a < A>, 
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{%: a < cO!> e M} is a club there is an M e C such that M n a>j = 5 e S. 
Suppose that (p(d) = n and let en_{ = Ss \ n — 1 (here e8_x = 0)then for every 
a e M 

H(6)t_p>oi((p(l3) = n A 4-iLZSp. 

So, there is an a e S, a > (ejj u {a„}) such that n = (p(a) = (ps(oc) and es
n x Z 5a. 

It follows for the construction of e^+1 that en+l = enu {£} for some £ with the 
same properties as a. Then (p(£) = (p(5\ £ e Ss and Ss n a = e^+1 Z S^. 

To prove (ii) let <j/a:a<cO1> be a 0+-sequence. Enumerate j / a as 
[A^ : rc G co}. Construct recursively a C-sequence <Sa: a G A> and a sequence 
( ^ : a e A, neat} of finite subsets of a with the following properties: 

(i) Sa = \Jne_en, 
(ii) ea

n \Zea
n+l, max(e«+1) > an, 

(iii) ea
n+l = ea

nu {£}, where 
£ = min (r] :rj > max(e* u {â }) A e£ Z S„ A (£) G A£+1} if such £ exists, ot

herwise £ = (xN, where JV = min (k: afc > (en u {o^})}. 
Now let us check that <Sa: a e A> is a ^-sequence. It follows from (ii) 

that Sa is cofinal in a with order type co. Let S be stationary. Set D = 
= { a < A : S n a G s/a}9 since (s/a: a < cOj> is a 0+-sequence D is a club. Since 
C = {cOj n M : M -< H(0) such that S, <Sa: a < A>, <j/ a : a < cOj> G M} is 
a club there is an M e C such that MncO1 = O:GSnD. Suppose that 
S n (5 = An and let ef_x = Ss \ n — 1 then for every a G M 

H(6)\=_p > a(PeS A ^ _ i ZS/j). 

So, there is an a e (5, a > (ejj u {a„}) such that a e As
n+1 and ef Z Sa. It follows for 

the construction of es
n+i that e^+1 = en u {£}for some £ with the same properties 

as a. Then we have that £ G S, £ G Ŝ  and Ŝ  n £ = en_i Z Ŝ . D 
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