
Acta Universitatis Carolinae. Mathematica et Physica

Michael Hrušák; Carlos Martínez Ranero
Some remarks on non-special coherent Aronszajn trees

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 46 (2005), No. 2, 33--40

Persistent URL: http://dml.cz/dmlcz/702104

Terms of use:
© Univerzita Karlova v Praze, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702104
http://project.dml.cz


2005 ACTA UNIVERSITATIS CAROLINAE MATHEMATICA ET PHYSICA VOL. 46, NO 2 

Some Remarks on Non-Special Coherent Aronszajn Trees 

MICHAEL HRUŠÁK AND CARLOS MARTINEZ RANERO 

Morelia 

Received 11. March 2005 

We introduce some guessing principles sufficient for the existence of non-special 
coherent Aronszajn trees and show how they relate to some of the standard principles in 
Set Theory (1 ke MAm and 0). 

A variant of a question of I. Juhasz asks whether the principle * implies the 
existence of a non-special Aronszajn tree. Motivated by this question, we investi­
gate when a coherent Aronszajn tree associated with the QI function of Todorcevic 
(see [5]) is not special. To do this, we define principles ^ and ^ and their 
corresponding weak versions w^o and ŵ Ap. The principles -fa and ^ are strong 
enough to construct non-special coherent Aronszajn trees. All these principles are 
weak in the sense that are all consistent with MAo-centered and some of them are 
strong in the sense that they do not follow from 0. 

Our notation is mostly standard (see Kunen [4] and Jech [2]). We will use A to 
denote the collection of all countable limit ordinals. A C B will be used to denote 
that A is an initial segment of B, whenever A, B are subsets of coi. If A is a subset 
of coi, we will use ot(A) to denote the order-type of A. The symbol — denotes 
concatenation. 

By a C-sequence (see [5]) we mean a sequence <G : a e coi> with the following 
properties: Ca+i = {a} Ca is a cofinal subset of a of order-type co, whenever a is 
a countable limit ordinal > 0. 
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Definition 1. The principles ^Ip, w^lp, ^ o w^o are defined as follows: 

ÎTD There is a C-sequence <& : a e coi> such that for every cp : A -> co there 
are a, /? G A such lhal (p (a) = cp (/?), S/3 n a |Z & arta7 a e Sp. 

w^o There zs a C-sequence <& : a G coi> such that for every cp : A -> CO lhere 
are a, jS G A such lhal <p (a) = <D (/J) and a G S/j. 

^|p There ls a C-sequence <&:aGcoi> such that for every stationary set 
S there are a, /? e S such that Sp n a C & aftd a e S/j. 

w^lp There is a C-sequence <&: a G coi> such that for every stationary set 
S there are a, /? G S such that a G S^. 

Following [5], to every C-sequence < C : a < cOi> we associate two functions 
Oo, Qu The function QO = Oo(Ca: a < coi): [coi]2 - • co<co is defined recursively as 
follows 

n (ff R\= f^Cp n a)'> ~ ^°( a ' m i n ( C A a ) ) if a < )8 
^o^a,p) | 0 i f a = j8' 

Even though, Oo is an important function on its own, we use it only as an auxiliar 
tool in some proofs of the theorems in this article. 

The function Oi = QI (C a : a < coi): [coi]2 - • co is defined recursively by 

( p\ _ J m a x { | Q n a|, Oi(a, min(Cis\a))} if a < /? 
W P J - jo if a = j8' 

Thus, £i(a,j3) is simply the maximal integer appearing in the sequence £o(a,j3). We 
will focus on the function QI. Basic properties of the QI function are mentioned in 
the next lemma. 

Lemma 2 (Todorcevic [5]). For all a < fi < coi and n < co, 
(a) {£ ^ a : £i(£, a) ^ n} is finite, 
(b) {£ ^ a : £i(£,a) # ei(f,j8)} is finite. 

Let gia: a -* CD be defined by Qia(£) = Qi (£, a) for every £ < a. Then it follows 
from the previous lemma that the sequence 

gia: a -> co (a < coi) 

of finite-to-one functions is coherent in the sense that O> = *£i£ f a whenever 
a < j8. (Here = * means the fact that the functions agree on all but finitely many 
arguments). The corresponding tree 

T(QI) = {oip \ a : a < /} ^ co} 

is a coherent Aronszajn tree. 
The following two theorems show the relevance of the guessing principles 

*o and Tip. 

Theorem 3. ^ o implies that there is a non special coherent Aronszajn tree. 
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Proof. Let T = T(Q\) be the coherent Aronszajn tree constructed from a ^ - s e ­
quence <S«: a < a>\} i.e. ei = Q\(Sot: oc < co\). To prove the theorem it is enough 
to check that A = {Q\ : a e A} = T is not a countable union of antichains. Given 
any partion cp: A -> co of 4̂, we define a new function <p: A -> co by 
<p(a) = cp(eia) for every a e A. It follows, using ^o, that there are a, j8 e A such 
that $(a) = 0(j8), Sp n a jZ Sa and aeSp. Then let us check that gia <= îB.. 
Let {& : k ^ n} be the increasing enumeration of Ŝ  n a. The proof proceeds by 
cases: 

Case 1. If f e [0, <|;o] then eo(£, j3) = < 0 > - eo(£,£o). Since Sp n a C Sa the 
same holds for eo(£,a). Then by the definition of ei we have that Q\(t;,u) = 
= Qi{Z,P). 

Case 2. If f e (6, ^ i] then e<>(& J8) = <|# n f|> - eo(&min(Sp £)). However, 
Sp n a C Sa implies that ^+i = min (S/i ^) = min(Sa\^) and \Sp n £| = |Sa n £1 
so ei (£, p) = ei (£, a). 

Case 3. 
If £e(Uot) then eo(£,j8) = <n>~ eo(£,a)> and eo(£,a) = <|Sx n £|>~ 

-^Qo(^,mm(S^\^)). However, since Sp n a [Z Sa, rz ^ |Sa n £| so we have that 

< ? i M = ei(&/9). 
Then V̂  < a(eia(£) = eij3(£)). So we are done. • 

Theorem 4. ^ implies that there is a coherent Aronszajn tree T which does 
not have stationary antichains. 

Proof. Let T = T(Q\) be the coherent Aronszajn tree constructed from a ^ - s e ­
quence <S«: a < coi> i.e. ei = ei (Sa: a < cOi). The result follows using the same 
argument as in the previous theorem and the following claim. 

Claim. T has a stationary antichain if and only if {eia: a e co\} has one. 
Let us prove the claim, let A = [t*: a e S} be a stationary antichain of T, we 

may assume that |7i o >1| = 1 and ht(t) = a for every a e S . Note that S is 
a stationary set. For each Ue A there is an Fa e [cc]<(° such that fa(^) = gia(£) for 
every £ e (a \Fa). By the pressing down lemma, we can find a stationary set S' =] S 
such that Fa = F for every a e S'. Using again the pressing down lemma we can 
find a stationary set S = S' such that ta \ F = tp \ F for every a < P e S. Then 
V a < / J e £ there is a £e(a\F) such that £a(£) ^ £/?(£)• This implies that 
t<x(£) = eia(^) 7̂  (?-.-?(£) = fy(£)- So {eia:ae5} is a stationary antichain in 
{eia: a < coi}, and this finishes the proof. Q 

As we have seen, the principles ^o and ^ are guessing principles which imply 
the existence of non-special Aronszajn trees. In order to have a better understan­
ding of these principles we will compare them with some well known principles 
in set theory, summed up in the following diagram. 
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• l -> w-j*p 

ï 4 
*ч - • w-*o 

i î 
There is a NSAT 0 

^MAco, 

Here NSAT is an abbreviation for non-special Aronszajn tree. As the following 
theorem shows all the principles are relatively consistent with ZFC, even with 
JVl S±o-centered. 

Theorem 5.IfV [G] is the generic extension obtained by adding a single Cohen 
real then V[G] N ^ 1 . 

Proof. From now on assume that c : co -> [co]<co is a Cohen-generic real and 
ea: a -» co (a < cOi) is a coherent sequence of finite-to-one functions. Let 
<G: a < cOi> be an arbitrary C-sequence. We change this C-sequence to a C-se-
quence <Sa < cOi> in the following way: 

Sa = {£ < a : C*(n) ^ £ < Ca(n + 1), e*(£) ec(n)}9 

where Ca(0) = 0 and Ca(rc) is the nth element of Ca for 0 < n < co. Note that 
since eis are finite-to-one ot(Sa) = co. Let us check that <Sa: a < coi> is a ^ - s e ­
quence. Assume that A is a stationary subset of coi. Note that if A is stationary in 
V[G], then there is a stationary set AoeV such that 4̂o <z .4. So without loss of 
generality we may assume that A is in the ground model. Fix p e Fn(co, [co]<co) 
with dom (p) e co, use the pressing down lemma to find a stationary set S a A such 
that 5a agree with Sp in all the places decided by p for every a, fi e S. Pick an 
accumulation point ft of S, now choose an a e S in such a way that 
Cp(no) < a ^ C (̂no + 1) where dom(p) < no. Let <I be defined by 

ip (n) if ne dom (p) 
0 if dom(p) < n < no 

{ep(cc)} if n = no 
then q \\- "$p n a E & & a e V - • 

Corollary 6. ^ (and hence a/so ^o, w ^ and w-jitp,) are relatively consistent 
With MAa-centered. 

Proof Let Fbe a model of NM and P a forcing which adds a single Cohen real. 
By the previous theorem if G is a P-generic filter then M [G] 1= ^ and by the 
theorem of Roitman (see [1]) the extension M [G] N MAa-centered. • 

The fact that after adding a single Cohen real there is a coherent Aronszajn tree 
without stationary antichains was first observed by B. Konig in [3]. The following 
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propositions give us some relationship between 0 and 0 + with our guessing 
principles. 

Proposition 7. 0 implies w^o. 

Proof. Let <<#*: aecoi> be a O-sequence which guesses elements of co031 (i.e. 
cpa e co01). Define Xa = {n: cp~l (n) is cofinal in a} for every limit a. For every a e A 
choose Sa .= a of order type CO such that Sa n (Da-1^) is a cofinal in a for every 
n e XOL. This is very easy to do. Let us check that the C-sequence <Sx: a < coi> 
has the required properties. Now, let cp : A -> co be given. Set X = {rze co : cp~l (n) 
is cofinal in cOi} and C = {a: Vrc e X (cp~l (n) is cofinal in a)}. It is easy to see that 
C is a club in coi. Let be £0 = max {cp~l (n): n $ X} + 1 and S = {a: <Da = cp \ a}. 
Pick any (1 E C n S n [£o, cOi) then <p (/?) = no E Xp. It follows from the properties 
of Sp that there is an a e Sp such that <p (a) = m. • 

Proposition 8. 0 + implies w^. 

Proof. Let < j / a : a e cO!> be a 0+-sequence. For each a, let Sa cz a be a sequence 
of order-type co such that Sa n A / 0 for every yl e j / a (this can be done by an 
easy induction). Let us verify that (Sa:uE co{} is a w^-sequence. Given 
a stationary set S, there is a club C such that Va e C (S n a e -s/a). Pick any 
P E(C n S) then Sp n(S n fi) ^ 0 , now choose aE Sp n (S n p). Then a, /? e S .̂ 
So we are done. • 

We do not know if in the previous propositions we can replace the weak versions 
for the stronger ones. However, we have some limitations as the following theorem 
shows. 

Theorem 9. 0 does not imply w ^ . 
To prove the theorem we need the following lemmas. 

Lemma 10. For every C-sequence <Sa: a e coxy there is an a such that for every 
P > a, {y: (Sy\a) n ft = 0}is stationary. 

Proof Suppose that this is not the case. Then for every a there is a (1(a) and 
a club Ca such that (Sy \a) n ft (a) ^ 0 , whenever y E Ca. Pick a0 E CO{ and define 
an+1 = P(an). Let £ e P|nGa> Can be greater than a = sup {o^'.nE co}. Since Ŝ  inter­
sects each interval [an, an+1), a is an accumulation point of S ,̂ so the order-type 
of S«* is greater than co, which is a contradiction. • 

The following lemma is a well known fact. 

Lemma 11. (1) Countable support iteration of 0-closed forcings is o-closed, 
(2) Every o-closed forcing preserves 0. 

Proof of theorem 9. For every C-sequence # = <Ca: a e cO!>, define the notion 
of forcing P^ where 

Pv = {PE2<W i V a e p " 1 ^ Canp~l(l) = 0 a n d p f a^ = 0} 

37 



Here a^ is the a in the previous lemma which correspond to the C-sequence # , 
and the order is by extension. 

Claim 1. P^ is a cr-closed forcing. 
Let pn be a decreasing sequence of conditions in P^ and set pw = (JnGC0Pn. 

Obviously, pw e 2<C01 and j?w f a^ = 0. Suppose that there are a, /? G nm
 1 (1) such 

that OLE Cp i.e. C^ n p~ *(1) / 0 , then there are n, me co such that a e dom(pn) 
and jS G dom(pm) but this implies that a, /? e PvU(l) ai1d C/J n Pm+n(l) 7-= 0 w h i c h 
is a contradiction. 

Claim 2. P<# forces that ^ is not a w^-sequence. 
Let fG be the P^-generic function and S = fG

x (1). To see that <€ is not a witness 
for w-jAn in M [ G ] it suffices to prove that S is stationary in M [ G ] . Let C be 
a name for a club and p e P ^ a condition such that p ||- "C is a club". By Lemma 
10, we can find a sequence M0 c= M{ <= ... <= Mn c= ... of countable elementary 
submodels of H(£) for £ large enough, such that p, <Ca:aGcO1>, C e M0 and 
moreover, (C^n\%) n dom(p) = 0 , where (5n = Mn n cOi and we may assume that 
6n G Mn+1. Set Mw = (JnGC0 Mn and (5 = Mw n coj. We will construct a sequence 
pn of conditions such that pn+1 ^ pm pn \\- "dn e C", pn

l (1) n Q = 0 a n d pn G Mn 

by recursion as follows: 
Let £0 = max(C,5 n <50), and extend p to a condition q = p u {(a,0): a G 

G [dom(p), £0]}. Note that qeM0. Since M 0 [ G ] N " C is a club" there is an 
rj0 G cOi n M0 and a p0 G P^ n M0, p0 ^ q such that p0 ||- "r/0 G C". 

For the inductive step assume that we have constructed pk fork^n with the 
required properties. Pick £n+1 < 3n+1 such that £n+1 > max(C3 n Sn+1). Then 
q = pn\j {(a,0): a e [dom(pn), ^ „ + I ] } G M n + 1 is a condition. As g ||- "C is a club" 
there is a r/n+1 < <5n+1 and a condition q>pn+iGMn+1

 s u c h that 

Pn+1 lh \ + i e C " . 
Finally, let 

A» = U ^ " u {(<M)}. 
necu 

Note that pw is a condition as / ^ ( l ) n Cs = 0. As pw ^ p„ for all new, 
Pco lh "{tyi: w G &>} — C". As <5 = supnecorjn and since C is a name for a club 
pw \\- "5 e $ n C". So S is stationary and Claim 2 holds. 

Let V = Land construct a countable support iteration P = <Pa, Q a : a < cO2> so 
that ||- Pa "Q a = P^ for some C - sequence ^" . By a standard book-keeping 
argument one can make sure that all C-sequences in the intermediate models are 
listed. Let G be a P-generic. Since every C-sequence ^ in M [G] has a Pa-name 
for some a < co2, and at some stage /? < co2 we have that Q^ = P^ then ^ is not 
a w^-sequence. So M [ G ] N —iw^ and by the Lemma 11. M [ G ] N 0. 

Finally we show that none of the principles is consistent with Martin's Axiom. 

Theorem 12. MA(a>i) implies —\W^0. 
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Proof. Let <Ca: a < cOi} be a C-sequence. Define 

P = {p:A^(o:Ae [A]«", (Va < p){p{a) = p{[S) -> a £ C,)} 

ordered by inverse inclusion. It is easy to see that, if fG is the generic function, 
thenfG is defined on A and forces that <Ca: a < cLh> is not a w^0-- s e c lu e n c e> t 0 

assure both we need to meet only co1 many dense sets. To finish the proof it 
suffices to check that: 

Claim P is a c.c.c. forcing. 
Suppose that {pa: a e co{] is an antichain. By a standard A-system type argument, 

we can assume that their domains form a A-system with root r, such that there is 
a N ECO with |dom(Pa)| = jV for each a e co{ and all the functions agree on r. 
Moreover, we can assume that dom(pa) n dom(pp) = 0 f o r every a, (5 ecou and 
max(dom(Pa)) < min(dom(pp)) if a < /?. Now, set dom^^+i) = {&, ..., £N}. 
Since /VJV+I is incompatible with pa for every a < co • jV + 1, ({JtLiC^ n 
dom(p ) ?-= 0 f o r every a < co • jV + 1. Then by the pigeon hole principle there 
is a i such that ot(Q.) > co + 1. However, this contradicts the fact that 
<Ca: a < cO!> is a C-sequence, so we are done. • 

We conclude with some open problems. 

Question 13. (1) Does w ^ imply ^ , ? 
(2) Does wico imply -jfcb? 
(2) Does * imply ^0? 
An earlier version of this paper contained also the following questions: (4) Does 

0 + imply ^Ifi? and (5) Does 0 imply ^b? These questions were answered by Paul 
Larson. We present the proofs with his kind permission. 

Theorem 14 (Larson), (i) 0 implies ^ . 
(ii) 0 + implies ^ . 

Proof. Fix for every limit ordinal a < co{ a strictly increasing sequence 
{otn'.nE co] such that supnecootn = ot and let 9 be a sufficiently large regular cardinal. 

To prove (i) let <<pa: a < co{y be a O-sequence which guesses elements of coWl 

(i.e. <Da e co*). Construct recursively a C-sequence <Sa: a e A> and a sequence 
<<̂  : a G A, rc E co} of finite subsets of a with the following properties: 

(i) Sa = (J n G 0 X, 
(ii) el C ejj+i, max(e£+1) > a„, 

(111) ^n+i = elu {£}, where 
£ = min {r/: r; > max(e£ u {a„}) A en C Ŝ  A <pa(£) = rc} if such £ exists, ot­

herwise (̂  = otN, where N = min {k: otk > (en u {«„})}. 
Now let us check that <Sa: a E A> is a ^ 0 - s e q u e n c e - It follows from (ii) that 

Sa is cofinal in a with order type co for every limit a < co^ Let cp : cox -> co be 
given. Set S = {a < A : <Da = <D \ a}, since <<pa: a < cO!> is a O-sequence S is 
a stationary set. Since C = {o\n M :M <H(d) such that <p, <Sa: a < A>, 
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{%: a < cO!> e M} is a club there is an M e C such that M n a>j = 5 e S. 
Suppose that (p(d) = n and let en_{ = Ss \ n — 1 (here e8_x = 0)then for every 
a e M 

H(6)t_p>oi((p(l3) = n A 4-iLZSp. 

So, there is an a e S, a > (ejj u {a„}) such that n = (p(a) = (ps(oc) and es
n x Z 5a. 

It follows for the construction of e^+1 that en+l = enu {£} for some £ with the 
same properties as a. Then (p(£) = (p(5\ £ e Ss and Ss n a = e^+1 Z S^. 

To prove (ii) let <j/a:a<cO1> be a 0+-sequence. Enumerate j / a as 
[A^ : rc G co}. Construct recursively a C-sequence <Sa: a G A> and a sequence 
( ^ : a e A, neat} of finite subsets of a with the following properties: 

(i) Sa = \Jne_en, 
(ii) ea

n \Zea
n+l, max(e«+1) > an, 

(iii) ea
n+l = ea

nu {£}, where 
£ = min (r] :rj > max(e* u {â }) A e£ Z S„ A (£) G A£+1} if such £ exists, ot­

herwise £ = (xN, where JV = min (k: afc > (en u {o^})}. 
Now let us check that <Sa: a e A> is a ^-sequence. It follows from (ii) 

that Sa is cofinal in a with order type co. Let S be stationary. Set D = 
= { a < A : S n a G s/a}9 since (s/a: a < cOj> is a 0+-sequence D is a club. Since 
C = {cOj n M : M -< H(0) such that S, <Sa: a < A>, <j/ a : a < cOj> G M} is 
a club there is an M e C such that MncO1 = O:GSnD. Suppose that 
S n (5 = An and let ef_x = Ss \ n — 1 then for every a G M 

H(6)\=_p > a(PeS A ^ _ i ZS/j). 

So, there is an a e (5, a > (ejj u {a„}) such that a e As
n+1 and ef Z Sa. It follows for 

the construction of es
n+i that e^+1 = en u {£}for some £ with the same properties 

as a. Then we have that £ G S, £ G Ŝ  and Ŝ  n £ = en_i Z Ŝ . D 
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