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We give a proof of the Kuratowski-Knaster-Mazurkiewicz-Shapley Theorem based on 
Kakutani's fixed point theorem. This theorem is a very important tool in the general 
equilibrium theory of economic analysis. 

Introduction. In 1929 Knaster, Kuratowski and Mazurkiewicz [6] published 
a kind of an intersection theorem (the KKM theorem), where some conditions are 
given for a closed covering of a simplex has a non-empty intersection. In 1967 
Scarf [11] proved that any non-transferable utility game whose characteristic 
function is balanced, has a non-empty core. His proof is based on an algorithm 
which approximates fixed points. Shapley [12] replaced the Scarf algorithm by 
a covering theorem (the KKMS theorem) being a generalization of the KKM 
theorem. Therefore the main difficulty to show the nonemptiness of the core lies 
in proofs of the KKMS theorem. Thus, Shapley's theorem as an extension of the 
KKM theorem became very useful to prove the existence of solutions in general 
equilibrium theory and game theory. In [9] the author considered some intersec-
tions theorems involving Helly's intersection theorem. In this paper we would like 
to present Shapley's theorem as a kind of a dual theorem on coverings. There are 
a number of papers (see e.g., [1], [7], [8]) containing elementary and simple proofs 
of the KKMS theorem. The proof which is given in this note is a direct 
consequence of well-known for economists, Kakutani's fixed point theorem [5]. 

Let us establish some terminology and notations. Denote the set {1,..., n) by 
IV and the family of nonempty suubsets of ЛГ by Jí. For each point xe Rn let 
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sup x : = {ie N : xt > 0} and sup x : = {ie N : xt > 0} 

Denote by A the unit simplex in Rn; 
n 

A:= {xe Rn :x = Yjxt = 1 a n d supx = N} 
i = i 

and for each S e Jf let As be an 5-face of A; 

As := {xe A : supx cz S} 

The symbol conv A stands for the convex hull of a set A. 

Main Theorem. The following theorem is a covering version of the Shapley 
Theorem. 

Theorem. Let {C?: S e Jf} be a family of closed subsets of A such that 
AT cz [JS^TCS for each Te Jf and let {$ : S e Jf} be a family of points of A such 
that sup ds cz S for each S e Jf. 

Then A = (JxeA conv {$ : x e Cs}. 

Proof. Let X := {xe Rn :Yj=iXt = 1 and xt > —1 for each i < n}. Define 
a continuous map (retraction) r : X -> A such that r (x) = x for each x e A ; 

max {0,Xi} . 
r i \ x ) : = =^n f n i f o r e a c h l = *' ••• ' n 

Fix a point m e A and define a continuous map f: X x A ^> X; 
(1) f(x,p):= r(x) + m - p. 
Next, define set-valued maps F: X -> 2A and 0 : K x A -> 2 X x A ; 
(2) F (x): = conv {d5: r (x) G C5 and 5 cz slip x} 
(3) 0 ( x , p ) : = { f ( x , p ) } x F ( x ) . 
Assume that (x, p) is a fixed point of the map 0, i.e., (x, p) e 4> (x, p\ Observe that 
xe A. Indeed, if x <£ A there exists j such that x; < 0. Since j $ sup x and sup 
ds cz S9 according to (2), we infer that p} = 0, and from (1) we obtain; x; = ^(x , 
p) = 0 + m] > 0, a contradiction to x; < 0. 

Since r(x) = x for each x e A, from (1) we obtain; x = f(x,p) = x + m — p, 
and this yields m = p. 

Thus we have proved that if the multivalued map (j) has a fixed point then for 
each point me A there exist a point x e A such that me F (x). 

In order to complete the proof it suffices to verify that the map (/> satisfies the 
assumptions of the Kakutani's fixed point theorem. It is clear that for each point 
(x,p) e X x A, the set (j)(x,p) is non-empty and convex. It remains to show that 
the graph W((j>): = {(z,u): z e X x A, ue (j) (z)} is a closed subset of (X x A)2. 

Assume that (zm,um) -> (z,u) whenever m -> oo, where (zm, um)eW ((/>), 
*m = (xm, pm), um = (f(zm), ym) and ym eF(xm). By continuity of fit follows that 
zm -+ f(z) whenever m -> oo. Now, we are reduced to proving that y e P(x). 
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For each xeX consider a subset of Jf\ 

B(x):= {Scz jN :r(x)eCs and S cz supx}. 

The family {B(xm):m = 1, 2, ...} consists of subsets of the finite set Jf and 
therefore there exists a set B cz «yV and subsequence {r^} such that B = B (xmk) for 
each k. 

Since the sets Cs are closed and S e B (xm) implies S cz sup x, we infer that 
B cz B (X) whenever xmk -> x. 

Note that, ymfc e conv (ds : S e B} = F (xmk). Since ymk -> y whenever k -> oo, we 
infer that y e F (xmk) = conv {cF : S e B} cz conv {£ :S eB (x)} = F (x). This com
pletes the proof. 

Statement of KKMS Theorem. For each i < n let e[ e Rn be an rz-vector whose 
i-th coordinate is 1 and 0 otherwise. Denote for each S e Jf, es: = Yjies^-
A subfamily £% of Jf is said to be balanced if there are nonnegative weights Xs, 
S e &, such that eN = £ S e ^ Xses. One can prove that & is balanced if and only if 
mN e conv {m5 : S e 3$}, where ms is the center of gravity of the face As, that is, 
ms = |s* where \S\ denotes the cardinality of S. In fact we need to know that 
mN e conv {nf :Se$} implies eN = ]^s6^ se5 . But it is obvious, because if 

m 
N ~ Y.se@tsms, where ts > 0, then eN = Xse^V.where Xs = $ . 
Replacing points ds by the points ms we immediately obtain a point x e A such 

that mN e conv {m*: x G C5} and this is exactly Shapley's theorem; 

Theorem (KKMS). Let {C? : S e Jf} be a family of closed subsets of A and 
assume that A r cz (JS c = rC

5 for each Te Jf. 
Then there exists a balanced family 3$ such that P|S e^C s # 0. 
KKMS Theorem is an extension of KKM Theorem. To see this, let us assume 

that C5 = 0 for each set S of cardinality greater than 1. Under this assumption the 
family {{/}: i e N} is the only balanced family. Let C := C®. Then, we immedia
tely get 

Theorem (KKM). Let {C :ie N} be a family of closed subsets of A and assume 
that AT cz [jieTCl for each non-empty subset T cz N. 

Then flfeivC'#0. 

References 

[1] HERINGS, P., J.-J., An extremely simple proof of the KKMS Theorem, Economic Theory 10 (1997), 
361-367 . 

[2] ICHIISHI, T., On the Knaster-Kuratowski-Mazurkiewicz-Shapley Theorem, Journal of Mathemati
cal Analysis and Applications 81 (1981), 297-299 . 

[3] ICHIISHI, T., IDZIK, A., Theorems on closed coverings of a simplex and their applications to 
cooperative game theory. J. Math. Annal Appl 146 (1990), 259 - 270. 

[4] IDZIK, A., JUNOSZA-SZANIAWSKI, K., Combinatorial lemmas for nonoriented pseudomanifolds, 
Topological Methods in Nonlinear Analysis 22 (2003), 387 - 398. 

53 



[5] KAKUTANI, S., A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941), 
457-459 . 

[6] KNASTER, B., KURATOWSKI, K., MAZURKIEWICZ, S., Ein Beweis des Fixpunktsatzes fur n-dimen-

sionale Simplexe, Fundamenta Mathematicae 14 (1929), 1 3 2 - 137. 
[7] KOMIYA, H., A simple proof of KKMS theorem, Economic Theory 4 (1994), 463 -466 . 
[8] KRASA, S., YANNELIS, N. C , An elementary proof of the Knaster-Kuratowski-Mazurkie-

wicz-Shapley Theorem, Economic Theory 4 (1994), 4 6 7 - 4 7 1 . 
[9] KULPA, W., Intersection properties of Helly families, Topology and its applications 116 (2001), 

227 - 233. 
[10] RENEY, P. J., WOODERS, M. H., An extension of the KKMS Theorem, Journal of Mathematical 

Economics 29 (1998), 125 - 134. 
[11] SCARF, H., The core of an n-person game, Econometria 35 (1967), 5 0 - 6 9 . 
[12] SHAPLEY, L. S., On balanced games without side payments, T. C Hu and M. Robinson (eds.) 

Mathematical Programing New York: Academic Press (1973), 261 -290 . 

54 


		webmaster@dml.cz
	2012-10-06T04:28:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




