WSGP 5

Gregory P. Wene

Clifford algebras, matrix algebras and classical groups

In: Zdeněk Frolík and Vladimír Souček and Jiří Vinárek (eds.): Proceedings of the Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1985. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 9. pp. [221]--226.

Persistent URL: http://dml.cz/dmlcz/702132

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CLIFFORD ALGEBRAS, MATRIX ALGEBRAS AND CLASSICAL GROUPS

G. P. Wene

This paper is in final form and no version of it will be submitted for publication elsewhere.

1: Introduction. There is much discussion in the physics literature concerning associative algebras and their transformation groups. Many of these algebras , the Duffin Kummer algebras, the Dirac algebra, the Kajorena algebra, the Clifford algebras and many of their generalizations are simply matrix algebras. There is a very natural association of matrix algebras with the classical semisimple Lie groups. This association was first articulated in the mathematical literature by WEIL (6).

We show, by analyzing the automorphism groups of the Clifford algebras, how to associate with any matrix algebra over either the real numbers or the complex numbers one of the classical Iie groups. We also identify those groups associated, via these techniques, with matrix algebras over the quaternion division algebra H.
2. Basics. Let A denote a finite dimensional algebra over the field R of real numbers or the field C of complex numbers. The algebra A is said to be simple if the only ideals of A are the zero ideal, 0 , and A. An algebra A is semisimple if it is an algebra direct sum of simple algebras:

$$
\mathbf{A}=A_{1} \oplus A_{2} \oplus \ldots \oplus A_{n}
$$

where each $A_{i}, i=1,2, \ldots, n$, is a simple algebra and the operations of addition and multiplication are defined component-wise. The well-known Wedderburn - Artin Theorem (see JACOBSON (4), page 263) assures us that any sembimple algebra is simply the algebra direct sum of matrix rings. If Δ is a division ring, we will de-
note by Δ_{n} the ring of nxn - matrices with entries from Δ under the usual operations.

An automorphism of A is a bijection $\sigma: \mathbb{A} \rightarrow A$ such that $\quad(a+b)^{\sigma}=a^{\sigma}+b^{\sigma}$
and
$(a b)^{\sigma}=a^{\sigma} b^{\sigma}$
for all a, b in A. The automorphism σ is inner if $a^{\sigma}=m^{-1}$ a m for all a in A and some m in A. We have as a corollary to the Noether - Skolem Theorem:
Corollary. Let A be a simple algebra finite dimensional over its center. Then any automorphism of A leaving the center elementwise fixed is inner. For a proof of the Noether - Skolem Theorem and its corollary, see page 199 of HRSSTEII (2).

An involution in A is a mapping $*: A \longrightarrow A$
such that $\left(a^{*}\right)^{*}=a$

$(a+b)^{*}$	$=$
$(a b)^{*}$	$=a^{*}+b^{*}$
$\left(a^{*}\right.$	

for $a l l a, b$ in A.
3. Examples. In the ring R_{n}, the mapping $*: R_{n} \rightarrow R_{n}$, defined by $x^{*}=t_{x}(x$ transpose $)$, is an involution.

If Δ is a division algebra with involution - , then the mapping $*: \Delta_{n} \longrightarrow \Delta_{n}$ defined by $x^{*}=t_{\bar{x}}$ is an involution.

If $A=A_{1} \oplus \ldots \oplus A_{n}$ is an algebra direct sum of simple algebras $A_{i}, i=1, \ldots, n$ and $*: A \rightarrow A$ is an involution then either $*$ maps the summand A_{i} onto A_{i} or it interchanges the $A_{i}{ }^{\prime} s$ in pairs.

In any field K the identity map $X^{*}=x$ is (trivaliy) an involution. The real numbers have only the identity map for an involution (or automorphism) (for a proof see page 48 of HEWITT and STROMBERG (3)). The complex numbers have infinitely many involutions (this follows immediately fiom Exercise 5, page 157 of JACOBSON (5)); most people are familiar with two of these: the identity map and $z^{*}=\bar{z}$ (z conjugate). The identity map and conjugation are the only continuous involutions (automorphisms) in the usual topology on C.

Let H denote the quaternion division ring. H has a basis over $R, \quad\{1, i, j, k(=i j)\}$ such that $i^{2}=j^{2}=1$ and $i j=-j i$. The canonical involution in H is the mapping - defined by: $\quad \bar{I}=1, \bar{i}=-i, \quad \bar{j}=-j, \bar{k}=-k$. This is the involution in H that is used to define the norm, $n(x)$,
of x in $H: n(x)=x \bar{x}$. There are, of course, infinitely many involutions in H .

We will exploit the relation between automorphisms and involutions in matrix algebras. If A is an algebra with involution $*$ we say that the automorphism σ commutes with $*$ if $\left(x^{*}\right)^{\sigma}=\left(x^{\sigma}\right)^{*}$
for all x in A. We will denote the group of all automorphisms of A that commute with the involution $*$ by G.
4. Classical Groups And Matrices. A geometry is a triple, $\left(\Delta^{n}, M, \cdots\right)$, where M is an invertible element from Δ_{n} and $*$ is an involution in Δ. Corresponding to each geometry is a metric or ${ }^{n}$ pairing $:$ the metric is the mapping $B: \Delta^{n} \times \Delta^{n} \rightarrow \Delta$ defined by

$$
B(x, y)=t_{x}^{*} \cdot M \cdot y
$$

for x, y column vectors in Δ^{n} and where ${ }^{t} x^{*}$ is the row vector that is the transpose of X^{*}.

From a known metric we can find the complete group of transformations of Δ^{n} with respect to which the metric is a two point invariant. An invertible mapping $\sigma: \Delta^{n} \longrightarrow \Delta^{n}$ is called an isometry if ${ }_{B}(\sigma(x), \sigma(y))=B(x, y)$
for all x, y in Δ^{n}. The classical groups are isometry groups.
The classical groups are subgroups of $G L(n, \Delta)$, the group of all $n \times n$ - matrices over Δ with non-zero determinant. We list these groups, noting that they are defined in terms of involutione in Δ_{n}.

Let I_{n} be the $n \times n$-identity matrix and

$$
J_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

$S L(n, R)\left(S L(n, G)^{n}\right):$ The subgroup of $G L(n, R)(\cdot$ ($G L(n, \Delta)$) of determinant 1 . $0(n, R)(O(n, C)):$ The subgroup of $G L(n, R)(G L($ (n, C)) of matrices g satisfying
$t_{g} g=I_{n}$.
$S O(n, R)(S O(n, C)):$ The subgroup of $O(n, R)(O$ ((n, C)) of determinant 1 . $S \mathrm{p}(\mathrm{n}, \mathrm{R})(\mathrm{S} p(\mathrm{n}, \mathrm{C}))$: The subgroup of $\mathrm{G} \mathrm{L}(2 \mathrm{n}, \mathrm{R})($ (G I ($2 \mathrm{n}, \mathrm{C}$)) of matrices g satisfying ${ }^{t_{g ~ J ~}^{g}} \mathrm{~g}=\mathrm{J}$.
$S U^{*}(2 n):$ The group of matrices in $S L(2 n, C)$ which com-
mute with the transformation ψ of $\mathrm{C}^{2 \mathrm{n}}$ given by

$U(n): \begin{aligned} & \text { The subgroup of } G L(n, C) \text { of matrices } G \text { satisfying } \\ & t_{\bar{g}} g=I_{n} .\end{aligned}$
5. Classical Groups As Automorphism Groups. Denote by
K^{p}, q the Clifford algebra over the field K generated by the elements 1 and $e_{i}, i=1, \ldots, p+q$ where
l is the multiplicative identity,
$\begin{array}{ll}e_{i}^{2}=1, & 1 \leqslant i \leqslant p \\ e_{i}=-1, & p<i \leqslant p+q \\ e_{i} e_{j}=-e_{j} e_{i}, & i \neq j, \quad i, j=1, \ldots, p+q .\end{array}$
If $p+q$ is even, then $K^{p, q}$ is a central simple algebra by CHEVALIEY (1.), mHEOREM II.2.1. If. $p+q$ is odd, then $K^{p, q}$ is either simple or the direct sum of two iscmorphic ideals (CIEVALLEY (1), THEOREN II.2.6.). Thus a Clifford algebra is either a matrix algebra or the algebra direct sum of two isomorphic matrix algebras.

RECALL. If A is an algebra with involution $*, G$ denotes the group of automorphisms of A that commute with $*$.

THEOREM 5.1. Let $A=K_{n} \oplus K_{n}$ with involution

$$
(x, y)^{*}=\left(t_{y}, t_{x}\right)
$$

for all x, y in K_{n}. Then G is an algebraic group with connected components G_{0} and $G_{1} ; G_{0}$ is isomorphic to PGL (n, K), the factor group of $G L(n, K)$ by its center and consists of all automorphisms that leave the summands invariant. The elements of G_{1} interchange the summands.

PROOF. We detemmine G_{0}. If σ is an element of G_{0}, then by the Corollary to the Noether-Skblem Theorem

$$
(x, y)^{\sigma}=\left(M^{-1} \cdot x \cdot M, N^{-1} \cdot y \cdot N\right)
$$

for all x, y in K_{n} and some M, N in K_{n}. Equating the second components of $\left.\left(y_{M} y^{M}\right)^{\sigma}\right)^{*}$ and $\left((x, y)^{*}\right)^{\sigma}$, we get
Hence $(x, y)^{\sigma}=\left(M^{-1} \cdot x \cdot M, t_{M} \cdot y \cdot t_{M^{-1}}\right)$.
The map $\theta: G L(n, K) \longrightarrow G_{0}$ is a group homomorphism with kernel the center of $G L(n, K)$.
Q.E.D.

THEOREM 5.2. Let $A=K_{n}$ with involution $*$

$$
x^{*}=t_{x}
$$

for all x in K_{n}. Then G is an algebraic Eroup isomorphic to P O (n, K), the quotient group of $O(n, K)$ by its center.

PROOF. Let σ be an automorphism of Λ. By the Corollary to the Hoether-Skolem Theorem,

$$
x^{\sigma}=M^{-1} \cdot x \cdot M
$$

for all x in A and some M in K_{n}. If σ commutes with $*$, we must have
$M^{-1} \cdot t_{x} \cdot M=t_{M} \cdot t_{x} \cdot t_{M}{ }^{-1}$:
Hence $M \cdot t_{M}=I_{n}$. The matrices in $G I(n, K)$ satisfying this last relation form the group $0(n, K)$. Hence G is isomorphic to PO(n, Y): But 0 ($1, K$) has two connected components, SO (n, K) and $O^{-}(n, K)$; the identity componeat of G, G is isomorphic to FSO(n, K), the quoticnt group of S C (n, K) by its center.
Q.E.D.

THEOREM 5.3. Let $A=K_{2 n}$ vith in:olution

$$
X^{*}=T^{-1} \cdot t_{z} \cdot T
$$

Where T is the $n{ }^{k} x$-diagonal matrix with non-zero entries $\left(\begin{array}{cc}0 & i 1 \\ -1 & 0\end{array}\right)$. Then G is isomorphic to $F i p(n, K)$, the factor group of $S p$ ((n, K) by itṣ center.

PROOF. Let σ be an element of G. Agcin, $x^{\sigma}=M^{-1} \cdot x \cdot M$.
Since σ commutes with $*,{ }^{t_{M} \cdot T \cdot M}=T$. But then M is an element of $S p(n, K)$. Q.E.D.

The proofs of the next two theorems follow in a similar manner and are omitted.

THEOREM 5.4. Let $A=C_{n}$ with involution $*$,

$$
\left.x^{*}={ }^{t_{\bar{x}}} \quad \text { (transpose conjugate }\right)
$$

Then G is isomorphic to P U (n), the quotient group of $U(n)$ by its center.

THEOREM 5.5. Let $A=H_{n} \oplus H_{n}$ with involution

$$
(x, y)^{*}=\left(t_{\bar{y}}, t_{\bar{x}}\right)
$$

for x, y in H_{n} where - is the canonical involution in H. Then G has components G_{0} and G_{1}, G_{0} is isomorphic to $P G L(n, H)$ and similar results to those for $K_{n} \oplus K_{n}$ follow.

The matrices of determinant 1 form a subgroup of GI (n, H), $S \mathrm{~L}(\mathrm{n}, \mathrm{H})$, which is isomorphic to the group $S U^{*}(2 n)$ 。
6. Conclusion. We have demonstrated the close connection
between matrix algebras with involutions and the classical Lie groups. We noted that the concept of an al.gebra with involution is assumed in the definitions of the Lie grolips.

REFERENCES

1. _ C._C. Chevalley, The Algebraic Theury of Spinors. Columbia University Press, New Yorin, 195i.
2. I. N. Herstein. Noncomutative Rirgs. Csrue Mathematical Monograph NC. 15, The arathematical Association of Anerica, Washington, D.C., 1968.
3. E._Hewitt and K._Stromberi. Real And Abstrect Analysis. Springer Verlac, Berlin, 1965.
4. N._Jacobson. Structure of Rings. Arerican Mathematical Society Colloquium Publications Vol. XXXVII, Americen Mathematical Society, Providence, 1956.
5. N._Jacobson. Lectures in Abstract Alsebra, Vol. III, Theory of Fields and Galois Theory. Van Nostrand, New York, 1964.
6. A.-Weil. " Algebras with involutions and the classical groups" J. Indian Math Soc. 24, 589-623 (1961).

DIVISION OF MATHEMATICS, COMPUTER SCIENCE AND SYSTEMS DESIGN THE UNIVERSITY OF TEXAS AT SAN ANTONIO
SAN ANTONIO, TEXAS 78285
U . S . A .

