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CLIFFORD ALGEBRAS, MATRIX ALGEBRAS 

AND CLASSICAL GROUPS 

G. P. Wene 

This paper is in final form and no version of it will 

be submitted for publication elsewhere. 

1". Introduction. There is much discussion in the phy­

sics literature concerning associative algebras and their transfor­

mation groups. Kany of these algebras , the Duffin Kummer algebras, 

the Dirac algebra, the Majorana algebra, the Clifford algebras and 

many of their generalizations are simply matrix algebras. There is 

a very natural association of matrix algebras v/ith the classical 

semisimple Lie groups. This association was first articulated in 

the mathematical literature by WEIL ( 6 I. 

We show, by analyzing the automorphism groups of the 

Clifford algebras, how to associate with any matrix algebra over 

either the real numbers or the complex numbers one of the classical 

Lie groups. We also identify those groups associated, via these 

techniques, with matrix algebras over the quaternion division al­

gebra H. 

2. Basics. Let A denote a finite dimensional algebra 

over the field R of real numbers or the field C of complex numbers. 

The algebra A is said to be simple if the only ideals of A are the 

zero ideal, 0, and A. An algebra A is semisimple if it is an alge­

bra direct sum of simple algebras: 

A -= A1 © A2 ® ... © A n , 

where each A ^ i -= 1,2, ••., n, is a simple algebra and the opera­

tions of addition and multiplication are defined component-wise. 

The well-known Wedderburn - Artin Theorem ( see JACOBSOU (4)» page 

263 ) assures us that any samitimple algebra is simply the algebra 

direct sum of matrix rings. If A is a division ring, we will de-
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note by A n the ring of nxn - matrices with entries from A under 

the usual operations. 

An automorphism of A is a bisection 7": A—*A such 

that ( a + b )*~ = a r + b^ 

and ( ab) 7 - = arbr 

for all a, b in A. The automorphism ^"is inner if a7" = m a m 
for all a in A and some m in A. We have as a corollary to the 

Noether - Skolem Theorem: 

Corollary. Let A be a simple algebra finite dimensional over its 

center. Then any automorphism of A leaving the center elementwise 

fixed is inner. For a proof of the Noether - Skolem Theorem and 

its corollary, see page 199 of HERSTEIE ( 2 ). 

An involution in A is a mapping * : A — * A 

such that ( a * ) * = a 

( a + b ) = a + b 

( ab ) * = b " a** 

for all a, b in A. 

3. Examples. In the ring Rn, the mapping * : R —""^n* 
defined by x* = *x ( x transpose ), is an involution. 

If A is a division algebra with involution —-• , then 
the mapping •* : A r

 r -^ n defined by x* = x is an invo­
lution. 

If A = A^ © ... © A n is an algebra direct sum of 
simple algebras A., i = 1, ..., n and X : A—*-A is an involu­
tion then either * maps the summand A. onto Ai or it interchan­
ges the A.fs in pairs. 

In any field K the identity map x * = x is ( triva-
lly ) an involution. The real numbers have only the identity map 
for an involution ( or automorphism ) ( for a proof see page 48 
of HEWITT and STROMBERG ( 3 ) ). The complex numbers have infini­
tely many involutions ( this follows immediately from Exercise 5, 
page 157 of JACOBSOU ( 5 ) ); most people are familiar with two of 
these: the identity map and z* = z ( z conjugate ). The identity 
map and conjugation are the only continuous involutions ( automor­
phisms ) in the usual topology on C. 

Let H denote the quaternion division ring. H has a 
basis over R, {l, i, j, k (• ^J s u c h that i 2 - j 2 = 1 and 
±i = - i±. The canonical involution in H is the mapping de­
fined by: 1 = 1, I = - i, i = - j, k = - k. 
This is the involution in H that is used to define the norm, n(x), 



CLIFFORD ALGEBRAS, MATRIX ALGE3RAS AND CLASSICAL 223 

GROUPS 

of x in H : n(x) «= x *x. There are, of course, infinitely many invo­

lutions in H. 

We will exploit the relation between automorphisms 

and involutions in matrix algebras. If A is an algebra with invo­

lution * we say that the automorphism (T commutes with * if 

(x"f - ( xrf 
for all x in A. We will denote the group of all automorphisms of 

A that commute with the involution * by G. 

4. Classical Groups And Matrices. A geometry is a 
triple, ( A n , M, K ), where M is an invertible element from A n 

and X is an involution in A . Corresponding to each geometry is 
a metric or pairing : the metric is the mapping B :An* A n — r A 
defined by 

B ( x, y ) -= *x* . M • y 
for x, y column vectors in A n and where x* is the row vector 
that is the transpose of X* . 

From a known metric v/e can find the complete group 

of transformations of A n with respect to which the metric is a 
two point invariant. An invertible mapping Vz A n +& n is 
called an isometry if 

B ( (T(x), (T(y) ) = B ( x, y ) 

for all x, y in A n « The classical groups are isometry groups. 

The classical groups are subgroups of G L ( n, A ), 

the group of all nxa - matrices over A with non-zero determinant. 

We list these groups, noting that they are defined in terms of in­

volutions in A n» 

Let I be the n x n - identity matrix and 

J„ í - l 5") 
S L ( n , R ) ( S L ( n » G ) ) s T h e subgroup of G L ( n, R ) (• 

( G L ( n , A ) ) of determinant 1. 

0 ( n, R ) ( 0 ( n, C ) ) : The subgroup of G L ( n, R ) ( G L ( 

( n, C ) ) of matrices g satisfying 

*g 6 « In* 
S O ( n , R ) ( S O ( n , C ) ) : The subgroup of 0 ( n, R ) ( 0 ( 

( n, C ) ) of determinant 1. 
S p ( n , R ) ( S p ( n , C ) ) : The subgroup of G L ( 2 n, R ) ( 

( G L ( 2 n , C ) ) o f matrices g 

satisfying g J g = J. 
S U ( 2 n ) : The group of matrices in S L ( 2n, C ) which com-
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mute with the transformation ^ of C given by 

( z-̂ , ..., zn, 2n+«Li
s •••! 22n ) *( zn+l* ###* z2n* "z* •••* zn'# 

U ( n ) : The subgroup of G L ( n, C ) of matrices g satisfying 

*8 g - In. 

5. Classical Groups As Automorphism Groups. Denote by 

K p , q .the Clifford algebra over the field K generated by the ele­

ments 1 and e., i = 1, ..., p+q where 

1 is the multiplicative identity, 

e ±
2 = 1, K i ^ p 

e ±
2 = - 1 , p < i 4 p + q 

eie3 = " erj
ei' iaife5, i> i = 1- •••» p+q. 

If p+q is even, then K p , q is a central simple algebra 

by CIIEVALLEY ( 1 . ) , THEOREM II.2.1. If. p+q is odd, then K p , q is 

either simple or the direct sum of two isomorphic ideals ( CIIEVAL­

LEY ( 1 ) , THEOREM II.2.6. ). Thus a Clifford algebra is either 

a matrix algebra or the algebra direct sum of two isomorphic ma­

trix algebras. 

RECALL. If A is an algebra with involution X , G denotes 

the group of automorphisms of A that commute with * • 

THEOREM 5.1. Let A = K ^ ® - ^ with involution 

( x, y f = (*y. *x ) 

for all x, y in Kn. Then G is an algebraic group with connected 

components G and G,; G is isomorphic to PGL ( n, K ), the factor 

group of G L ( n, K ) by its center and consists of all automor­

phisms that leave the summands invariant. The elements of G\ in­

terchange the summands. 

PROOF. We determine G . If (7" is an element of G . then -——--—--— o o' 
by the Corollary to the Noether^Skblem Theorem 

( x , y ) r « ( IT1 • x • M , IT1 • y • N ) 

for all x, y in K and some M, N in K . Equating the second compo-

nents of (% J x, y ) ) and ( ( x, y )*) , we get 

% ^x -V* = IT 1- *x -IT. 
Hence ( x, y ) ( F = ( M"1 • x • M, *M • y • tM~1 ) . 

The map & : G L ( n, K ) + GQ is a group homomorphism v/ith 

kernel the center of G L ( n, K ). Q.E.D, 

THEOREM 5.2. Let A = K with involution * 

• x * = * - * 
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for all x in Kn. Then G is an algebraic group isomorphic to 

P 0 ( n, K ), the quotient group of 0 ( n, K ) by its center. 

PROOF. Let U~ be an automorphism*of A. By the Corollary 

to the IToether-Skolem Theorem, 
r/" _i 

x • = M • x • M 

for all x in A and some M in Kn. If t7" commutes with * , we must 

have ivT1 • *x •• M = . % • *x • % " 1: 

Hence M • M = In# The matrices in G L ( n, K ) satisfying this 

last relation form the group 0 ( n, K ). Hence G is isomorphic to 

P 0 ( n, K ). But 0 ( n, K ) has two connected components, 

SO (n, K ) and 0"( n, K'); the identity component of G, G is iso­

morphic to P S 0 ( n, K ), the quotient group of S C ( n, K ) by 

its center. Q.E.D. 
THEOREM 5.3. Let A -= K~ with involution * r r __n 

% [0 rlA 

where T is the n X n -diagonal matrix with non-zero entries\-l o / . 

Then G is isomorphic to P S p ( n, K ), the factor group of S p ( 

( n, K ) by its center. 

PROOF. Let 9* be an element of G. Again, 

x r = M"1 • x • M . 

Since T commutes with * , M • T • M = T. 

But then M is an element of S p ( n, K ). Q.E.D. 

The proofs of the next two theorems follow in a similar 

manner and are omitted. 

THEOREM 5.4. Let A = Cn with involution *• , 

x * = x ( transpose conjugate ) 

Then G is isomorphic to P U ( n ), the quotient group of U (n) by 

its center. 

THEOREM 5.5. Let A = H n ^ H n with involution 

(.-*• y >* = ( *y. *5 ) 

for x, y in H where — is the canonical involution in H. Then 

G has components G and G,, G is isomorphic to P G L ( n, H ) 

and similar results to those for K © K follow. 

The matrices of determinant 1 form a subgroup of 

G L ( n , H ) , S L ( n , H ) , which is isomorphic to the group 

S U # ( 2n ). 

6. Conclusion. We have demonstrated the close connection 
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between matrix algebras with involutions and the classical Lie 

groups. We noted that the concept of an algebra with involution 

is assumed in the definitions of the Lie groups. 
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