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CLIFFORD ALGEBRAS, MATRIX ALGEBRAS
AND CLASSICAL GROUPS

G. P. Wene

This paper is in final form and no version of it will
be submitted for publication elsewhere.

1, Introduction. There is much discussion in the phy-
sics literature concerning associative algebras and their transfor-
mation groups. Nany of these algebras , the Duffin Kummer algebras,
the Dirac algebra, the Majorana algebra, the Clifford algebras and
meny of their generalizations are simply matrix algebras. There is
a very natural association of matrix algebras with the classical
semisimple Lie groups. This association was first articulated in
the mathematical literature by WEIL ( 6 ).

We show, by analyzing the automorphism groups of the
Clifford algebras, how to associate with any matrix algebra over
either the real numbers or the complex numbers one of the classical
Lie groups. We also identify those groups associated, via these
techniques, with matrix algebras over the quaternion division al-
gebra H.

2. Basics, Let A denote a finite dimensional algebra
over the field R of real numbers or the field C of complex numbers.
The algebra A is said to be simple if the only ideals of A are the
zero ideal, O, and A. An algebra A is semisimple if it is an alge-
bra direct sum of simple algebras:

A=40 4,D...04,,

where each Ai, i=1,2, ¢vs, n, is & simple algebra and the opera-
tions of addition and multiplication are defined component-wise.
The well-known Wedderburn - Artin Theorem ( see JACOBSON (4), page
263 ) assures us that any semikimple algebra is simply the algebra
direct sum of matrix rings. If A is a division ring, we will de-
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note by An the ring of nxn - matrices with entries from A under
the usual operations.

An sutomorphism of A is a bijection V": A—A such
that (a+b) = a7 + 7
and (ab)” = an”
for all a, b in A. The automorphism 7 is inner if &’ = m ™t a m
for all a in A and some m in A, We have as a corollary to the
Noether - Skolem Theorem:
Corollary. Let A be a simple algebra Ifinite dimensional over its
center. Then any automorphism of A leaving the center elementwise
fixed is inner. For & proof of the Noether - Skolem Theorem and
its corollary, see page 199 of HERSTEIL ( 2 ).

An involution in A is a mapping % : A—"4A

guch that ( a™)" = a
(a+b)” = ™ + "
(ab )™ = " a”

for all a, b in A.

3. Examples. In the ring R, the mepping » Pm—'%,

defined by x" = ¥x ( x transpose ), is «n iuvolution.

If A is & division algebra with involution = , then
the mapping % : A n—'A n defined by z* = %% 1s an invo-
lution.

If A=A D ..o @An is an alge‘qra direct sum of
simple algebras Ai, i=1, ¢ee, n and »: A—"A is an involu-
tion then either % maps the summand Ai onto Ai or it interchan-
ges the Ai's in peairs.

In any field K the identity mep x* =x is ( trive-
11y ) an involution. The ral numbers have only the identity mep
for an involution ( or automorphism ) ( for a proof see page 48
of HEWITT and STROMBERG ( 3 ) ). The complex numbers have infini-
tely many involutions ( this follows immediately from Exercise 5,
page 157 of JACOBSON ( 5 ) ); most people are familiar with two of
these: the identity mep and z™ = Z ( z conjugate ). The identity
map and conjugation are the only continuous involutions ( automor-
phisms ) in the usual topology on C.

Let H denote the quaternion division ring. H has a
besis over R, {1, 1, 3, k (= 1))} such that 1% = 3% =1 ana
ij = - Ji. The canonical involution in H is the mapping = de-
fined by: I=1, I=-4i, J=-3, k=-k.

This is the involution in H that is used to define the norm, n(x),
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of x in H : n(x) = x X. There are, of course, infinitely many invo-
lutions in H.

We will exploit the relation between automorphisms
and involutions in matrix algebras. If A is an algebra with invo-
lution » we say that the automorphism ¢ commutes with » if

w7 [20\ad

(x™) = (x")
for all x in A. We will denote the group of all automorphisms of
A that commute with the involution # by G.

4. Classical Groups And Matrices. A geometry is a
triple, (A, M, » ), where M is an invertible element from Ay
and » is an involution in A . Corresponding to each geometry is
a metric or hgairing : the metric is the mepping B :ARx A"'—A
defined by

B(x,y) = tx*—M-y

for x, y column vectors in A and where tx” is the row vector
that is the transpose of x*. :

From a known metric we can find the complete group
of transformations of A ¥ with respect to which tne metric is a
two point invariant. An invertible mapping ¥ : A® —= A" is

lled i try if
calle a-an ( G—(x)’ V(y) ) = B ( X, Y)

for all x, y in AP. The classical groups are isometry groups.
The classical groups are subgroups of GL ( n, 4&),
the group of all nxn - matrices over A with non-zero determinant.
We list these groups, noting that they are defined in terms of in-
volutiond in A .
Let In be the n x n - identity matrix and

0 I
Jn=(_In on).

SL(n,R)(SsL(n, @) ) : The subgroup of GL ( n, R ) (-

(GL (n,A) ) of determinant 1.
0(n,R)(0(mn, C)) : The subgroup of GL (n, R) ( GL (

(n, C) ) of matrices g satisfying

tgg::In.
sSs0(n,R)(so0o(mn, C) ) : The subgroup of 0 (n, R) ( 0 (

(n, C) ) of determinant 1.
Sp(n,R) (Sp(mn, C) ) : The subgroup of GL ( 2 n, R ) (

(GL(2n,C) ) of matrices g

satisfying th g=4Jd.
su™(2n) : The group of matrices in S L ( 2n, C ) which com-
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mute with the transformation & of cen given by
( Zl, e ey zn, Zn+1,‘ XXX 22n )—.( -z-n+1, ecey Ezn, "z, ecey En)n

U(n) : The subgroup of GL (n, C) of matrices g satisfying
gg= '

5. Classical Groups As Automorphism Groups. Denote by
KP*Q  _the Clifford algebra over the field K generated by the ele-
ments 1 and ey, i=1, ..., p+tq where

1 is the multiplicative identity,

e 2 . 1, l‘i‘?
e, = -1, p <1 piq
eiej = - ejei' i+j, i, J =1, see, Ptq.

If p+q is cven, then KP* % ig a central simple elgebra
by CHEVALILEY ( 1. ), THEOREM II.2.1. If p+q is odd, then kP9 ig
either simple or the direct sum of two iscmorphic ideels ( CIEVAL-
1EY ( 1 ), TIEOREM II.2.6. ). Thus a Clifford algebra is either
a matrix algebra or the algebra direct sum of two isomorphic ma-
trix algebras.

RECALL. If A is an algebra with invelution 2¢, G denotes
the group of automorphisms of A that commute with .

THEOREM 5.1, Llet A = K, @K, with involution

(x’y) = (y) X)

for all x, y in Kn' Then G is an algebraic groub with connected
components G, end Gy; G, is isomorphic to PGL ( n, K ), the factor
group of G L ( n, K ) by its center and consists of all automor-
phisms that leave the summands invarient. The elements of Gi in-
terchange the summands.

PROOF. We determine G . If U is an element of G,» then
by the Corollary to the Noether¢8kblem Theorem

(x,y) = (¥l x.u,vl.5.7)

for ell x, y in K and some M, N in K . Equating the second compo-
nents of ( { x, ¥ )7)* and ( ( =, ¥ )“) , we get

ty Lty Lyl o= ypell oty
Hence ( x, y 7 = ¢ vl x - M, *y .y Al
The map & : GL ( n, K )-——’Go is a group homomorphism with

kernel the center of GL ( n, K ). Q.E.D.
THEOREM 5.2, Let A = K with involution ¢

X* =tx
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for ell x in Kn' Then G is an algebraic gréup isomorphic to
PO (n, K), the quotient group of 0 ( n, K ) by its cenier.
PROOF. Let U be an automorphism of A. By he Corollary
to the lioether-Slkolem Theorea,

x7 - wl.x.um
for all x in A &nd scne M in Kn. If U commutes with » , we must
have wil.%.n - Fwo.tx.tw-l;
Hence M %M - I,. The motrices in G L ( n, X ) satisfying this

last relation form the group 0 ( n, K ). Hence G is isomorphic to
PO(mn, £). But 0 { n, X) hac two coanected comporents,
SO0 (n, K ) and 07( n, X '); the identity componeat of G, G, is iso-
morphic to P S O ( n, ¥ ), the quoticnt group of SC {( n, K ) by
its center. Q.E.D.

' THEOREM 5.3. ILet A = Kzn vith involution »¢
T o I

-

H

where T is the nk; n -diagoncl matrix with non-zero entries(El ;%).
Then G is isomorphic 4o P £ p ( n, K ), the factor group of S p (
( n, X ) by itc ceatexr,

PROOF. ILet ¢ be an elerent of G. Agein,

x7 = wl.x.m,
Since 0 comrutes with # , 'M-T M = T,
But then M is en element of S p ( n, K ). Q.E.D.

The proofs of the next two theorems follow in a similar
manner and are omitted.

THEOREM 5.4. Let A = Cn with involution » ,

”»* -
x =tx

( transpose conjugate )
Then G is isomorphic to P U ( n ), the quotient group of U (n) by
its center.

THEOREM 5.5, Let A = Hn (<2 Hn with involution

¢ (.z,y)*=(t§,t§)

for x, y in Hn where — is the canonical involution in H. Then
G has components G, end Gy, G, is isomorphic to P G L (n, H)
and similar results to those for Kn (O) Kn follow,.

The matrices of determinant 1 form a subgroup of
6L(n,H), SL(n, H), which is isomorphic to the group
su™(an).

6. Conclusion. We have demonstrated the close connection



226 G, P, Wene

between matrix algebras with involutions and the clascicel Lie
groups. We noted that the concept of an algebra with involution
is assumed in the delinitions of the Lie groups.
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