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Non-Normality and Relative Normality of Niemytzki Plane 

DAVID CHODOUNSKÝ 

Praha 

Received 15. March 2007 

A characterization of pairs of closed subsets of Niemytzki plane, which cannot be 
separated by open neighborhoods, is given. A few consequences about normality of 
Niemytzki plane on some subspaces are derived and an anwer to the problem 3.4 from 
Tkacenko, Tkachuk, Wilson, Yaschenko [TTWY] is given. 

Notation 

Let us recall the definition of Niemytzki plane and establish some notation. 
IR will denote as usual real numbers, R + = { X G I R : X > 0 } and N = {1,2,...}. Let 
L = {(t,0): t e U}, E = {(r,s) :reU,se U+}, N = L u E. For x = (r,s) e E and 
o < e < s let 

Be(x) = {(n,Si) e E : (r, - rf + (51 - sf < e2} 

and for x = (t, 0) e L and eeU+ let 

Be(x) = Be(t,e)u {x}. 

The Niemytzki plane is the set N with topology generated by sets Be (x) for x e N 
and eeIR+. On the set L we will also use the topology of the real line denoted 
by 3/1. 
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1. Non-normality of Niemytzki plane 

It is well known, that Niemytzki plane is an example of completely regular 
non-normal space [En]. In this section a general condition for closed subsets of N, 
which can be separated by open neighborhoods, is described. 

Theorem 1.1. Let G, H be disjoint closed subsets of N. Then G and H can be 
separated by disjoint open sets if and only if there exist sets Gt and H, for i e N 
such that G n L = \Jte\Gi9 H n L = IJ^Hi and 

GfnH = 0 = HfnG 

for every ie N. 

We will use the following technical Lemma in the proof of Theorem 1.1. 

Lemma 1.2. For each x e E there exists some i e R+ such that x $ Be (y) implies 
BE/2(y) n Bt(x) = 0 for each y e L and each s e R+, s < 1. 

Proof of Lemma 1.2. Without loss of generality we may assume x = (0, a). Take 
any i such that i + i2 <a2/2 and i < a/2. We will prove that this i works. Let 
>; = (b,0)eL and 2GlR+, e < 1, be such that x$Be(y) (and thus 
s2 < b2 + (a - s)2). We have to prove that Be/2(y) n B,(x) = 0. This fact can be 
reformulated as (i + s/2)2 < b2 + (a - s/2)2. 

Now, note that 

(i + £/2)2 = £
2/4 + si + i2 < s2/4 + i + i2 < a2/2 + s2/4. 

If a/2 < s, then apply 0 < b2 + (a - s)2 - s2 to get 

a2/2 + e
2/4 < as + s2/4 < b2 + (a - s)2 + as + s2/4 - s2 = b2 + (a - s/2)2, 

as required. Suppose that 0 < s < a/2. In particular, 0 < a (a/2 — s) = a2/2 — 
— as, hence 

a2/2 + s2/4 <a2 - as + s2/4 < b2 + (a - s/2)2. Q 

Proof of Theorem 1.1. We will put G = G n L, Hf = H n L. 
First, let us show that if the condition is not fulfilled, then the sets G and H 

cannot be separated. Suppose U and V are open set, such that G a U and H cz V. 
To each xeG(xeHf) assign 2(x)elR+, for which Be^(x) c= U (Be<x)(x) cz V, 
respectively). Now if Gt = {xeG :s(x) > \} and Ht = {xe H' : s(x) > 7} for 
ieN, then, without lost of generality, (3/ e N)(3h e Gf)(h eff) . Otherwise G„ 
Ht satisfy the given condition. This implies for such j and h, 

0 ^ U % ( y ) n % ( f e ) c UnV 
yeGj 

and 17 and Fare not disjoint. 
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Now let us fix sets G, H, G, and Hb i e N which satisfy the condition stated in 
Theorem 1.1, and construct disjoint sets U and V separating G and H. In the first 
(and crucial) step we will separate G' and H'. For x = (t,0) e L let PE(x) be "the 
area between a horizontal line and a parabola": 

Pe(x) = {(r,s) e E : £ > s > ( t - r)2} u {x}. 

Now for xeG{ take any e (x) e (0,1). For each x = (t, 0) e H{ fix an e (x) e (0,1) 
such that {(t',0) e L : \t' - t\ < 2 Js(x)} n Gx = 0. That is possible since Gf n 
n H! = 0. Thus 

^(x)(x)n UP£(y)();) = 0 
yeG! 

for every xeHx. 
Further, we may assume that sets G, (Hh respectively) are pairwise disjoint and 

we will continue inductively. To xeGn (Hn, respectively) we assign s (x) in the 
same way: for x = (t, 0) e Gn let e (x) e (0,1) be such that 

{(t',0) e L : \t - t'\ < 2 V^c)} n \jHt = 0. 
i<n 

Such £ (x) exists since U,-<nij/* n Gn = 0. For x and s (x) chosen in this way 

-W*)"U U-3<y)W = 0. 
i < n yeHt 

For xe Hn the construction (and also the resulting property) is similar. From the 
construction it follows that 

{JP4r)(y)n{JPe(y)(y) = <b. 
ysG' y H 

Since Be 2 (x) cz Pe (x) for x e L and s e (0,1), 

t / l = U%)2W 
xeG' 

and 

r1= U-W*) 
xeH' 

are disjoint open sets in N and G' cz Uu H' cz VJ. 
In the second step we will separate G' from H. For each xe G' fix 5' (x) e (0,1) 

such that Bs>(x) (x) n H = 0. For x e G' let 

5(x) = min(5'(x)/2,s(x)/2}. 

The set 

U2= []BHx){x) 
x G 
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is open and covers G'. We will prove that U2r\ H = 0. Let us show that 
heH=>hiU2. 

If he H\ then Ux n Vx = 0 and U2 cz t/l5 Vx is open and H' cz Vj. Thus /z <£l72. 
If /z e H n E, then /i <£ B^x) (x) for each x e G'. From this and Lemma 1.2 it follows 
that there exists i e R such that Bt (h) n B6^ (x) = 0 for all x e G', so 
Bx (h) n U2 = 0 and h $ U2. Similarly we can construct an open set V2 such that 
H' cz V2, V2 n G = 0 and V2 cz V1? which implies U2nV2 = 0. 

Finally, let us separate whole sets. Since E is an open normal subspace of N, 
G n E and H n E are disjoint closed subsets of E, there exist disjoint open subsets 
U3, V3 of E (and thus open in N) such that G n E cz U3, H n E cz V3. Hence 
U = (U2 u U3)\V2 and F = (1^ u V,)\C/2 are the desired disjoint open sets separa
ting G and H. 

2. Normality of Niemytzki plane on its Euclidean part 

The notion of normality on a subspace was introduced by Arhangel'skii in his 
survey on relative topological properties [Ar]. A space X is called normal on 
a subspace Y if any pair of disjoint closed sets G and H of X with G n Y = G 
and H n Y = H can be separated by open subsets of X. This definition can be 
equivalently reformulated: X is normal on Y if for each pair G,H cz Y, such that 
G nH = 0, G and 77 can be separated by open sets. 

It is known [Ar] that every countable (moreover, every Lindelof) space is 
strongly normal in any larger regular space. A space Y is strongly normal in X, if 
for each par G, H of closed in Ydisjoint subsets of Ythere are open disjoint subsets 
U and Fin X, such that G cz U and if cz K Here a question raises when a regular 
space is normal on its (dense) countable subspace. This is studied in [TTWY]. 

Example 2.1 ([TTWY]). In this example a countable dense subset C of N, such 
that N is not normal on C, was constructed. Let 

A = {(x,y) e E : x,y e Q} and Q = {(x,0) : x e Q } . 

Then N is not normal on C = A u Q. Details can be found in the original article. 

Example 2.2 ([TTWY]). There is a separable Tychonoff space which is not 
normal on any countable dense subspace. This space is constructed by a modifi
cation of the Niemytzki plane. It is again a kind of a "bubble" space but this space 
is not first countable. 

In the light of previous examples, the authors of [TTWY] asked the following 
question ([TTWY, Problem 3.4]): It is true that the Niemytzki plane is not normal 
on any of its countable dense subspaces? However, as a corollary of Lemma 2.3 
this appears not to be true. 
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Lemma 2.3. N is normal on E. 

Proof. Consider G, H subsets of E, G n H = 0. We will show, that G and 
H fulfill the condition of Theorem 1.1 and thus they can be separated. Put 

Gt = {xeGnL,:Bl t(x) n H = 0} 

and 

Ht = {xeHnh:Bu(x)nG = 0} 

for i e N. It is obvious that G n L = UfeNG,- and H n L = [J^H^ so it remains 
to show that Gf nH = 0 (Hf n G = 0, respectively). _ _ 

For contradiction assume that there is some neN and he Gn such that he H. 
Since /ier7,we can fix h' eH nBln(h). Now /z G Gf, 

Bi „(/*)<= \JBln(x) 
xeGn 

and this implies that h! e Bln (g) for some g e Gn- a contradiction. The case 
(3n e N)(3g e Hn)(h e G) is similar. • 

Corollary 2.4. N is normal on each subset of E. • 

So each dense countable subset of E (and such clearly exists) gives us an 
example of countable dense subspace of N on which N is normal. 
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