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SOME NEW PROBLEMS IN THE THEORY OF PARTIAL 
DIFFERENTIAL EQUATIONS 

S. L. SOBOLEV, Novosibirsk 

In the presented paper some new applications of the theory of partial differential 
equations related to numerical analysis will be considered. This paper repeats to a 
certain extent the communication of the author which was published in the Proceed
ings of the Paris Symposium on the Theory of Partial Differential Equations, June 25 
to 31 1962, and represents its further development. 

Two important problems of numerical analysis are as follows: the problem of 
approximate integration and the problem of interpolation; they consist in determining 
the value of the integral of a given function 

(1) ífàx 
Jn 

and in finding an appropriate procedure for the approximate evaluation of the function 
f(x) at a given point z from its values on a finite set of points: 

(2) xa>,x<2>,...,*<">. 

Integral (1) and the value of f(z) is frequently expressed as a linear combination of the 
values of the function fat points (2). Moreover, the following formulas for errors are 
obtained: 

(3) (/,/)= f/dx-£c*/(*w). 

af)=m-iciz)f(x(k))-
fe=i 

The kinds of approximate integration and interpolation can be studied from diffe
rent points of view. Modern numerical analysis, concentrating in itself many new ideas 
and methods, approaches these problems as those of functional analysis aiming at the 
theory of approximation of compact sets in some functional spaces. 

From this point of view both of these problems represent problems of approxima
tion of functional jf dx or of an identical operator by means of linear combinations 
of the values of f(x(*>). 

In this connection, introducing different topologies in the space of functional or in 
the space of operators yields essentially different results. 

The first problem to study is an estimate of the quality of approximate formulas by 
means of introducing a corresponding topology in the space, the elements of which are 
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(lvf) and (j,/). The second problem is that of optimization of formulas, which is in 
general more complicated. The first problem, which will be discussed below, is directly 
related to partial differential equations. 

There are two important approaches of the problem. One of them is as follows: 
One has to choose the coefficients ck and the nodes x(fc) such that (/,/) and (j9f) 
should vanish for a widest possible class of functions, e.g. for all polynomials of 
given degree. The second problem is reduced to an estimate of errors in a topological 
Banach space. 

At the first approach a purely algebraical aspect of the problem seems to play the 
most important role. The functional aspect of the problem does not appear at this 
stage. The algebraical formulation of these problems is as follows: Consider the set of 
all monomials of degree m — 1 or less of the variable x(xl9..., x„) 

(4) Ix" 
x* r<*2 

al5 a2,..., aM denoting the numbered set of all vectors with non-negative integer 
components: 

(5) «, = ( a r >, . . . , a f ) , 

|a,| = av} + ... + <xf ^ m - 1 
and 

(6) x - ' - ^ V / 1 ' . . . ^ . 

Let us denote by S the matrix 

(7) [xw">, xw">, ..., xw"> 
I x(l)«2 x(2)«2 x(N)'i 

s = \ ' '."•• 
\x(1)"M

9 xm°M
9 ..., x{N)°M) 

A polynomial of degree m — 1 of x can be represented as a scalar product of vectors 
a = (al9 ..., aM) and (4): ax* and its values at points (2) represent a row-vector 

(8) 5S. 

The problem of interpolation consists in finding coefficients a9 if values 

(9) aS=f 

are given. 
The problem of approximate integration which is determined by the condition that 

all polynomials of degree m — 1 are to be integrated exactly, consists in finding such c 
that for any a, 

(10) (Z,xa') = 0 . 
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However, from (10) it follows that 

(11) Sc = $ 

where 

(12) 

c = 

and 

(13) 

Thus the problems of integration and interpolation are adjoint. 
The classical problem of interpolation consists of solving system (9) under the con

dition that S is a square matrix of rank 

(14) «(S) = M = N . 

However, the problem is most interesting in the case that N > M and 

(15) <j?(S) = M . 

This problem will be overdetermined. Under the same hypotheses the problem of 
approximate integration will be indeterminate, i.e. it will have an infinite set of solu
tions. 

Both problems are solved by constructing a right hand inverse matrix S^1 of S. By 
means of this matrix: first, every solution of (9) will be represented in the form 

(16) a=fSJ1 

and, second, one succeeds in constructing the vector 

(17) c=s;^ 

which will be a solution of system (11) (in general this solution is not unique). 
The algebraical treatment of our problems cannot satisfy all natural requirements. 

The inverse matrix SJ"i is not uniquely determined for N > M. On the other hand the 
insufficiency of the presented point of view is also apparent from the fact that con
structing the formulas in the algebraical way one does not at all exploit a plentiful 
information on the behaviour of the function/, on the existence of its derivatives, an 
estimate of these derivatives etc. 

Therefore, it is useful, as has been done for a long time in an implicit form, to deter
mine a numerical estimate of the error inherent in the formulas of approximate in
tegration or interpolation for a class of functions, and then to choose the parameters 
ck and x(fc) of the formula so that this error should be minimal. See [2]. 
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The functional space B will be considered and the functional (/,/) and (j9f) on the 
unit sphere of this space will be examined. In a natural way two problems arise: To 
find 

(18) min [ max (/ , /)] 
* < k > , C k , * = N | | / | |B=1 

and 

(19) min [ m a x ( ; , / ) ] . 
*< k > ,ck ,* = N I ! / I ! B = I 

Evidently the space B has to be such that the value of a function at a point is a linear 
functional of this function. 

Both these problems possess two stages. In the present paper we confine ourselves to 
the first stage of these problems, i.e. to finding the maximum of functionals (/,/) and 
(j, / ) on the unit sphere of some functional spaces. 

Even in the case of one independent variable, when x e Ei9 the corresponding 
problems have been studied by several authors in the spaces Cm of functions with 
continuous (or bounded) derivatives of order m, or L^0 of functions whose derivatives 
of order / are integrable with power p. The extreme value of functionals (18) and (19) 
corresponded to the functions satisfying the equation 

(20) ^ = 1 . 
J dxm 

For our purposes it is interesting to examine three different functional spaces for 
functions / in the case x e En: 

i) W(
2
m)(Q) is the space of functions whose derivatives of order m are square in

tegrable on a bounded domain Q. Evidently it is necessary to suppose here m > n/2 to 
assure that functionals (/,/) and (j,f) should be linear. 

It is even convenient to study not the space W{m) but the space L(m) of classes of 
functions differing from each other by polynomials only. The norm in L(m) is given by 
the formula 

(21) llfll^>= [{ S |>«f]2}dx. 
JQ | a |=m 

As a matter of fact, choosing the formula so that for two functions fY and f2 dif
fering from each other by polynomials of degree m — 1 equations 

(22) afi) = af2), (ffo = (j,f2) 
are valid, one obtains the same errors (/,/) and (j,f) for all functions of the same 
class. 

ii) U2
m)(Q) is the space of classes of functions defined in Q with the norm 

(23) min| | / | |L 2 ( m ) ( 0 0 ) , / = / i n £2. 

170 



By a theorem of Gagliardo any function from W2
(m) defined in the domain Q with 

the boundary satisfying a Lipschitz condition, can be extended to the whole space 
without leaving W^. If the norm in W2

(m) can be taken in the form 

ll/«ik<-> - lin/IIL-, + I/IE,.-., 
for the extended function it may be chosen finite, especially as ||/||L2<m,; moreover, the 
projection operator may be chosen so that it depends only on the values of/inside Q. 

For the norm ||/||i/2o"> a ^ the axioms for norms are valid. 

iii) W2
m) is the space of periodical functions of n variables with the matrix of periods: 

(24) H = (hl9h29...9hn). 

The elements of this space are functions satisfying the relation 

(25) u(x + Hp) = u(x) , 

where x is the column vector of coordinates of a given point and /? is an arbitrary 
column vector with integer components. 

The functions of this space will be examined in some fundamental domain Q0. This 
means that the denumerable set of domains 

(26) Qp = Q + HP 

covers the whole space without repetition (modulo the points of the boundary the 
measure of which is zero). For the sake of simplicity it will be supposed henceforth 
that the volume of domain Q0 is equal to one. The space of classes of functions perio
dic in Q0 consists of functions differing from each other by a constant, as the con
stant represents the unique periodical polynomial. 

Accordingly, the norm in W2
m) can be defined as 

(27) \\f\\iv2^=(a,f)2 + \\fk^> 
where (a9f) is an arbitrary linear functional not equal to zero for a constant function. 
From the same reason as above one has to suppose m > n/2. In the problems pre
sented it is again possible to examine max (/ , /) . 

II /IIL 2 ( - ) 

Now it will be shown that in all three cases there exist extreme functions for which 
the desired maximum of the functional on unit sphere is reached, and that these 
extreme functions represent solutions of some boundary value problems for some 
partial differential equations of elliptic type. 

To do this let us first remark that both problems in all cases are essentially reduced 
to finding 

(28) ™ * x l M or m a x i - ^ i 

' 11/11 1/1 
and, hence, the norm having been changed, they can be reduced to the problem of 
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minimalization 
/ min | | / p , / / min | / | | 2 . 

(*,/) = ! (./,/)=-
The latter problems concerning a relative minimum of a square functional are-

examined as usual (see, e.g. [1], Chapter II, the Neumann problem). 
Let the problems of relative extremes for different norms be denoted respectively: 

^and/P ' for || | w o ) , / » ) and/I") for || \\U2<m), I
iU) and IIlii) for || \\^mHH). 

Note that the problem Hi) shall be especially simple in both cases, since e.g. the inter
polation can be carried out by means of one polynomial of degree zero, i.e. of a con
stant, and the validity of the cubature has also to be verified from the point of view 
of constants only. The minimalizing sequence for all examined problems having been 
constructed it is easy to establish that such a sequence will be fundamental and that 
the extreme will be realized by the limit function of this sequence. Then similarly as 
has been done in [1] one ascertains that the limit functions will satisfy the following 
equations respectively: 

(29) f Y &*%&*£> dx + X [ £ dx - X Yck£(*(k)) = 0 

for problems Il) and 7iii), 

(30) f Y @*®®*Z dx + X£(z) - X Yck Z(x(k)) = 0 
JQ l«l=w» 

for problems II*> and IIM\ 

(31) f Y (®a^> @"£) dx + x[ £dx- XYck Z(x{k)) = 0 
J o o l a l = m J.Q 

for problem J1'0 and finally 

(32) f Y (®"®> ®*§ dx + X£(z)- X Yck Z(xik)) = 0 
JoO lal=»* 

for problem IIH). 

It will be shown from the relations presented that the respective differential equa
tions are valid: 

(33) ( - l ) m Amu + X[l - Yck <5(* " *(fc))] = 0 in fl 

for /'), 

(34) ( - 1)M Amu + X EQ(x) - X Yck 5(x - x<k)) = 0 

for I"), 

where EQ(x) is the characteristic function of domain Q, equal to zero outside Q and to 
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unity inside Q and, finally, 

(35) ( - l ) m Amu + A[l - £ck M(H, x - x(fc>)] = 0 

for/"0, 

where function M(H, x — xm) is a periodic distribution with the matrix of periods H, 
equal to <5(x — x(k)) in the fundamental domain Q0. 

The corresponding equations for the interpolation problem are as follows: 

(36) ( - l)m Amu + A[<5(x - z) ~ Yck Kx ~ *(*})1 = ° 

for //'> and //">, 

(37) ( - l ) m
 AWII + A[M(H, x - z) + £cfc M(H, x - x(fc>)] = 0 

for //'">. 

Moreover, in problems /'> and Hl) the solution has to satisfy some conditions of 
the type 

(38) H = 0, / c = l , 2 , . . . , 

which are obtained by a formal integration by parts of formulas (33) and (36); however, 
in cases IiH) and IIiH) it must be a periodic function with the matrix of periods //. 

We will show the principal idea of the proof in any of the above mentioned cases, 
€.g. (32). 

The difference w = u — u0 of the function satisfying (29) and some particular 
solution u0 of equation (32), as is easily verified, fulfils the following condition: 

(39) f £ (&w , 94) dx + f X ^ 4 Bi(™ + uo) dF = 0 . 
JflM=™ J s dn 

Hence one obtains in a usual manner the equation for function w, namely equation 
Amw = 0 and as a consequence equation (32). 

It remains to show how to choose the value of the Lagrange multiplier A. 
The solutions of equations (33), (34), (35) and (37) evidently contain a multiplier A. 

There is 

(40) ux = Xut 

where u± is the solution corresponding to A = 1. Consequently, one has 

(41) | h | | 2 =A2 | |»1 | |2, 

(42) (I, ux) = X(l, Ul) , 

(43) (j, ux) = A(j, u.) , 

I ti,. fl and (/, Uy) satisfying another relation which is a consequence of equations 
(29)-(32). 

173 



Substituting function ux instead of £, which is evidently possible, one obtains 

\\ux\\
2 = X(l,ux), 

i.e. 

(44) \\ul\\
2 = (l,u1) = d1. 

To solve the fundamental problem of max (l,f) one has to put X = lly/dl9 then 

(45) (i,ux) = -^r = yJd1, | M = l ; 

the variational problem in question is solved with the aid of another norm by X = 
= l/d1? then 

(46) IKI=^IKII = y 
al ax 

and 
(/, ux) = 1 . 

Integration of equations (32) and (35) represents a rather involved boundary value 
problem. However, equations (33), (34), (36) and (37) can be integrated in a closed-
form. Consider equations (33) and (36). Let functions 

1m — n 

G(z) = ( - l )<" - 1 ) / 2 

2 2 V / 2 ) + 1 ( m - n / 2 + l)Г(m) 

for п odd and 

_ r _ l W 2 z2-"\ z  (47) G ( z ) - ( - l ) 
2 2 И -1 яп/2 Д ^ _ nß + !) f ( m ) 

for n even, be called the elementary solution of the problem. 

The solution of equation (33) can be written as 

(48) u = f G(x - y) dy - £c k G(x - x(fc)) 

J n 
and the solution of problem (36) as 

(49) u = G(x - t) - 2>* G(X - x ( k )). 

These solutions will be unique modulo a polynomial of degree m — 1 in the class of 
functions with growth of finite order and will realize an extreme of the corresponding 
integral (29) or (30). It will be proved that the integrals presented will be elements of 
r(m) 

To do this observe first of all that the derivatives of order m of the elementary 
solution will be square integrable in any finite domain. 
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As a matter of fact, the order of growth of these derivatives is rm~n or rm~" Ig r near 
to its unique singular point, which secures integrability of an arbitrary power for 
m > n, and of a power less than q = n/(n — m) for m < n. However, by condition 
m > n/2 one has q > 2, q.e.d. 

Now consider the neighbourhood of infinity. The function @aG(x — y) will be 
expanded in a power series of y in a neighbourhood of the origin. The radius of conver
gence of this expansion is determined by \y\ < g, Q = |xj. 

If x is sufficiently large one can write 

Q > 2dQ 

where df2 is the diameter of domain Q. 
Computing the expansion of derivative 3i(tG(x — y) one obtains: 

®*G(x - y) = ®*G(x) + £ ( - l ) m ^ ! ^ / + ^ ( x , y ) . 

Here by /J! one denotes /?,! /?2!... /?„!• F° r the remaining member the following esti
mate valid in the circle \y\ < d is true: 

\R"m(x)\<A\x\-«\z\x\. 

Denote by Q* the following polynomial of degree m — 1: 

Q\y) = ©aG(x) + £ (-l) l ' l ^ + ' G ^ - y ) / . 
|/M<.m-1 jS! 

By hypothesis, for this polynomial the following cubature formula is true: 

L a^)d.v-Sc»e«(*<*>)--o. 
IQ * = 1 

Hence one obtains 
N 

3>"G(x - y) dy - ~ ck @"G(x - x<*>) = Ľ 
= ÍRЧx,y)dy-fickR\x,^) 

Jn * = 1 

using the fact that all points of Q and x(k) lie in the interior of \y\ < d; using (45) one 
obtains 

lr N 

(50) ®aG(x -y)dy-Yck ®*G(X " *(*}) 
\JQ k = 1 

From formula (50) the convergence of the integral 

<A. 

Í [ Z |^ Ä и | 2 ] p / 2 dx 
-oo l « l = m 
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for an arbitrary positive p follows immediately. Thus one proves that u belongs to 
L(m). In the same manner one can prove an analogous result for the function u expres
sed by formula (49). 

Consider the solution of problems Iili) and HiH) which also can be obtained in 
a finite form by means of Fourier series. 

The solution of equations (35) and (39) is obtained in an elementary manner by 
means of the periodic solution of equation 

(51) AmG = 1 - M(H, x) . 

For the solutions of (35) and (37) respectively the following formulas are evident: 

u = ( - l ) m + 1 A ^ G 0 ( x - x ( f c ) ) , 

u = ( - l ) m + 1 X[G0(x - z) - Yack(z) G0(x - x(fc))] , respectively . 

For the solution (51) the representation of function M(H, x) will be found. 

Introducing new variables by the formula 

y = H~lx 

one sees that x + Hp is transformed in y + /?. 

Consequently, in coordinates y the function M(H, x) will have periods equal to one 
with respect to each independent variable. The fundamental domain is thus transfor
med into the unit cube, from which it follows e.g. that the determinant of the matrix 
H is equal to one. The function 

A(y) = M(H, Hy) 

will also be periodic, all periods being integers which will be given by the formula 

A(y1) = S(yl)S(y2)...8(y„) 

for 
- \ < y k < \ . 

Now consider the function 

Kyi) 

which is a periodical distribution of one variable yx with period equal to one and which 
coincides with <5(y!) for \yt\ < | . 

This function can be expanded in a Fourier series of the form 

00 

X(yt) = X einnyi = 1 + S eittnyi. 
n = — oo | « | = 1 

Thus 

A(y) = 1 + E e*™ 
M*o 
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and finally 

M(H,x) = A(H~xx) = 1 + £ einiy'H~lx) = 1 + £ ^(y-*-1,*) 
|y|*o |y|*0 

Substituting this expression into (51) one obtains as is easily seen: 

G(x) = I 
ei>т( ľЯ--,x) 

- l \ 2 r o |y|*o (yH *) 

Now the case when in the region Q0 there is only one point at which the value fk 

is given, is of interest. Supposing that this point lies at the origin of coordinates and 
taking into account that the integral of G(x) is equal to zero one obtains the magnitude 
of the error 

(J,G) = G(0)= £ — A _ = d1(fl). 
\y\*o(yH 1)2m 

The investigation of magnitude of this error, which is considered as a function of 
the matrix of periods, is concerned with very profound properties of the geometry of 
numbers. 

Accordingly, to make this error as small as possible the matrix of the net must be 
chosen so that the net should represent a set of centers of the least dense covering of 
the space by spheres of a given radius. This question shall not be discussed here in 
more detail. 

The purpose of this paper is only to indicate the deep lying connections existing 
between the theory of partial differential equations and numerical analysis. It is 
only a hint at several simple problems arising in this field which seems to us to be 
of a considerable interest and which can lead to essential practical applications. 
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