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ON AN OPTIMAL CONTROL PROBLEM 

(in Connection with the Theory of Orientor Fields of A. Marchaud and S. K. Zaremba) 

T. WAZEWSKI, Krakow 

Solutions of ordinary differential systems are trajectories of corresponding vector 
fields. It may happen that the right hand sides of the system are approximately known 
up to a given accuracy. If this is the case then we have to deal rather with the more 
general theory of differential inequalities, which is closely related (see [3]) to a theory 
developed independently by A. Marchaud [8], [9] and S. K. Zaremba [26], [27]. The 
last one we will call the theory of orientor fields in contrast to the theory of vector 
fields. Both authors have used the notion of contingens (or paratingens) in the sense 
of G. Bouligand [5] in order to define a trajectory of an orientor field. They have 
established certain properties ^ 0 —^3 of these trajectories known before for solutions 
of ordinary differential systems. Those properties are: compactness, Kneser's and 
Hukuhara's property. As an immediate consequence of these facts one can get optimal 
properties SPA and &>5. 

I learned the results of Zaremba's dissertation before the second world war, since I 
was a referee of that paper. Then a few years ago I came across with some results on 
optimal control and I have noticed a close connection between the optimal control 
problem and the theory of Marchaud-Zaremba. This connection is seen clearly in the 
following way. We eliminate the control u from the control system S(f, C). This 
elimination leads to the definition of control counter-domain N(t, x). The last is an 
orientor field "associated" with the system S(f, C). We introduce also the convex hull 
E(t, x) of N(/, x) and a further field Q(t, x) = tendor N(t, x) (a field suggested by the 
bang-bang phenomenon). 

The theory of Marchaud-Zaremba concerns only convex orientor fields, while the 
counter-domain N(t, x) may be nonconvex. This leads to a difficulty which can bs 
surmounted by introducing a suitable generalization of trajectory; that is the notion of 
quasitrajectory of an orientor field and of a control system. 

It can be shown that the quasitrajectories of fields N, Q, E, of the system S(f, C) and 
trajectories of field E form the same family. It follows that properties 0>

o—0>
5 of the 

convex field E hold true for system S provided trajectories are replaced by quasi
trajectories. 

An implicit function theorem allows one to find the control u corresponding to a 
trajectory of a convex orientor field associated with S(f, C). 

The notion of the contingent derivative can be replaced in a convenient manner by 
the derivative in the classical sense. This leads to some generalizations. The method of 
estimation of the optimal time evident for orientor fields can be easily extended to 
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system S(f, C) applying Theorem 10. In the same way, some results of A. Bielecki [4] 
concerning the so called retract method for orientor fields can be generalized so as to 
apply to the control systems. By this method the problem of accessibility of a set by 
a trajectory and the asymptotic behaviour of trajectories can be treated. 

One can observe the tendency of treating a control system as an orientor field in 
some other papers, e.g. of R. Kalman [7] and E. Roxin [12], though the authors do 
not refer directly to the theory of Marchaud-Zaremba. From a different point of view 
than ours the importance of the theory of Marchaud-Zaremba has been pointed out 
in a paper of E. A. Barbasin and Yu. I. Alimov [3]. 

The present article is mainly based on results of the author [14] to [24] and also on 
certain results of A. Plis [10] and A. Turowicz [13]. 

1 Notation and definitions 

We denote by: 

Rn the real n-space , 

x = (Xu ..., Xn) point of Rn or 77-vector , 

O„ = (0, . . . , 0 ) , 

0 the empty set. 

By orientor we mean a set of n-vectors, i.e. any subset of Rn if the points of Rn are 
meant to be vectors. 

By 
comp (Rn), (convex (Rn)) 

we denote the collection of all nonempty compact (convex) subsets of Rn. 

By 
r(a, b) = \b — a\ and r(a, B) = inf r(a, x) 

x e B 

we denote the distance of point a from point b and set B, respectively. 
V(A, k) denotes the closed neighbourhood of set A of radius k, i.e. 

V(A, k) = {x: r(x, A) = k} . 

r*(A, B) = inf {5: A c V(B, s), B c: V(A, s)} 

is the well known Hausdorff's distance of two compact sets. 
We put 

\A\ = r*(On,A). 

Let T = ( - 00, + 00), W = T x Rn. A map N(t, x) of Winto comp (Rn) will be called 
an orientor field. If N(t, x) reduces to a single point for each (t, x) then we have to do 
with a vector field, a special case of orientor field. 
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The continuity, upper and lower semicontinuity of orientor field N(t, x) in the sense 
of Hausdorffis defined in a usual way. 

By abs. cont (J) and mesbl (J) we denote the sets of all functions x(t) absolutely 
continuous and measurable, respectively, on each compact contained in the interval J. 

Let x(t) be a function of t with values in Rn. Let g be an n-vector for which there 
exists a sequence t{ -> t, tt #- t such that 

*(*.) - x(t) 

The set of all such g will be called the contingent derivative of x(t) and we denote 
it by D* x(t). 

A family F of functions x(t) defined on Fis said to be compact if each sequence 
xt(t) e F contains a subsequence convergent to a function of F uniformly on every 
compact subset of T. 

Let F be a family of functions (or curves) x = x(t). We assume that F possesses the 
following 

Proper ty SP0(F). Each x(t) of F is defined and continuous in T and x(t) e Rn 

for t e T Each point (l0, x0) e W belongs to a curve of F. 

Definition 1. Let A = (t0, x0) e W. By 

F(A, F) 

we denote the family of x(t) e F such that x(t0) = x0, by 

Z(A, F) 

the union of the graphs of functions belonging to F(A, F). The last set is called the 
zone of emission of point A with respect to F. 

We put 
L(A, F) = boundary of Z(A, F) . 

We denote by 0(k) and A(k) the hyperplane t = k and the halt space t = k, respec
tively. We put 

S(A, r, k) = Z(A, F) n e(k), 

Z+(A,F) = A(t0)nZ(A,r), 

where A = (t0, x0). 
If G n Z+(A, r) 4= 0 then we will say that G is accessible from the point A by 

curves of F. 
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By the optimal time t(A9 G, F) of accessibility of the set G from the point A by 
curves of T we mean the minimum of k such that 

B(k) = Gn Z+(A9 T) n 0(k) # 0 . 

Each point of B(k) for k = t(A9 G, F) is called point of optimal accessibility of G 
from A by curves of T. 

A point A3 = (f3, x3), t0 ^ t3 is said to be peripherally accessible from A = (f0, x0) 

if there exists a curve x = x(t) of T such that (*, x(t)) e L(A9 T) for t0 = t = t3 and 
x(*3) = *3 -

Let K cz R„. Put 
K* = Tx K ( T = ( - o o , +oo)). 

The set K is said to be accessible from point A if K* is accessible from /4. 
Similarly we define the optimal time of accessibility, the points of optimal accessi

bility and the points of optimal peripheral accessibility of K from A. 

Definition 2. We say that a family T of functions x(t) has the property A(T) if pro
perty 0>o as well as properties &>l9 ^2> &z-> ^4> &s given below hold for T. 

Prope r ty 0>x. The family F(A9 T) is compact and the union 

AGB 

is also compact for each compact B cz W. 

Proper ty ^ 2 (of Kneser). The set S(A9T9 k) is compact and connected for each 
point AeWand keT 

Prope r ty ^ 3 (of Hukuhara). If A = (t0, x0) and At = (tl9 xx)9 tx > t0 and Ax e 
e L(A9 T) then Ax is peripherally accessible from A. 

Prope r ty £^4 (optimal). If a closed set Q cz Wis accessible from a point A along 
curves of F then it is accessible also in the optimal time. 

P rope r ty 0>5 (optimal accessibility of point). If x1eRn is accessible from a point 
A = (t09 x0) then it is accessible in the optimal time and it is also accessible peri
pherally. 

Remark . Let us point out that ^ 4 follows from SP09 &>l9 0>l9 &Z9 and 0>$ from £^4. 

4 Orientor fields 

H y p o t h e s i s ^ (N). For each (t9 x) e W9 N(t9 x) e comp (Rn)9 N(t9 x) is bounded and . 
continuous (see sec. 1) on W. 
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Hypothes i s jfTx(N). N(t, x) e convex (Rn) for each (t, x) e W. 
We now introduce two definitions of a trajectory of orientor field N(t, x). 

Definition 3. (of Marchaud [8]). A function x = x(t) defined in an interval J will 
be called a trajectory of N(t, x) if 

D*x(t) cz N(t, x) for each teJ. 

Definition 4. A function x = x(t) defined in an interval J will be called a trajec
tory of N(t, x) if (see sec. l) 

x(t) e abs. cont (J) , 

x'(t) e N(t, x(t)) (a.e. J) , 

where x'(t) denotes the derivative of x(t) in the usual sense and the abbreviation 
a.e. J means "almost everywhere in J". 

We have the following theorems (see [19]). 

Theorem 1. Assume 34?(N) and 2^X(N). Then Definitions 3 and 4 are equivalent. 

Theorem 2. Suppose J^(N) andJ^x(N) hold true and denote by T(N) the family of 
trajectories of N(t, x) which can be defined on the whole set T Then (see sec. 2) we 
have property A(F(N)); i.e. property SP{ (i = 0, 1,. . . , 5) hold for T(N). 

Proof. Owing to Marchaud [9] and Zaremba [27] properties ^ 0 —^3 hold for 
T(N). Thus ^ 4 and SPS follow (see Remark of sec. 3). 

5 Non-convex orientor fields. Quasitrajectories and strong quasitrajectories. 
Field E(t, x) and field Q(t, x) of type bang-bang 

In what follows we always assume that J^(N) holds, however we do not assume 
Jft(N). 

By 
E(t, x) = env N(t, x) 

we denote the smallest convex set containing N(t, x). 
The smallest set B(t, x) such that 

B(t, x) e comp (Rn) and env B(t, x) = env N(t, x) 

will be called the tendor of N(t, x) and we denote it by Q(t, x), hence 

Q(t, x) = tend N(t, x) . 

We have the following theorems. 
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Theorem 3. If ^(N) holds then 3f(E) and ^X(E) also hold. 

Theorem 4. (See [20].) If Jf(IV) is satisfied then Q(t, x) is lower semicontinuous 
on W. 

Definition 5. A function x = x(t) will be called a quasitrajectory of N(t, x) if 
there exists a sequence Xi(t) of functions such that 

xt(t) e abs. cont (T) (i = 1,...) , 

x'i(t) are equibounded (a.e. T) , 

Xi(t) -> x(t) for t eT as i -»oo , 

r(xfi(t), N(t, xt(t))) -> 0 (a.e. T) . 

Function x(t) will be called a strong quasitrajectory of N(t, x) if there exists a 
sequence xt(t) of trajectories of N(t, x) such that 

Xi(t)->x(t) for teT. 

Remark. Strong quasitrajectories are quasitrajectories, too. Also trajectories of an 

orientor field are quasitrajectories as well. 

Definition 6. Denote by {N} the collection of all trajectories of N(t, x), by {N}* 

the set of all quasitrajectories of N(t, x). 

We have then (see [21]) 

Theorem 5. Under the Hypothesis J^(N) we have 

(1) {N}* = {Q}* = {£}* = { £ } . 

Remark . A proof, given in [21], that {£} = {Q}* is based strongly on Theorem 4 
and on a result [10] of A. Plis saying that a field B(t) semicontinuous on Tis conti
nuous on Tup to a set of arbitrarily small measure. 

Theorem 6. Suppose ^(N) and let F be any of the four families of(1). 
Then r satisfies A(T); that is ^0-^5 hold for F. 

Proof. Theorem 6 is a consequence of Theorems 2, 3 and 5. 

Theorem 7. Under Hypothesis 3tf(N) it can happen that N(t, x) admits quasi
trajectories which are not strong quasitrajectories. 

Theorem 7 follows from an example of A. Plis [28]. 

Remark. The field Q(t, x) is roughly speaking the smallest field M(t, x) a N(t, x) 
which has under Hypothesis «?f (IV) the same quasitrajectories as N(t, x). It is closely 
connected to the bang-bang control method. 
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6 Estimation of the optimal time 

Definition 7. If 

(2) Nt(t, x) c N2(t9 x) 

for (t9 x) e W then we will call field N2(t9 x) a majorant of Nt(t9 x) and Nt(t9 x) 
a minorant of N2(t9 x). 

We have an obvious 

Theorem 8. If for Nt and N2, «?f (Nx) and J^(N2) holds, respectively and (2) is 
satisfied then the families of trajectories and quasitrajectories of fields Nx and N2 

satisfy the following relations 

{Nx}cz{N2}, {NJ* cz {N2}* . 

For emission zones with respect to families rt = {Ni}* and T2 = {N2}* we have 

Z(A9 r±) c Z(A9 r2). 

Moreover, if a closed set G cz T x Rn is accessible from A along quasitrajectories of 
Nx then it is accessible also by quasitrajectories of N2. 

If we denote the corresponding optimal times of accessibility by t1 and t2, respecti
vely, then t2 ^ t±. 

Further, if 

(3) Nx(t9 x) cz N2(t9 x) cz N2(t9 x) for (t9 x)eW 

and N3 satisfies jf(N3) and t3 is the optimal time of accessibility corresponding to N3, 
then t3 = t2 = tx. 

Remark. In order to estimate the optimal time of accessibility t2 for a field N2 one 
should look for two other fields Nx and N3 satisfying (3) and simple enough that it is 
easy to determine tt and t3. 

7 The case when an orientor field reduces to a vector field 

Suppose that an orientor field N(t9 x) satisfies Hypothesis J^(N) and, for each 
(t9 x) e W9 N(t9 x) reduces to a single vector g(t9 x) which we write 

N(t9 x) = g(t9 x) . 

Then the families of trajectories {N} and quasitrajectories {N}* are identical and 
each one of them is simply the family of all solutions of the system of n differential 
ordinary equations 

x'(t) = g(t9 x(t)) . 
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The properties of Kneser (0>2) and of Hukuhara (^3) have been known before for 
such systems. Marchaud and Zaremba have extended those properties for convex 
orientor fields. 

8 Control systems 

Introduce the variables x = (Xl9..., Xn) e Rn and u = (Ul9..., Up) e Rp and time t. 
Denote 

T = ( -00 , +00) , W= Tx Rn9 Z = T x Rn x Rp = Wx Rp. 
Let 

f(t9 x9 u) = (Fx(r, x9 u),..., Fn(t, x, u)) 

be a mapping of Z into Rn. The variable u is called the control and x — position. 

Hypo thes i s X(f, C). Function/(t, x, u) is continuous and bounded on Z. The set 

C(t, x) e comp (Rp) 

is continuous and bounded on JVin the sense of Hausdorff. 

The control u and the set C(t, x) are from the same space Rp. 

Definition 8. By a control system S(f, C) we mean a pair: a function f(t, x, u) and 
afield C(t, x). C(t, x) is called the control domain of S(f, C). 

The set N(t, x), for fixed (t, x), of all vectors v = f(t, x, u) where u is taken from 
C(t, x) will be called the control counterdomain of S(f, C). 

We have then an orientor field N(t, x) defined on W, which we will call the orientor 
field associated to the control system S(f, C). 

9 

Definition 9. A function x = x(t) defined on an interval J is said to be a trajectory of 
S(f, C), ifx(t) e abs. cont (J) and if there exists a control function u(t) such that 

*'(') = /('• *(*)> w(0) (a-e- J) . 
u(t) e mesbl (J) , 

u(t) e C(t, x(t)) (a.e. J) . 

Definition 10. A function x = x(t) defined on J is said to be a quasitrajectory of 
S(f, C) if there exist infinite sequences xt(t) and u((t) (i = 1, 2, ...) such that 

ut(t)e mesbl (J), 

Xi(t) e abs. cont (J), 

1̂ X01 = M -const < + ° ° (a-e-J) > 
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Ui(t)eC(t,Xi(t)) (a.e. J), 

x'fa) - f(t, xt(t), ut(t)) -> 0 as i -> oo (a.e. J) , 

xt(t) -> x(f) for * e J. 

Remark. Each trajectory of S(f, C) is, of course, its quasitrajectory. 

Theorem 9 (see [23]). Under Hypothesis Jf (f, C), a sufficient and necessary 
condition for x(t) to be a quasitrajectory of S(f, C) on an interval J = <a, a 4- h) is 
that there exists sequence ut(t) e mesbl J such that 

Ui(t)eC(t,x(t)) (a.e. J), 

x(t) — x(a) — f(s, x(s), Ui(s)) ds -> 0 for t e J . 

Definition 11. Every sequence ut(t) satisfying the conditions listed in Theorem 9 
will be called an asymptotic control sequence corresponding to the quasitrajectory 
x(t). 

Definition 12. A function x = x(t) will be called a strong quasitrajectory of 
S(f, C) if there exists a sequence xt(t) (i = 1, 2, ...) of trajectories of S(f, C) such 
that xt(t) -> x(t). 

10 A connection between quasitrajectories of control system and those of orientor 
field 

The families of trajectories and quasitrajectories of S(f, C) are denoted by {f, C} and 
{f, C}*, respectively. 

Remark . We have obviously {f, C} <= {f, C}*. 

Theorem 10. (See [21], [22].) Let N(t, x) be the control counter domain of S(f, C) 
(see Definition 8) and let us introduce the following sets: 

E(t, x) = env N(t, x) , Q(t, x) = tend N(t, x) . 

Under Hypothesis Jf(f, C), the orientor field N(t, x) satisfies J^(N) (see sec. 4) and 
we have 

(4) {/, C}* = {N}* = {Q}* = {£}* = {£} 

(compare the notation of Theorem 5). 

Theorem 11. Assume Hypothesis Jf(f, C) and denote by T the family of quasi
trajectories of a control system S(f, C), i.e. 

r = {f, c}*. 
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Then the property A(JT) holds; i.e. properties d^i (i = 0, 1,. . . , 5) hold for T. 

Properties 0>3, ^ 4 concern some questions of the optimal control problem (in this 
case the control deals with quasitrajectories). 

If we assume additionally that the control counterdomain N(t, x) is convex then 

r = {/, c}* = {/, c}, 

i.e. each quasitrajectory is a trajectory, too. In that case the optimal properties 0>3, SPX 

concern trajectories. 

Proof. Theorem 11 follows from Theorem 10 (see also [17]). 

Theorem 12 (on bang-bang control method). Assume Hypothesis Jf (/, C) and 
define the bang-bang kernel Cx(t, x) of control domain C(t, x) by the formula 

Ci(t, x) = {u:ue C(t, x),f(t, x, u) e Q(t, x)} , 

where Q(t, x) = tend N(t, x). Then 

{/, C}* = {/, Cx}* . 

Remark . By (4), the preceding results concerning estimates of the optimal time for 
orientor fields can be extended to control systems S(f, C). 

Remark . Owing to Property &^ one can get a result concerning the minimaliza-
tion of the integral 

Í m(t, x(t), u(t)) dt 
J t 

by quasitrajectories of S(f, C). 

11 Relation between quasitrajectories and strong quasitrajectories 

It follows from an example of A. Plis that under Hypothesis Jf (/, C), (4) is not true 
if one replaces quasitrajectories by strong quasitrajectories. 

A. Turowicz [13] has given some sufficient conditions that each quasitrajectory is 
strong quasitrajectory. 

Let us notice, that the notion of strong quasitrajectory ("sliding regimes") was 
introduced independently and earlier by A. F. Filippov [6] under stronger hypothe
ses. However, this paper does not refer to the theory of Marchaud-Zaremba. 

12 Method of elimination of the control variable — The inverse problem 

Passing from a control system S(f, C) (depending on the control u) to the associated 
orientor field N(t, x) independent of u, we eliminate the control u. 
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The inverse problem consists of the following. Suppose we know a trajectory 
x = x(t) of an orientor field N(t, x) associated with a control system S(f, C). We would 
like to find the corresponding control function u(t). To do that we should find a 
measurable function u(t) satisfying two conditions: 

x'(t) = f(t, x(t), u) , 

u e C(t, x(t)) . 

This problem requires a suitable implicit function theorem. We have dealt with a 
theorem of that type in [14]. A theorem of this kind is used also in [6] and [18]. 

The problem of the determination of an asymptotic control sequence ut(t) for a 
given quasitrajectory x(t) of nonconvex field N(t, x) can be dealt with in a similar 
way. 

13 

The papers [15], [16], [1], [11] give a topological method for investigation of 
asymptotic efects in ordinary differential equations. The same papers also contain 
some sufficient conditions in order that a set B be accessible by at least one integral of 
the system issuing from another set A. 

A. Bielecki [4] has extended this topological method for trajectories of convex 
orientor fields. 

Owing to Theorem 10, Bielecki's results can be applied also to quasitrajectories 
of nonconvex orientor fields and control systems. Thus, by this method one may be 
able to solve the problem of accessibility (connected with properties ^ 4 , ^ 5 ) and to 
study the asymptotic behaviour of quasitrajectories of control systems S(f, C). 

14 

Some of the above theorems also hold under more general assumptions [17] ana
logously as in the papers of Marchaud and Zaremba. One can also get some theorems 
of a local character. 

15 Orientor fields satisfying Caratheodory's type assumptions 

H y p o t h e s i s e * ^ ) . Orientor field N(t, x) e comp (Rn) is defined in W = T x Rn, is 
Hausdorff continuous in x and measurable in t in the sense of Egorov. There exists 
k(t) ^ 0 integrable in the interval T such that (see sec. 1) 

|N(1,x)| ^ k(t) a.e. T, xeRn. 

Hypothes i s ^\(N). 
N(t, x) e convex (Rn) . 

If we define a trajectory of N(t, x) as in Definition 4, we have the following result 
mentioned in [25]. 
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Theorem 13. Under assumptions J^*(N) andJ^\(N) the family F of trajectories of 
N(t, x) has the property A(F) (see sec. 3). 

Remark . If only J4?*(N) is assumed then we define quasitrajectory as in sec. 5. 
Relation (1) also holds in this case. 

The idea of the proof consists in introducing an integral 

(5) Гß(í) dř 

where B(t) is measurable in the sense of Egorov and (see sec. 1) 

\B(t)\ = k(t) . 

Such an integral is defined as a limit of algebraic sums of the form 

(6) CXA± e C2A2 e . . . e CPAP , 

where ct are non-negative constants and At e convex (£„). 

Above, by A e B we mean the set of all vectors v = a + b where a e A and b e B 
and by cA we mean the set of all vectors v -= ca, where ae A. 

The sum (6) and the integral (5) are convex sets. 

We have (see notation of sec. 2) 

S(A, Г, k) = A ® ґ B(t) dí 
J t0 

where F = {JB} and A is a point. 
Using the above formula one can get Kneser's property and in consequence Huku-

hara's property similarly as in Marchaud-Zaremba theory. 
We are indebted to Prof. Choquet for the information that an integral of the form 

(5) was considered by G. Mokobodzki (C. R. 1962) for another purpose. 
An integral similar to (5) but defined in a different way appears also in a paper of 

E. A. Barbasin and Yu. I. Alimov [2]. 

16 

Suppose that orientor E(t, x) is convex and put 

B(t, x) = boundary E(t, x) . 

Orientor field B(t, x) determines a family of cones M(t, x), which may be thought 
about as Monge's cones. Surface S which is tangent to M(t, x) at each point (t, x) e S 
can be written in an implicit form G(t, x) = const. The function G(t, x) satisfies a 
differential equation of the form 

H(t,GXl,...,GXn) = 0 

provided M(t, x) is regular enough. 
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Applying Cauchy's characteristics method one can reduce the integration of this 
partial differential equation to a system of Hamilton's type, which of course does not 
contain the control variable. The characteristics issuing from a point A generate a cone
like surface R. Denote by F the family of trajectories of the orientor field E(t, x). The 
emission zone Z(A, F) has its boundary L(A, F). Under suitable conditions of regu
larity, R and L(^4, F) are identical in a sufficiently small neighbourhood of A. 

The Hukuhara type trajectories issuing from A can be obtained from Hamilton's 
system. The remarks enclosed in this section (see also [24]) can be found already in 
a slightly different form in papers of A. Marchaud. A similar point of view is presented 
also in a paper of R. Kalman [7]. 

The author would like to thank Dr. C. Olech for his valuable remarks concerning 
the present paper. 
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