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SINGULAR .PERTURBATIONS AND LINEAR FEEDBACK CONTROL 

V.Dragan and A.Halanay, Bucharest 

1. Introduction 

The results reported here center around the classical regulator 

problem: a linear control system with a quadratic cost function. 

We shall consider two situations; the first one corresponds to the 

case of fast variables in the control system, the second one to 

"cheap control"• A crucial point in solving these problems is the 

behaviour of the optimal cost and to study it one has to consider 

singularly perturbed matrix Riccati differential equations. Refe­

rences for these problems are [l] , [2] , [3] • 

2. The control problems and the associated Riccati differential 

equations 

A. Let the control system be 

ex = A(t)x + B(t)u, x(tQ) = xQ 

T 
J(u) = x»(T)Gx(T) + J[x*(t)F(t)x(t)+u*(t)H(t)u(t)]dt 

to 

G^O, F(t) ̂ 0, H(t) >0 . 

The matrix Riccati equation giving the optimal cost is 

P = - jA*(t)P - JPA(t) + ^PB(t)^mllt)B*lt)^ - F(t) 

P(T, e ) = G 

and for P(t, e) = £R(t, e) we get 

(1) £R = -A*(t)R - RA(t) + RM(t)R - F(t), R(T, £.) = | G . 

The problem is to study the behaviour of 

R(t, £, ) as £,-+0 . 

B. The "cheap control" problem is defined by 

x = A(t)x + B0(t)uQ + B1(t)u1 , x(tQ) = xQ 

J(u) = x*(T)Gx(T) + 

T 
+ J [x*(t)F(t)x(t) + u*(t)HQ(t)u0(t) + 

*o 

+ £2u^(t)EL(t)u1(t)]dt . 

The associated Riccati equation is 

fe
2P = - £2[A*(t)P + PA(t) - PMQ(t)P + F(t)J + 

+ PBL(t)H£
1(t)B1(t)P , 

P(T, 6.) = G . 
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The problem is again to study the behaviour of P(t, £ ) as 

e —*0 . 

3. The singularly perturbed Riccati equations 

A. Let M(t) = D*(t)D(t), F(t) = C*(t)C(t), (A*(t),C(t)) 

completely controllable, (A(t),D*(t)) stabilizable, A,C,D, 
•A 

Lipschitz. Let R(t) be the unique positive definite solution of 

the equation 

A*(t)R + RA(t) - RM(t)R + F(t) = 0 . 

Let R(t, e) be the solution of the Cauchy problem (1). Then 
lim R(t, e) = R(t) for t<T . 
£-*0 

To prove this result we first consider the solution R(t, e ) 

of the equation in (1) with R(T, £ ) = R(T) and the solution 

R (t, £ ) of the same equation with R (T, £. ) = 0 . 
O /\ o 

Denote by C(s,t, £ ) the fundamental matrix solution of the 

system £x' = A(s)x where A(t) = A(t) - M(t)R(t) is Hurwitz 

for every t . 

We use the representation formulae 

R(t, £ ) = C*(T,t, £ )R(T)C(T,t, £.) + 
rp 

+ | Tcts.t, £ )[F(s) + R(s)M(s)R(s)]c(s,t, £. )ds-

- | Jcts,t,e )[R(s, g ) - R(S)]M(S). 

, [ R ( S , & ) - R(s)]c(s,t, e)ds , 

R(t) = exp (A*(t) %-)R(t) exp (A(t) -E=-») + 
m 

+ J j exp (A*(t) -£-)[F(t) + R(t)M(t)R(t)]. 

and 

.exp (A(t) ̂ ) d s 

C(s,t, £ ) = exp (A(t) ̂ ) + U) (s,t, £ ) , 

Ms,t,£)| ^^J*L (Bzi)
2
 exp (.^(.izt)) 

to obtain | R(t, £ ) - R(t) | -̂  k ̂  . 

Denote next S(t, £ ) = R (t, £) - R(t, e ) , and let C(t,tA,g.) 
o . rSm/ o 

be the fundamental matrix solution of the system ex = A(t, £- )x, 

where A(t, £ ) = A(t) - M(t)R(t, e ) . 

We obtain the representation formula 
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s(t, e ) = -c*(T,t, e)[R-1(T) - \ fc(T,s, e )M(s). 
fc t 

.CTT,S,£ )ds]"1C/(Tft, s ) 

and a lemma in singular perturbations [l] gives 

lim i f cj(Tfsf s )M(s)ctT,sf e )ds = L 
L-+0 k V 

where A(T)L + LA*"(T) = -M(T) .-

The representation formula gives then the estimate 

|s(t, e) | ̂ k' exp (-*'(£=£)) . 

To perform the last step denote SQ(t, ̂  ) = R(t,£- ) - RQ(t, £ ) 

and let C (sft, ̂ ) be the fundamental matrix solution of the sys­

tem ex'(s) = A Q ( S , E ) X ( S ) with AQ(t,^) = A(t) -M(t)RQ(t,e) . 

Then a representation formula for S gives 

S0(t, £)^C0*(T,t, Є) |GC0
(T,t, Є) 

and since |C (s,t, ̂ ) | - k exp (-<x 0^-)) the result is proved* 

B
#
 For the "cheap control" problem assume 

F(t) = B^(t)F(t)B
1
(t)>O

f
 G = B^(T)GB

1
(T)> 0 . 

Define 

Q(t, £ ) = Jl3^(t)P(tf £ ), R(t, E ) = JfiJ(t)P(tf £ )B1(t)f 

F ( t ) = B ^ ( t ) F ( t ) , G = B£(T)G . 
Then P ( t . £ ) , Q(t , £ ) , R ( t , c ) i s a s o l u t i o n of the problem 

P = -A*(t )P - PA(t) + PMQ(t)P + QH^UJQ - F ( t ) , 
6 Q = RH^1(t)Q - eQA(t) + eQM 0 (t)P - B | ( t ) P - F ( t ) , 

£R = RH^ 1(t)R - F ( t ) - £ B £ ( t ) Q - e Q B 2 ( t ) + 

+ e2QMQ(t)Q, 

P(T, £ ) = G, Q(T, g. ) = J G , R(T, a ) = J-G • 
We start with the equation 

SR = RHj^tjR - F(t) . 

Denote R(t) the unique positive definite stabilizing solution 

of the algebraic equation RH^ (t)R = F(t) . 

Denote Rft(t, £.) the solution of the differential equation 

with RQ(T, S ) = 0 and RQ(t, e) the solution of the same equation 

with RQ(T, ̂ ) = ~G • 
We have the representation 

R0<t, £ ) - R (tf E ) = C*(T,t, e JU""
1^, e )Cn(T,t, e) , 

U(t 
T 

, Ł ) = eT1* \ JC0(T, Г , fc )н£-( r )c*(т, -r, e )ďГ 
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where C is defined by 

e ds = - H x 1 ^ ) ^ ^ * ** )C> Co*1'*' * > = E • 
A crucial point in the proof is the estimate 

|U--(t,£)| * ^ 

Г^* 

2&gi + 1 - exp (-2* (%-)) 
Define Q

Q
 as the solution of the Cauchy problem 

EQ = lyt, E )Ĥ
1
(t)Q - F-̂ t) , Q

0
(T,e)

B
Jo. 

We prove that 

lim Q
л
(t, £ ) = Q

л
(t) for t<T 

t ->0 ° ° 

where QQ(t) = EL(t)R-1(t)F1(t) . 
Consider now P defined by 

£ ^ P ( t , g,) = Q0(t, g T H j - U ^ t , . * ) - Q ^ O H ^ U ^ t ) . 

A long series of estimates give finally 

|P(t,£.)|- A + — — gcr- • 
/ 2{i$Z. + 1 - exp (-2*("-f--)) 

Let us state now the final result. 
Define P from the Cauchy problem 

PQ = ~[A*(t) - F*(t)F"
1(t)B*(t)]P0 - P0[A(t) -

- B2(t)F"
1(t)F:L(t) + P0[MQ(t) + B2(t)F"

1(t)B|(t)]P0 -

- [F(t) - F*(t)F^(t)F(t)] , 

prtd) = G - 6"8r*a . 
Let QQ and P be defined as above with F, replaced by 

B£(t)P0(t) + F(t) • 
Then 

p(t, ̂  ) = P0(t) + eP(t, e) + eP1(t, e) 
Q(t,£ ) = $0(t, E ) + \Jl\(t,z) 
R(t, e) = R0(t, ̂ ) + ^ ( t , £ ) 

where P.̂, Q^, R̂  are bounded for t-̂ T • 
To prove this result we denote 

^ ( P i * ) 

and show that J is the solution of the problem 
£f = - y4*(t,£ )-?-M(t,£) + £#(t,£.)C?- ?(t,e), 
^ (T, fc ) = 0 

Whe]?e , _ Mi l *12\ jj.('Kl 0\ f - f ^ l l Jl2\ 
^ - U21 *22P^"l o W ' ' \ * 1 2 2̂2> 
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^ l l ( t » £ ) = fc[^(t) - MQ(t)(P0(t) + fcP(t, £))], 

^12(t, £) = /?[B|(t) - Mo(t)0j(t, £.)], 

^21(t, fc) = l/e^Ct^U, e ) , 

-422(t, £ ) = - H ^ U ^ U , £_) , 

^ n ( t , £) = e
2M0(t) , ^ 2 2(t, t. ) = ati^M , 

^1;L(t, e ) = eA*(t)P(t, e ) + £P(t,^)A(t) -

- eP(t, e)M0(t)(PQ(t) + tP(t,t)) -

- fcP0(t)MQ(t)P(t,£.) , 

^12(t, £) = ( t ? B * ( t ) P ( t , £ ) - l l £ Q 0 ( t , f c )[H0(t)P0(t) + 

+ £M0(t)P(t, e.) - A(t)], 

f22(t, e) = B*(t)Q*(t, e ) + QQ(t, £ )B2(t) -

- £Q0(t, E)Mo(t)0j(t, £ ) . 

We write for •? a nonlinear integral equation, which shows 0> 
is a fixed point of a certain nonlinear integral operator and we get 
the estimates for fl by proving that this operator maps a ball in­
to itself. 

Let us mention also the esimate 
|Rn(t, £. ) - R(t) |

 s &k n + k, exp (-<* (--=-)) + 
O O JL m + 

k2 exp (-2̂  (--̂ )) 
2 /b$e + 1 - exp (-2* (^)) 

,~ A , x . k. exp (-ex (£=£)) 
lQft(t, s ) - Qft(t)| * — ä 

0 2/4$>^ + 1 - exp (-2oc(2~t)) 

^0(t) = R"
1(t)[B*(t)PQ(t) + F(t>] • 

We obtained in this way the required information concerning 
the asymptotic behaviour of P(t, & ) • Remark that O'Malley [5] 
considered the case P(t)> 0, G = 0; this case is much simpler sin­
ce it implies Q(T, £, ) = 0, R(T, £ ) = 0 • 

4* Complementary remarks 

In the "cheap control" problem if we want to use a suboptimal 
control that might be simpler to compute we have to consider the 
behaviour of the solutions of a system of the form 

ii = [*U(t) + B(t)K*(t)]x 
where K*(t)B(t) is Hurwitz for fixed t . 

Let C^(t,s) be the fundamental matrix solution of the system 
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x = A(t)x and let y(t, &.) = CA(s,t)x(t, *L) . Then 

€y(t, s) = CA(s,t)[£A(t) + B(t)K*(t)]x(t, ̂ ) -

- £CA(s,t)A(t)x(t, £ ) = 

= CA(s,t)B(t)K*(t)CA(t,s)y(t, *L) 

hence 

where 

hence 

Ey(t, E ) = B(t)K*(t)y(t, ь ) 

B(t) = C
A
(s,t)B(t), K*(t) = K*(t)C

A
(t,s) 

K*(t)B(t) = K*(t)B(t) is Hurwitz. 

Denote by C(t,s, e ) the fundamental matrix of the given system 

and by C(t,s, s) the fundamental matrix of the transformed one. 

Then C(t,s,e) = C
A
(t,s)C(t,s, e ) • 

We next prove that 

|K*(t)CU
f
s

f
 0 | * £k 2

 + ( kl" ^ k 2 } e x p t-^<(^)) 
and then 

JQ(t,s, £ ) - L(t,s) I < ek + M exp (-<* (^)) 

where L(t,s) is the solution of the Cauchy problem 

y = -B(t)[KMt)B(t)]-1Kx(t)y 

L(s,s) = E - B(s)[K*(s)B(s)]~1Kx(s) . 

If we denote L(t,s) = CA(t,s)L(t,s) 

we have 

|C(t,s, £ ) - L(t,s) | * £k' + M exp (-cx(i=S)) 

where L(t,s) is the solution of the Cauchy problem 

x = [A(t) - B(t)(K^(t)B(t))"1K^(t)]x , L(s,s) = L(s,s), 

Let us mention finally the formula 

exp ( i EK*(t-s)) = E - Bte'B)"1^*" + 

+ BO^B)" 1 exp ( \ K*B(t-s))K* . 
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