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THE DIRICHLET PROBLEM 

W.Hansen, Bielefeld 

Given a partial differential operator L of second order on a relatively 
n « 

compact open subset V of R and a continuous real function f on V the 
corresponding Dirichlet problem consists in finding a continuous real function 

— 5'« 

u on V such that Lu = 0 on V and u = f on V . 

Since about twenty years ([1], [4])it is well known that a general treatment 

of this question is possible by using the concept of a harmonic space. We shall 

sketch how this is done and then discuss some recent developments. 

1. Harmonic spaces 

Let X be a locally compact space with countable base. For e\/ery open U in 

X let H(U) be a linear space of continuous real functions on U , called har

monic functions on U , and suppose that H = {H(U) : U open in X} is a sheaf. 

Standard examples. 1. Laplace equation. X relatively compact open c |Rn , 
? n a^u 

H(U) = {u € (r(U) : X -----= 0} 2. Heat equation. X relatively compact open 

i=l 3x2 

r.n+1 o/ux r.. ^ n 2 / M , . 2 92u 8u 
R

,,тx
 , H(U) = {u Є ťҶU) : I 

i=l ax
2 8 x

n+l 
l 

A relatively compact open subset V of X is called regular if for eyery 
s'c V — 

f G C(V ) there exists a unique extension H f on V which is harmonic on V 

and positive if f is positive. 

Let us suppose that (X,H) has the following properties: 

I. The regular sets form a base of X . 

II. For eyery open U in X and increasing sequence (h ) of harmonic 

functions on U such that h := sup h is locally bounded the function h is 

harmonic on U . 

III. 1 € H(X) , H+(X) separates the points of X . 

Then (X,H) is a harmonic space. 

Remark. We note that the general concept of a harmonic space in the sense of 

Constantinescu-Cornea [4] uses a slightly weaker form of property (I) and a sepa

ration property which is considerably weaker than our property (III). Accepting 

some technical modifications all the material we want to discuss can be presented 

in the more general situation (see [2], [3]). But probably the essential ideas 

become more clear in our setup. 
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Let V be a regular set and x € V . Then the mapping f i—> H f(x) is a 

positive linear form on C(V ) , hence a positive Radon measure y on V , 

called the harmonic measure (on V at x) . 

2. The Dirichlet problem and the PWB-method 

Let U be a relatively compact open subset of X . Given a function 

f € C(U ) the corresponding Dirichlet problem asks for a continuous extension 

of f to a function h e C(U) which is harmonic in U . Therefore, one is in

terested in the linear space 

H(U) := {h € C(U) : h harmonic in U} . 

If this Dirichlet problem is solvable for eyery f G C(U ) then U is 
.». 

regular, H(U) = C(U ) , and vice versa. However, U may be not regular and 
.% 

then there are functions f € C(U ) for which the Dirichlet problem is not 

solvable. 

But there is a method due to Perron, Wiener and Brelot (PWB-method) which 

yields a positive linear mapping f •—> H f such that H f is harmonic on U 
5TC II 

for every f e C(U ) and such that H f is the solution of the D ir ichlet 

problem provided a solution ex ists. 

The PWB-method of determining a so-called generalized solution of the D ir ichlet 

problem uses hyperharmonic functions. A l .s .c . function v : U -> ]-«>, +«>] is 
Y 

called hyperharmonic (on U) i f yx(v) < v(x) for eyery regular V such that 

V cz U and for eyery x € V . 
.«. — 

Let H(U) = {v|v : U-> ]-«>, +«>] l . s . c , v hyperharmonic on U} . We note 

that 'H(U) n -5CH(U) = H(U) . ~H(U) is a convex cone sat isfying the following 

boundary minimum pr inc ip le: I f v G H(U) and v > 0 on U then u > 0 on 

U . 

Let f Є C(U*) . Defining 

H^f = inf {v Є *H(U) : v > f on U*} 

H
U
f = sup {w Є -*H(U) : w < f on U*} 

the boundary minimum pr inc ip le y ields H f < H f . I f the D ir ichlet problem for 

f is solvable, i . e . i f there exists a function h e H(U) such that h = f on 

U* then evidently h < HUf and r f f < h , hence HUf = r f f = h . 

I t can be shown that for every f € C(U ) 

I f f = HUf =: HUf 
U U * 

and furthermore H f is harmonic on U , H f = f on U . 



141 

s'c J'C 

A boundary point z € U is called regular if for all f G C(U ) the 

generalized solution H f is continuous at z . Evidently, U is regular if 

and only if all boundary points of U are regular. The generalized solution of 

the Dirichlet problem and a useful criterion for the regularity of boundary 

points can be obtained using balayage of measures. 

3. Balayage 
& + 

Let H denote the set of all positive hyperharmonic functions on X . 
•% + 

Given an arbitrary subset A of X and a function u € H one tries to find 
s'c + 

a smallest function v € H satisfying v = u on A . The obvious candidate 

is the pre-sweep (or reduite function) 
RJ := inf {v € V : v = u on A} . 

A A 
Since RM is not l.s.c. in general, one replaces RM by the greatest l.s.c. 

A function < R . This is the sweep (or balayee function) of u relatively to 
A : 

RA(x) := lim inf RA(y) (x G X) . 
y •*- x 

*A * + We have R G H and obviously 

o <- «5 <- R I <u • 
The in it ial interest leads then to the study of the base of A 

b(A) := / 7 \ (x € X : RA(x) = u(x)} . 
uG H 

It has the following fundamental properties: 

% c b(A) c A , 

b(A) = {x G X : RJ (x) = uQ(x)} for some uQ G V n C , 

in particular, b(A) is a G.-set. 

For every Radon measure y > 0 on X with compact support there exists a 
A 

unique Radon measure y > 0 on X satisfying 

J u dyA = J RJ dy for all u G V . 

A ~~ 
y is called the swept out of y on A . It is carried by A . By choosing 
for y unit masses ex at points x G X it follows that 

b(A) = [X G X : ej = ex} . 

We are now able to express the solution of the generalized Dirichlet problem in 

terms of balayage: 
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For every relatively compact open set U and every f € C(U ) the solution 

H f satisfies 5,c 
H Uf(x) = J f d e x

U = J f d e U (x € U) . 

The set U of regular boundary points is given by 

U r = b(fiU) n U . 

4. The weak Dirichlet problem 

Again let U be a relatively compact open subset of X . The fact that a 
5': 

function f G C(U ) may not admit an extension to a function h G H(U) led to 

the introduction of the generalized solution H f which is a harmonic extension 

of f but is not necessarily continuous at all points of the boundary U . 

Another way of turning the problem is the following: Are there at least some 

subsets B of the boundary such that every continuous function f on B admits 

a continuous extension to a function in H(U) ? Because of a general minimum 

principle a natural candidate for such a set B would be the Choquet boundary 

ChH,HxU of U with respect to H(U) . 

iM/MxU is the set 

where 

CҺ
H ( U )

U := {x Є U : M
ҳ
(U) = {^}} 

M
X
(U) : = {p : y(h) = h(x) for all h Є H(U)} 

denotes the set of all representing measures for x (with respect to H(U)) . 

— V 

If for example V is regular, V c U and x € V then u is a representing 
— fU 

measure for x . More generally, for every x G U the swept-out &x of e 

on ()U is a representing measure for x . In particular, the Choquet boundary 

ChH/yvU is a subset of the set U of regular points. For the Laplace equation 

these two sets coincide whereas for the heat equation the Choquet boundary may be 

a proper subset of U . 

We have the following minimum principle: For every h G H(U) there exists a 

point z G ChH,H\U
 such that h > h(z) . In particular, if h, , h« G H(U) 

and h, = h2 on ChH tmU then ni = no • 
Thus the following weak Dirichlet problem arises: Given a compact subset 

K of C h u / m U and a continuous function f on K , is there a continuous ri(uj 
extension to a function in H(U) ? 

The solution of this problem is obtained by the following result. 
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Theorem ([2]). For every x € U there exists a unique measure y G M (U) 

which is carried by ChM/M\U • For every x ells CnH(#U^ ' 

ChH(u)TJ 
yx = ex • 

A very general reasoning now yields the following consequence. 

Corollary. 1. The weak Dirichlet problem is solvable. 

2. {p G H(U)* : p > 0, P(l) = 1 } is a simplex. 

Furthermore, a close study of the Choquet boundary yields a characterization of 

ChM/MxU which is similar to the one obtained for U : 

ChH(u)u = 3([U) n U 

where 3([u) is the greatest subset C of [u such that b(C) = C . 

5. General PWB-method _ 
CMM/MXU 

We shall now see that for every x G U the measure e v ' and many other 

representing measures can be obtained by a procedure in the spirit of Perron-

Wiener-Brelot. 

For every compact subset K of U let HK(U) be the set of all functions 

v which are limits of an increasing sequence (v ) of l.s.c real functions 

v on U , hyperharmonic on U and continuous on U ̂  K. Then 'H.,(U) is a 

convex cone such that H(U) c \ ( U ) c \ * ( U J = *H(U). 

Furthermore 

C Һ
H ( U )

U c ch
*

н {u)

u c ҝ u c h
н ( u )

u 

K 
where the last inclusion is a consequence of the local characterization of the 

— & s'c 

Choquet boundary. Indeed, obviously Ch
jt
. U c U . So let x G U v 

(K U Ch
M
/n\U) . Then there exists an opefrneighborhood V of x such that 

V n K = 0 . Defining W = U n V we have x G V n [3 ([u) c [e([W) and hence 
x
 t

 C n
u t m

w • Tnus ev H( w) * ev and _eing a representing measure of x with 
n\Wy j, X CV\ \l 

respect to "Htt(W) the measure el" H(W) is a representing measure of x with 
:'c V 

respect to H.AU). ,.Ã 
Let B be a Borel subset of U containing ChH,y>U . Defining 

\(U) = L .J V(U) 
B K cp.c£ K 

we thus have the following minimum principle: If v G H-,(U) and v > 0 on B 

then v > 0 on U . 
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Let f € C(U"). Defining 

HJjf = inf {v € *HR(U) : v > f on B} , 

HUf = sup { w e - *HB(U) : w < f on B} 

U —u 
the minimum principle yields Hpr < HRf . If there exists a function h e H(U) 

.t. D D I • I • 

such that h = f on U" then evidently h < HDf and n^f < h, hence 
-U U ~ — " 
Hgf = HLf = h . In the general situation we have the following result. 

ft 

Proposition ([3]). For eyery f € C(U ) 

Hgf = Hnf =: Hgf , 

and Hnf is harmonic on U. Furthermore, for eyery x € U ̂  B 

Hjf(x) = /. f del ' 
Proof. It suffices to consider the case f = vI for some continuous real 

v € V . Then V c *HR(U) implies that 

"B^ I -J - R5 • 
K * 

Let K be a compact subset of B, w = R L • Then w G - H^ULw < v. Hence 
K U — 'U K 

R < Hgf on U . Taking the supremum of al l R we obtain 
RBI <HU f Rv|u ±hf ' 
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