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ON A GENERAL CONCEPTION OF DUALITY IN OPTIMAL CONTROL
R. Kl6tzler, Leipzig

Many problems in the theory of differemtial equations and its
applications can be formulated as problems of optimal control.For
these problems again several conceptions of duality have been deve-
loped which are very useful. from theoretical and numerical point
of view.For example we all know in the theory of elasticity the
important duality between the principle of Dirichlet and its dual
problem as the principle of Castigliano.

In general, if we denote the original problem by

) F(x) —> Min
subject to all x € X ,

then a dual problem is defined in general sense by any problem

(2) L(y) —> Max
subject to all ye Y ,

with the property F(x)Z L(y) V xe X,yeY .
As a rule one aspires to comstruct such dual problems which
sakisfy the strong duality comdition

inf P (or Min P ) = sup L (or Max L ) .
X X Y Y

It is easily seen that such a conception of duality leads to both-
side estimates of inf F and often also to corresponding error
X

estimates with respect to an optimal solution x_ .

For regular variational problems already K.O.Friedrichs [3]
introdueed dual variational problems in 1928. His theory requires
besides assumptions of differemtiability mainly convexity proper-
ties of the imtegrand. In the last decade by M.M.Cvetanov [9] ’
R.T.Rockafellar [8] and Ekeland/Temam [2] several investigations
were stated,which may be viewed as an extension of the original con-
ception of Friedrichs with respect to general problems of optimal
control.In these papers the former assumptions of differentiabili-
ty are essentially weakened,however convexity properties are again
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sﬁpposed and instead of Legendre transformation by Friedrichs now
Fenchel's theory of conjugate functioms is applied.

In the present paper we shall delineate a new conception of
duality,which avoids any requirememts on the convexity of the ori-
girnal problem.Simultaneously this treatment carries on relevant
investigations on Bellman's differential equation and extemsions
of the classical theory of Hamiltom amd Jacobi by the author [5] -

[7].

We consider problems of optimal comtrol of the type

(3) J(x,u) := S £f(t,x,u) at + S 1(t,x) 40 —> Min
0 A2

subject to all vector-valued state functioms x € X ,comtrol

functions u &€ U(x),and comstraints

) Xy = gj;((t,x,u) (i=10eeym; &=1,.0.ym) .

Here {) is a strongly Lipschitz domain of R® ,

X = -}- x € W;)’n(ﬂ) l (t,x(t)) € G onﬁ , b(t,x(t)) = O on aﬂ\}
with p>nm .

U(x) = {u EL;(Q) ‘ u(t) € V(t,x(6)) C BX a.e. on {2 ¢
for every x € X ,

G 1is an open set of Rn+m,and V(.,.) is assumed to be a normal map
from G into RF in the senmse of Joffe/Tichomirov [4] p.338 .
Further we suppose 1 and b are real continuous functions on
Q) X BR® and f as well as gié( are real functioms on G X RT
satisfying the Carathéodory condition in the following meaning:
they are (Lebesgue-) measurable funmctions with respect to the first
argument t and contimuous functioms for almost every fixed tel).
Therefore f£(.,x(.),u(.)) and gi°< (.,x(.),u(.)) are measurable
functions on _,Q for every process (x,u) ythat means for every
admissible pair <x,u> of problem (3). We denote the set of all
processes by p and require the followimg additional assumptions:

(58) P+ g

(5b) £(.,%(.),u(.)) is mimorized by a function Y &€ L:]l D

)VL <x,u_> € p .
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In comsequence of (5b) f(.,x(.),u(.)) is summable on _(2 (in the
broad sense) for every \/x,u>ep and accordingly J(x,u) is
well-defined on 'ZP .

Now we prepare the formulatiom of a corresponding duality
primciple. For this purpose we imtroduce the demotations

H for the Pontryagim fumctiom defimed by
(6) H(tv}% yVaY)i= - f(tvfg’v) + 7i°< g; (t7§yv) ’

H for the Hamiltoniam fumction defimed by

I (6,5 ,¥)= H(%, §,v, EX R
@ 8. vsgg(tyg)( E,v,y) on

and Q(t) for the following cuts of G

} ¥sed
,b6,2) =0} ¥ ted.

Moreover we select a subset 'J° from W1’m(G) consisting of all
functions S & W':"om(G) having the following properties:

@

feemd | 5,8y e

®)  ut):=
{ger* | (1,80 €

[2]]

(9a) each class of distributiom derivatives of S% (=1 seee,y)

contains a bounded represemtative Sj (3 =100ey,n+m) ;

(9b) there are uniformly bourded sequences of fumctions

zg € cl (R™*™) and their derivatives satisfyimg pointwise the
conditions
« .
lin zy = 8* and 1lim (dz) /d5%) =8
k>0 k— 0

« —
j om G .
Obviously ,bb contains the set 01’m(a) of conmtinuous differen-
tiable (vector-valued) functions. By means of mollified functions
of 8% we can easily see that also the set D1’m(E) of piecewise
continuous differentiable functions belongs to bﬁ .In the follow-
ing text we denote generally S;‘ = S:“. for i =1,...,m and
S8y = s‘;ﬁ;; for i =1,...,n.

With these definitions we are starting from theorems on set-
valued functions by Joffe/Tichomirov [4] ch. 8 and conclude the
following lemmas.

Lemma 1 . y@(.,.,.) is a measurable functiorm omn G X R®™® , If
dom I 6, 8,0% ¢ ,then & (t,5,.) is a convex function .
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Lemma 2 . Setting y;( = S;;(t,g) in (7) for arbitrary functioms
S ET we obtain 'BC(.,.,S e (.,.)) as a measurable fumction om G .

Lemma 3 . For each SET and

*— o . =
(10 &g, 8)= 85,5 + H(6,5,8, 5, $)

the fumctiom
<) ANgri= sip - &40,8)
S gcac) 8 5
is measurable om ..(2 .
In connection with the §Sneral equation of Hamiltom-Jacobi

qbut« + LS P -0

it seems adequate to defime this fumction Crs as the "defect" of
the Hamiltom-Jacobi equatiom with respect to S .

Now we fix a process (x,u> and a functiom SET. We ob-
tain by using the expression (6) the equation

J(x,u) = Sl(t,x) do +
_ a0 o
+ ‘é{—ﬁ(t,x,u.sé (t,x)) + Sg;(t,x) gg'((t,x,u)\} at .

@urthermore, we insert im its second integraad Sgﬁ.((t,x)—S;(x(t,x).
Begause of the fact that im comsequemce of (9) ard (4)

S[S.‘Zx(t,x) + Sgg(t,x) gai((t,x)] at

= S [s:f,((t,x) + sé;(t,x) x%é((t)] as

e i
k{:l;, _({ [zkt.((t,x) + zg%;(t,x) xt.,((t)_] at
lim a 2§ (6,x(6)) o

k-»cwo 0 asx

]

k]-fg!o Sz]‘: (t,x) no((t) do = S Sx(t,X) 2 (£) do
an 2N

holds, the following equality results:
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J(x,u) = S{—H(t,x,u,sg(t,x)) + Sg\:(t,x)}

v S B e +1,m] a0 .
L
Here the 3ymbols = (t) (=1y...,m) denote the components of
the unit vector of the exterior mormal on 8.(2 at the point + .
If we observe that im consequence of (5),(7),Lemma 2 and

I 5,%,8 ¢ (6,3)) T H,xu,8g (5,0) € L)) the fuction
%(t x,S \_(t x)) is summable too on _(l ,the last equation leads
to the estimate

sz $§- R0+ sien ] as

+ S LS (t,x) nb((t) + 1(%, x)-l do
o)
and through Lemma 3 to

(12) I(x,u) T KB) = - (\g/\s(t) at +

—t( -
I inf ST (t,8)n (t) + 1(t,8)| do .
From this development of formula (12) it is easy to notice in

which cases there the equality occurs.We summarize our results in
the following duality theorem.

C
Theorem 1 . Let (X,u) be a process and S€ T Then J(x,u)>L(8)
in the sense of the detailed formulation of (12). Here the equali-
ty holds if and omly if the following.comditions are fulfilled:

(13a) H(%,x,u,S8 &(t,x))

]

 (5,x,8 p(6,1) ae. n L,

Ngt) ace. on (2,

(13¢)  8™(t,)n,(6) + 1(t,%) _§1nf [s“'(t £)n(6) + 1(6,8 )J
a.e. on () .

In virtue of ths Theorem 1 a duality is defined betweea the

(13b) R O))

This duality is a far-reaching generaliza’cion of several concep-
tions of duality which we cited above in the introduction.We cam
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eésily demonstrate that through a reduction of problem (3) to a
Bolza problem the dual functional of Friedrichs and Rockafellar is
generated by L(S) under the special statement

(14) s*(t, 8) = yg(t) + yi) g’ (% =1,ec0,m) .

Hence the duality of Friedrichs, Cvetanov, Rockafellar and Eke-
land/Temam is formally included in our conception (12) by speciali-
zation on linear-affine functions S with respect to ? . From this
fact it is obvious that in general the dual problem, restricted on
the class 2"; C 3"‘ of functions (14), does not generate so good lo-
wer bounds of inf J as sup L(S) on the whole })” . An instructive

comparison is supplied by the following example.

Example 1. It is to find in Euclidean metric the shortest way in the
o= 2 < s
domain G, -{%ER I r = lgl = r2} y Ty < r, , from an initial
point %4 = ( 0’,—1‘1) to the endpoint §1= (O',rl). - Here we obtain
. - - . _ L Ay,
inf J = rry = sup L(S), attained by S(g) = ry arctan (g /Igl),

but on the other hand sup L(S) =2 r .

A further difference ;etween these duality conceptions is the
following. The duality of Rockafellar has for convex problems the
advantage of being symmetric, as the double dual problem coincides
with the original one. On the other hand, cur duality in the sense
of (12) leads to fundamental differences between the analytical
structure of the functionals J and L 8o that this new duality
is not symmetric. »

As an application of Theorem 1 let us discuss the case in
which for a given process <x,u> and SEX/ the equality
J(x,u) = L(S) 1is valid. Then the pair (<x,u>,S) 1is said to be
a saddle point of the duality condition (12) and <x,u>,S are
optimal solutions of (3) and of its dual problem respectively. Thus
we can interpret the condition (13) equivalent to the saddle point
property as a generalized form of Pontryagin’s maximum principle.
In this form it is especially a sufficient criterion for optimality
of the process <x,u>. In a recent paper LS] we proved that for
problems (3) without state restrictions (disregarding boundary condi-
tions) the condition (13) includes Pontryagin’s maximum principle
in the original form (for m = 1) and in the generalized form by
L.Cesari [1] (for m>1). The converse question is in general still
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unsolved: to what extent the condition (13) and the existence of
the corresponding S€E X’ is necessary for an optimal process
<x,u> . Only for special classes of (3) with m=1 it is known
that the Bellman function realizes this condition. For convex prob-
lems the stability theory of Rockafellar [8] answers this question.

Finally we mention two further results without giving their
proofs, which are similar to the proof of Theorem 1.

Theorem 2 . The result of Theorem 1 holds even if we replace the
— o o o« 1,m
set rby?{‘;.- { S=5,+8, | s,€Y, s, € wp'(Q)}.

Theorem 3 . Let <x,u) be a process and SE.'Z; ,restricted by the
condition

15 gt ®) = St B) + T S B EENE O

for a.e. t@) and every B €q(t).
Then the inequality

(16)  I(x,u) T L (S) := S inz [ s%s,8 )n [t) + 1(t,§).[ do
ol Zeq(s) ~ -

is valid.Here the equality holds if and only if

(173) H(t’x’uwsé(t’x)) = %(tsxvsg(t’x)) a.e. OD-Q ’
(17b) é\s(t,x(t)) =0 a.e. on..Q ,

86,5 ome) + 1068)]
a.e. on G.Q .

The estimate (16) induces a modified dual problem stated by the
object

(18) L,(8) —> Max on ?“p

under the constraint Jé(t,.) £ 0 for a.e. teﬂ.
In consequence of Lemma 1 this modified dual problem is a convex
optimal problem on an infinite dimensional function space with a
linear objective functional.If we denote the feasible set of (18)

(17¢) So((t,x)nx(t) + 1(t,x) = inf
§eQ(t)

by O and regard it as & subset of W;’m(G) , then formula (16)

is true also on the closure ({, 8o that sup Lo Sinf J .
oL ?
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Example 2 (parametric variational problems) .

We consider simple integrals (m = 1)
T
J(x) = f £(x,x)dt—Min on wll)"‘(e,'r)
(v

under boundary conditions x(0O) = X, x(T) = Xp and state restric-

tions x(t)(—ZEOCRn VtE[O,T] » Where Gy is a domain satisfying

2G,€ C‘l’ . Besides (5) we assume f2© and f(x,.) is a positive
homogeneous function of the degree 1 . - Now we obtain by some here
omitted computations under the additional assumption St = @ the

result Ly(S) =S(xp) - S(x,) and O = {s€ wlrl(q) |

S§ (g )E ?’(g )} a.e. on G, , where J’F"(g) is the convex figu-

ratrix set at the point S in the sense of Carathéodory defined by
f’(g):{zERn| z5 vigf(g,v)VVERn} .
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